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Abstract. Accurate snowpack simulations are critical for
regional hydrological predictions, snow avalanche preven-
tion, water resource management, and agricultural produc-
tion, particularly during the snow ablation period. Data as-
similation methodologies are increasingly being applied for
operational purposes to reduce the uncertainty in snowpack
simulations and to enhance their predictive capabilities. This
study aims to investigate the feasibility of using a genetic
particle filter (GPF) as a snow data assimilation scheme de-
signed to assimilate ground-based snow depth (SD) measure-
ments across different snow climates. We employed the de-
fault parameterization scheme combination within the Noah-
MP (with multi-parameterization) model as the model op-
erator in the snow data assimilation system to evolve snow
variables and evaluated the assimilation performance of the
GPF using observational data from sites with different snow
climates. We also explored the impact of measurement fre-
quency and particle number on the filter updating of the
snowpack state at different sites and the results of generic re-
sampling methods compared to the genetic algorithm used in
the resampling process. Our results demonstrate that a GPF
can be used as a snow data assimilation scheme to assimi-
late ground-based measurements and obtain satisfactory as-
similation performance across different snow climates. We
found that particle number is not crucial for the filter’s perfor-
mance, and 100 particles are sufficient to represent the high
dimensionality of the point-scale system. The frequency of
measurements can significantly affect the filter-updating per-
formance, and dense ground-based snow observational data

always dominate the accuracy of assimilation results. Com-
pared to generic resampling methods, the genetic algorithm
used to resample particles can significantly enhance the di-
versity of particles and prevent particle degeneration and im-
poverishment. Finally, we concluded that the GPF is a suit-
able candidate approach for snow data assimilation and is
appropriate for different snow climates.

1 Introduction

Understanding snowpack dynamics is crucial for water re-
source management, agricultural production, avalanche pre-
vention, and flood preparedness in snow-dominated regions
(Piazzi et al., 2019; Pulliainen et al., 2020). As a special
land surface type, seasonal snow cover is highly sensitive to
climate change and has a significant impact on energy and
hydrological processes (Barnett et al., 2005; Takala et al.,
2011; Kwon et al., 2017; Che et al., 2014). On one hand, the
high albedo of snow-covered surfaces can significantly re-
duce shortwave radiation absorption, leading to adjustments
in the energy exchange between the land surface and atmo-
sphere (You et al., 2020a, b). On the other hand, the low
thermal conductivity of snow cover can insulate the under-
lying soil, which results in reduced temperature variability
and a more stable environment (Zhang, 2005; Piazzi et al.,
2019). In addition, snowmelt is a vital source of water that
plays a critical role in soil moisture, runoff, and groundwa-
ter recharge (Dettinger, 2014; Griessinger et al., 2016; Oaida
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et al., 2019). Therefore, comprehending snow dynamics is
essential for predicting snowmelt runoff, atmospheric circu-
lation, hydrological predictions, and climate change.

Currently, there is a growing effort to investigate the po-
tential of data assimilation (DA) schemes to improve snow
simulations and to obtain the optimal posterior estimate of
the snowpack state (Bergeron et al., 2016; Piazzi et al., 2018;
Smyth et al., 2020; Abbasnezhadi et al., 2021). Various DA
methodologies with different degrees of complexity have
been developed, resulting in diverse performance levels. Se-
quential DA techniques, including basic direct insertion, op-
timal interpolation schemes, the ensemble-based Kalman fil-
ter, and particle filters, have been widely employed in real-
time applications. The greatest strength of sequential DA
techniques is that the model state can be sequentially up-
dated when observational data become available (Piazzi et
al., 2018). However, the direct-insertion method, which re-
places model predictions with observations when available,
is based on the assumption that the observation is perfect and
the model prior is wrong (Malik et al., 2012). This method
can potentially result in model shocks due to physical incon-
sistencies among state variables (Magnusson et al., 2017).
Although the optimal interpolation method is more advanced
and takes into account observational uncertainty, it still has
great limitations and is rarely used in real-time operational
systems (Dee et al., 2011; Balsamo et al., 2015).

At a higher level are the Kalman filter and ensemble-
based Kalman filter, which are most commonly used in
various real-time applications. The ensemble Kalman fil-
ter (EnKF), which was first introduced by Evensen (2003),
uses a Monte Carlo approach to approximate error estimates
based on an ensemble of model predictions. This approach
does not require model linearization, making it particularly
advantageous. Precisely due to this advantage, the EnKF
has been widely used in snowpack prediction. For example,
EnKF has been used to assimilate MODIS snow cover extent
and AMSR-E (Advanced Microwave Scanning Radiometer-
Earth Observing System) snow water equivalent (SWE) into
a hydrological model to improve modeled SWE (Andreadis
et al., 2006), as well as to assimilate MODIS fractional snow
cover into a land surface model (Su et al., 2008). More-
over, the EnKF method has been used to enhance snow water
equivalent estimation by assimilating ground-based snowfall
and snowmelt rates, as well as both D-InSAR (differential
interferometric synthetic aperture radar) and manually mea-
sured snow depth data simultaneously (Yang and Li, 2021).
Even though there are numerous studies that have generally
stated that the EnKF has an excellent assimilation perfor-
mance, enabling it to consistently improve snow simulations,
some constraining limitations hinder the filter performance
(Chen, 2003). One of the main limitations is that the EnKF
assumes that the model states follow a Gaussian distribu-
tion and only considers the first- and second-order moments,
thereby losing relevant information contained in higher-order
moments (Moradkhani et al., 2005). Unfortunately, the dy-

namical system usually has strong nonlinearity, and the in-
volved probability distribution of system state variables is
not supposed to follow a Gaussian distribution (Weerts and
El Serafy, 2006). Additionally, the filter performance of the
EnKF is significantly influenced by the linear updating pro-
cedure, and the state-averaging operations can be particularly
challenging for highly detailed, complex snowpack models.

In order to overcome these limitations, the particle filter
(PF), which is also based on the Monte Carlo method, has
been developed for non-Gaussian, nonlinear dynamic models
(Gordon et al., 1993). The greatest strength of the PF tech-
nique is that it is free from the constraints of model linear-
ity and error that come with following a Gaussian distribu-
tion. This enables the successful application of the PF tech-
nique to nonlinear dynamical systems with non-Gaussian er-
rors. Additionally, the PF technique gives weights to indi-
vidual particles but leaves model states untouched, which
makes PF more computationally efficient than the ensem-
ble Kalman filter and smoother techniques (Margulis et al.,
2015). Thanks to these advantages, there is an increasing in-
terest in applying the PF technique in snow data assimila-
tion. For example, remotely sensed microwave radiance data
were assimilated into a snow model to update model states
using the PF technique, and the results demonstrated that
the SWE simulations have great improvements (Dechant and
Moradkhani, 2011; Deschamps-Berger et al., 2022). A new
PF approach proposed by Margulis et al. (2015) was used
to improve SWE estimation through assimilating remotely
sensed fractional snow-covered area. At the basin scale, the
PF technique was implemented with the objective of obtain-
ing high-resolution retrospective SWE estimates (Cortes et
al., 2016). The PF technique was also used to assimilate daily
snow depth observations within a multi-layer energy balance
snow model to improve SWE and snowpack runoff simula-
tions (Magnusson et al., 2017). The studies indicated above
demonstrated that the assimilated snow-related in situ mea-
surements or the remotely sensed observation data through
the PF technique can successfully update predicted snow-
pack dynamics and that the PF scheme is a well-performing
data assimilation technique that enables the consistent im-
provement of model simulations. Nevertheless, particle de-
generacy is still a potential limitation of the PF technique. It
occurs when most particles have negligible weight and when
only a few particles carry significant weights, which hinders
a realistic sampling of the underlying probability distribution
of the state (Parrish et al., 2012; Abbaszadeh et al., 2018).
The particle resampling has been considered to be an effi-
cient approach that can effectively mitigate the problem of
particle degeneracy. However, it may result in a sample con-
taining many repeated points and a lack of diversity among
the particles, which is referred to as sample impoverishment
(Rings et al., 2012; Zhu et al., 2018). The sample impoverish-
ment was a tricky problem for generic resampling methods.
Using intelligent search and optimization methods to miti-
gate the degeneracy problem may be a good choice because
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it can effectively avoid sample impoverishment (Park et al.,
2009; Ahmadi et al., 2012; Abbaszadeh et al., 2018). The ge-
netic algorithm (GA) as an intelligent search and optimiza-
tion method has been known to be an effective approach to
mitigate the degeneracy problem and has received more at-
tention (Kwok et al., 2005; Park et al., 2009; Mechri et al.,
2014). The GA applied in the particle filter, which is referred
to as the genetic particle filter (GPF), has been successfully
implemented to estimate parameters or states in nonlinear
models (Van Leeuwen, 2010; Snyder, 2011). The GPF was
also used as a data assimilation scheme applied to land sur-
face models which simulate prior subpixel temperature, and
the results showed that the GPF outperformed prior model
estimations (Mechri et al., 2014). Despite a series of studies
having proven that the GPF is an effective data assimilation
approach, however, few studies have investigated the perfor-
mance of GPF as a snow data assimilation scheme, especially
in different snow climates. In view of the promising perfor-
mances of GPF as a snow data assimilation scheme, this pa-
per aims to investigate the potential of GPF in performing
snow data assimilation, and the main goal of this research
is to address the following issues: (1) can the GPF be em-
ployed as a snow data assimilation scheme? (2) What is the
assimilation performance of GPF in snow data assimilation
across different snow climates? (3) What is the sensitivity of
DA simulations to the frequency of the assimilated measure-
ments and the particle number?

This paper is organized as follows. Section 2 introduces
the study sites, the meteorological dataset, the snow module
within the Noah-MP (with multi-parameterization) model,
the calculation flow of the GPF scheme, and the design of
the numerical experiments. Section 3 explains the simulation
results of SD using the open-loop ensemble and explores the
sensitivity of the measurement frequency and ensemble size.
Finally, Sect. 4 summarizes the findings of this study.

2 Materials and methods

2.1 Study sites and data

With consideration of the filtering performance, which may
vary in snow climates, eight seasonally snow-covered study
sites with different snow climates were selected to implement
numerical experiments in this study (Sturm et al., 1995; Tru-
jillo and Molotch, 2014). These sites are distributed at dif-
ferent latitudes in the Northern Hemisphere, and the sites in-
cluded the Arctic Sodankylä site (SDA, 179 m), located be-
side the Kitinen River in Finland, with the upper 2 m being
frozen (Rautiainen et al., 2014); the Snoqualmie site (SNQ,
921 m) with a rain–snow transitional climate in the Washing-
ton Cascades of the USA, where the SD measured by snow
stakes was employed (Wayand et al., 2015); the maritime Col
de Porte (CDP, 1330 m) site in the Chartreuse Range in the
Rhone-Alpes region of France; the Mediterranean-climate

Refugio Poqueira site (ROPA, 2510 m) in the Sierra Nevada
Mountains of Spain, which has a high evaporation rate (Her-
rero et al., 2009); the Weissfluhjoch site (WFJ, 2540 m) in
Davos of Switzerland, with automatic SD observations be-
ing used at this site (Wever et al., 2015); the continental
Swamp Angel Study Plot (SASP, 3370 m) site in the San
Juan Mountains of Colorado, USA; and two sites from typi-
cal snow-covered regions in China, namely the Altay meteo-
rological observation site (ATY, 735.3 m) in northern Xin-
jiang, China, where there is less wind in the winter sea-
son, and the Mohe meteorological observation site (MOHE,
438.5 m) in a county of northeast China, which has a cold
temperate continental climate and is the northernmost part of
China. Serially complete meteorological measurements are
available and can certainly be used as forcing data in these
sites; the downward longwave and shortwave radiation val-
ues of MOHE were extracted from the China Meteorological
Forcing Dataset (CMFD) (Chen et al., 2011) since there are
no radiation measurements at this site.

It is noteworthy that the spatial variance of the perfor-
mance of the model is negligible since these sites themselves
are flat and the surrounding vegetation types are uniform. We
have used this dataset to examine the sensitivity of simulated
SD to physics options, and the results show that the dataset
has a reliable quality. In addition, the location, the detailed
information of snow climates, and details about the dataset
processing for the eight sites can be also referenced in You et
al. (2020a).

2.2 Snow module within Noah-MP model

The snow partial module within Noah-MP model can be di-
vided up into to three layers depending on the depth of the
snow (Niu et al., 2011). The SD hsnow is calculated by

htsnow = h
t−1
snow+

Ps,g

ρsf
dt, (1)

where Ps,g is the snowfall rate at the ground surface, dt is
the time step, and ρsf is the bulk density of the snowfall.
When hsnow < 0.025 m, the snowpack is combined with the
top soil layer, and no dependent snow layer exists. When
0.025≤ hsnow ≤ 0.05 m, a snow layer is created with a thick-
ness equal to SD. When 0.05< hsnow ≤ 0.1 m, the snow-
pack will be divided into two layers, each with a thickness
of 1z−1 =1z0 = hsnow/2. When 0.1< hsnow ≤ 0.25 m, the
thickness of the first layer is 1z−1 = 0.05 m, and the thick-
ness of the second layer is 1z0 = (hsnow−1z−1)m. When
0.25< hsnow ≤ 0.45 m, a third layer is created, and the three
thickness are 1z−2 = 0.05 m and 1z−1 =1z0 = (hsnow−

1z−2)/2 m. When hsnow > 0.45 m, the layer thickness of the
three snow layers are 1z−2 = 0.05 m, 1z−1 = 0.2 m, and
1z0 = (hsnow−1z−2−1z−1)m. Certainly, the snow cover
is highly influenced by air and ground temperature, and the
snow layer combines with the neighboring layer due to sub-
limation or melting and is redivided depending on the total
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SD. The snow module of the Noah-MP model provides an
estimate of snow-related variables using energy and mass
balance. This computing process requires a series of mete-
orological forcing data, such as near-surface air temperature,
precipitation, and downward solar radiation. The snow accu-
mulation or ablation parameterization of the Noah-MP model
is based on the mass and energy balance of the snowpack,
and the snow water equivalent can be calculated using the
following equation:

dWs

dt
= Ps,g−Ms−E, (2)

whereWs is the snow water equivalent (mm), Ps,g is the solid
precipitation (mm s−1), Ms is the snowmelt rate (mm s−1),
and E is the snow sublimation rate (mm s−1).

A snow interception model was implemented into the
Noah-MP model to describe the process of snowfall in-
tercepted by the vegetation canopy (Niu and Yang, 2004).
Within this model, the snowfall rate at the ground surface
Ps,g is then calculated by

Ps,g = Ps,drip+Ps,throu, (3)

where Ps,drip (mm s−1) is the drip rate of snow, and Ps,throu
(mm s−1) is the through-fall rate of snow. In the Noah-MP
model, the ground surface albedo is parameterized as an area-
weighted average of the albedos of snow and bare soil, and
the snow cover fraction of the canopy is used to calculate the
ground surface albedo, as shown in Eq. (4):

αg =
(
1− fsnow,g

)
αsoil+ fsnow,gα,snow (4)

where αsoil and αsnow are the albedo of bare soil and snow,
respectively. fsnow,g is the snow cover fraction on the ground
and is parameterized as a function of snow depth, ground
roughness length, and snow density (Niu and Yang, 2006).

2.3 Genetic particle filter data assimilation scheme

The Bayesian recursive estimation problem is solved by
the Monte Carlo approach within the PF technique, making
this scheme appropriate for a nonlinear system with a non-
Gaussian probability distribution (Magnusson et al., 2017).
The basic concept of the PF technique is to use a large num-
ber of randomly generated realizations (i.e., particles) of the
system state to represent the posterior distribution. Mean-
while, the particles are propagated forward in time as the
model evolves. The weights associated with the particles are
updated based on the likelihood of each particle’s simulated
proximity to the real observation. The weight of the particles
can be updated as follows:

wit = w
i
t−1p

(
zt

∣∣∣xit ) , (5)

where wit−1 is the weight of ith particle at time t−1, and the
weight is updated by the likelihood function p

(
zt
∣∣xit ), which

measures the likelihood of a given model state with respect
to the observation zt . The observation errors are generally
assumed to follow a Gaussian distribution, and the chosen
likelihood function represents this assumption. In this study,
we employed a normal probability distribution to serve as the
likelihood function:

p
(
zt

∣∣∣xit )=N (zt − xit ,σ) , (6)

whereN represents the normal probability distribution of the
residuals between observed zt and simulated xt . Finally, the
weights of the updated model state would be normalized, and
the assimilated value of the model state is the weighted aver-
age of all particles at time t . Although the particle filter has
been widely applied in various nonlinear systems, the parti-
cle degeneracy and impoverishment in the particle filter are
still the fatal limitations that need to be urgently addressed.
To address the degeneration problem in the PF technique, tra-
ditional resampling methods like multinominal resampling
and systematic resampling were employed to resample the
particles if the effective sample size,

Neff = 1
/∑N

i=1

(
wit

)2
, (7)

fell below a specified number. In the above equation, N is
the ensemble size, and wit is the normalized weight defined
in Eq. (5). To be honest, traditional resampling methods can
effectively mitigate the problem of particle degeneracy by re-
sampling high-quality particles. However, after multiple iter-
ations, these methods often lead to a serious lack of diversity
among particles, which is known as the particle impoverish-
ment problem. To mitigate both of these issues simultane-
ously, we employed the genetic algorithm (GA) to resample
the particles, resulting in the genetic particle filter algorithm
(GPF). The GA is inspired by Darwin’s theory of evolution
and emphasizes the principle of survival of the fittest. In fact,
in the resampling phase, the fitness of particles should be res-
elected according to the theory of particle filtering. Selection,
crossover, and mutation are major steps used to simulate pop-
ulation evolution. As shown in Fig. 1, these three operators
are utilized to produce better offspring and improve the over-
all population fitness, with the aim of preventing particle de-
generacy and impoverishment. These operators will be used
to improve particle fitness when it falls below a threshold
value. The three operators are described below.

2.3.1 Selection mechanism

At the time of assimilation, the selection operator will prefer-
entially select the particles that are close to the observed SD.
This process is usually achieved by sorting the fitness value
of all particles and selecting a certain proportion of parti-
cles. Here, we calculated the survival rate of all individuals
and sorted them in ascending order. The top fifth percentile
of particles was considered to be high-quality particles, and
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Figure 1. Flowchart of genetic particle filter.

these were selected as parents in the genetic algorithm. This
ensures that fit individuals can be delivered to the next gen-
eration group. The survival rate of particles can be calculated
using the following equation:

P
(
xt,i
)
= exp

[
−

1
Rk

(
xi,k|k−1 − zk

)2]
, (8)

where Rk is the observation error at time k, with 0.01 m hav-
ing been set in this study; zk represents the observed SD.

2.3.2 Crossover mechanism

The purpose of the crossover operator is to exchange some
genes for two or more chromosomes in a specified way, cre-
ating new individuals. GA mainly generates new individu-
als through this process, which determines the capability of
global search. In this study, the arithmetic crossover method
was used as the crossover operator to generate new individ-
uals. Two particles were randomly selected from the resam-
pled particle group and combined linearly to form a new par-
ticle. Assuming the two selected particles are {xm,xn}, the
following equations were used to form the new particles:

x′m = αxm+ (1−β)xn, (9)
x′n = βxn+ (1−α)xm, (10)

where α and β are the empirical crossover coefficients, and
α = 0.45 and β = 0.55 in this study. In order to ensure di-
versity among particles, newly formed particles will be dis-
carded when x′m = x

′
n occurs, and parent individuals will be

re-selected from the particle group.

2.3.3 Mutation mechanism

The mutation in GA refers to replacing the gene values at
some loci with other alleles to form a new individual. The
mutation mechanism can be considered to be a supplement to
the crossover mechanism, which can increase the diversity of
the population. Assuming that the randomly selected particle
from the crossed particle set is xk , the mutation operation is
performed on the particle using the following equation:

x′k = xk + η · Uniform, (11)

where Uniform refers to a random number from a uniform
distribution; and η is an empirical coefficient, with 0.01 hav-
ing been set in this study.

It is noteworthy that a large number of particles may lead
to filter collapse. In this study, we set the number of particles
to be equal to 100 based on previous references (Mechri et
al., 2014; Magnusson et al., 2017; Piazzi et al., 2018). More-
over, to prevent the particle ensemble from being unable to
represent the prior model state due to structural deficiencies,
a Gaussian-type model error, N (µ,σ), was added to the en-
semble members. Theµwas obtained from the mean value of
residuals between simulation and observation, and the vari-
ance σ was set to 0.01.

2.4 DA experimental design

2.4.1 Perturbation of meteorological input data

The accuracy of models’ output largely depends on the input
meteorological-forcing dataset for land surface models, and
meteorological forcing is one of the major sources of uncer-
tainty affecting simulation results (Raleigh et al., 2015). The
precipitation and air temperature are the most important input
elements for snow simulations due to their roles in determin-
ing the quantity of rainfall and snowfall.

To produce the forcing data ensemble, the air temperature
and precipitation were perturbed following the method of Lei
et al. (2014). In this study, the precipitation was assumed to
have an error with a log-normal distribution, and it is ex-
pressed as follows:

P it = exp
(
µlnP+ϕP,i · σlnP/2

)
, (12)

σlnP =

√√√√ln

((
αp ·Pt

)2
P 2
t

+ 1

)
, (13)

µlnP = ln

 P 2
t√

P 2
t +

(
αp ·Pt

)2
 , (14)

where Pt and P it are the observed and perturbed precipita-
tion at time t , respectively. The log transformation of P it is
a Gaussian distribution with a mean (µlnP) and a standard
deviation (σlnP); αP is the variance-scaling factor of the pre-
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cipitation, which was set to 0.5 in this study; and ϕP,i is a nor-
mally distributed random number. Meanwhile, the ensemble
of the air temperature was obtained as follows:

T it = Tt − γ
(

1− 2wi
)
,wi ∼ U (0,1) , (15)

where Tt and T it are the observed and perturbed air temper-
atures at time t , respectively; γ is the variance-scaling factor
of the temperature with a value of 2.0; and wi is the random
noise with a uniform distribution between 0 and 1. A forcing
ensemble containing 100 particles was obtained through the
above perturbation method in this study.

2.4.2 Evaluation metrics

In order to properly quantify the filter performance, each
experiment is evaluated by statistical analysis based on the
daily mean values of simulations and observations. In this
study, we used the Kling–Gupta efficiency (KGE) coefficient
(Gupta et al., 2009) to evaluate the filter performance, which
allows the analysis of how the assimilation of snow observa-
tions succeeds in properly updating the model simulations on
average.

KGE= 1−
√
(r − 1)2+ (a− 1)2+ (b− 1)2, (16)

In the above equation, r is the linear correlation coefficient
between the simulated and observed SD; a is the ratio of the
standard deviation of simulated SD to the standard deviation
of the observed ones; and b is the ratio of the mean of simu-
lated SD to the mean of observed ones – here, the simulated
SD is the mean of the SD ensemble simulations. Theoret-
ically, when r = 1, a = 1, and b = 1 in Eq. (16), the KGE
will obtain the optimal value which is equal to 1, and this il-
lustrates that the simulated SD is highly consistently with the
observed ones.

The time series of SD obtained from the assimilation sce-
narios was compared to observations for evaluating the per-
formance of the assimilation, and the root-mean-square error
(RMSE) was employed:

RMSE=

√√√√ 1
N

N∑
i=1

(obs(i)− sim(i))2, (17)

where N is the total number of observations, sim(i) is the
simulated value at time i, and obs(i) is the observed value at
time i.

Another statistical index is the continuous ranked prob-
ability skill score (CRPSS), which is evaluated to assess
changes to the overall accuracy of the ensemble simulations
of each experiment (CRPS, continuous ranked probability
score) by considering the open-loop ensemble control run as
the reference one (CRPSref), and the calculation scheme is
shown in the following formula:

CRPSS= 1−
CRPS

CRPSref
, (18)

where CRPS is the continuous ranked probability score
which can measure the difference between continuous proba-
bility distribution and deterministic observation samples (de-
tail in Hersbach, 2000). A smaller CRPS value indicates bet-
ter probabilistic simulation, and the CRPS score of a perfect
simulation would be equal to 0. Therefore, the changes in
the overall accuracy of the SD ensemble simulations can be
measured by CRPSS. However, unlike the CRPS score, the
optimal CRPSS score is equal to 1, and negative values in-
dicate a negative improvement with respect to the reference
control run.

3 Results and discussion

3.1 Open-loop ensemble simulations

In order to investigate the impact of meteorological perturba-
tions on snow simulations, an ensemble containing 100 SD
simulations derived from as many different meteorological
conditions was analyzed. For the sake of concision and clar-
ity, we considered only one winter season for implementing
snow simulation experiments at each site, and the results are
shown in Fig. 2. As shown in Fig. 2, the possible overestima-
tion and underestimation of SD simulations produced by the
perturbation forcing data were contained within the ensemble
spread, which is a direct consequence of the perturbation of
the forcing data. Since the meteorological perturbations are
unbiased, the physical processes with nonlinear characteris-
tics within the model are supposed to be the main reason for
the uncertainty (Piazzi et al., 2018). During the winter sea-
son in the Northern Hemisphere, precipitation and air tem-
perature are the primary factors that can determine the total
amount of snow.

As Fig. 2 shows, the intervals of the SD ensemble are
significantly different at different sites, although an identi-
cal meteorological perturbation method was used. At some
sites, such as ATY, MOHE, WFJ, and CDP, larger SD en-
semble spreads were obtained, and most of the SD obser-
vations were covered by the ensemble spread. In this case,
high-quality particles can be directly selected from the en-
semble. However, at some other sites, such as ROPA, SDA,
and SASP, narrow SD ensemble spreads were obtained, and
the uncertainty interval of simulated SD can hardly cover the
observations. In this case, the so-called high-quality particles
cannot even be found in the ensemble, and the model prior
error becomes a prerequisite for successful assimilation at
this time. Especially at the ROPA site, the snow cover was
extremely unstable, resulting in difficulty in figuring out any
variation rules of the SD. The narrow SD ensemble spread at
this site also demonstrates that precipitation and air tempera-
ture were not the main factors causing snow change. Accord-
ing to the literature, sublimation losses at ROPA ranged from
24 % to 33 % of total annual ablation and occurred 60 % of
the time during which snow was present. A high sublimation
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Figure 2. Impact of the meteorological uncertainty on snow depth ensemble simulations.

rate may be the main reason for snow instability (Herrero
et al., 2016; You et al., 2020a). This directly leads to a per-
fect ensemble spread that can cover all observations and that
cannot be produced by perturbing the air temperature and
precipitation. Generally speaking, the ensemble produced by
perturbing air temperature and precipitation does not con-
tain high-quality particles at this site. It was found that the
spread of SD ensembles increases when a snowfall event
occurs because the perturbation in precipitation would pro-
vide different input snow rates for model realization at all

sites. Despite this, we still found that the simulated SD devi-
ated significantly from the observation. For example, at the
SNQ site, the maximum value of simulated SD was almost
half the maximum value of observed SD. In this case, it is
impossible to obtain a simulated SD ensemble spread that
can cover or nearly cover the observation through perturbing
the meteorological-forcing data. On the one hand, precipita-
tion and air temperature are not the dominant factors affect-
ing snow cover change, which leads to a narrowed ensemble
spread at these sites. On the other hand, although the varia-
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tion trend of snow cover can be accurately expressed by the
Noah-MP model, serious underestimation of the simulated
SD shows that the snow simulation performance of Noah-MP
is poor at these sites. Nonetheless, the simulated ensembles
will be improved whenever the prior error of the model state
is considered.

3.2 DA simulations with perturbed forcing data

Generally, the ability of a model to simulate autonomously
can be limited if observation data are assimilated too fre-
quently, resulting in assimilation results that are essentially
the same as the observations and do not reflect the differ-
ences among models. To address this, the site’s SD measure-
ments were assimilated into the Noah-MP model with an ob-
servation frequency of 5 d in this study, enabling the GPF to
perform differently at distinct sites. Figure 3 shows the SD
assimilation results across snow climates, indicating a sub-
stantial improvement in the SD simulations with satisfactory
assimilation performance at all sites. The GPF algorithm can
handle not only serious underestimations, such as at SNQ
and SDA, but also overestimations during the snow ablation
period, as seen at the CDP, SASP, ATY, and MOHE sites.
These results demonstrate the effectiveness of the GPF al-
gorithm as a snow data assimilation scheme and its ability
to significantly improve SD simulations despite the numer-
ous overestimations and underestimations that may occur in
the Noah-MP model’s snow simulation results across snow
climates.

The effectiveness of GPF in updating SD simulations is
demonstrated by the KGE values of the DA simulations with
perturbed meteorological-forcing data, as shown in Fig. 4.
Although the mean ensemble simulations of SD exhibit sub-
stantial improvement at all sites, not all ensemble members
were improved, as per the distribution of GPF-DA KGE val-
ues. Some ensemble members achieved significant improve-
ment at sites like SDA, SASP, MOHE, and SNQ, while others
showed only slight improvement at sites like ATY and WFJ.
Figure 4 also reveals that updating SD model simulations at
the ROPA and WFJ sites is more challenging. Snow simula-
tion performance at the ROPA site is known to be poor due
to the high sublimation rate. Certainly, the median value of
SD ensemble prediction KGE values is expected to be below
zero at this site, indicating that there are few qualified simu-
lations in the prediction ensemble. While the GPF succeeds
in enhancing the SD simulations at ROPA, the distribution of
GPF-DA KGE values is not concentrated enough, with the
25th percentile being at approximately 0.2 and the 75th per-
centile at about 0.7, indicating that the GPF assimilation al-
gorithm cannot enhance all members but can raise the mean
level and obtain an approximation of the optimal posterior es-
timation. Conversely, the assimilation of snow measurements
at the CDP site resulted in a poor quality of the SD simula-
tions compared to the open-loop ensemble simulations. The
median value of the GPF-DA KGE was lower than the me-

dian value of the open-loop (OL) KGE, indicating that a con-
siderable number of ensemble simulations failed to capture
the observed values after assimilating snow measurements.
However, Fig. 3 shows that the mean ensemble simulations
after assimilating snow measurements are much closer to SD
observations. Thus, it underscores the importance of the en-
semble mean in characterizing the filter effectiveness and
the approximate value of the optimal posterior estimation of
model state. Additionally, the scale of the model ensemble
spread was found to be the determinant factor that signifi-
cantly affects assimilation results. A large ensemble spread
can adjust the simulations toward the observed system state
even if the model predictions are heavily biased.

Figure 5 displays the CRPSS value of GPF-DA at differ-
ent sites. The smaller the CRPSS value, the worse the prob-
abilistic simulation (with an optimal score of 1). The highest
CRPSS score of 0.91 was achieved at SASP, while the low-
est score of 0.44 was observed at CDP. These results indicate
that the GPF enhances the overall accuracy of ensemble sim-
ulations most at SASP and least at CDP with respect to the
open-loop ensemble simulation. Certainly, this cannot be il-
lustrated by the mean ensemble simulations (Fig. 3) but is
consistent with the KGE statistical results (Fig. 4). Although
the open-loop simulations at SNQ exhibited serious under-
estimation, a satisfactory assimilation result was obtained
at this site with a CRPSS score of 0.87. At the SNQ site,
the snow simulation performance of the Noah-MP model is
poor, and the model shows serious underestimation during
the snow stable phase. Implementing a data assimilation ex-
periment in this case is a tricky business since it is difficult to
obtain a suitable simulated ensemble by perturbing the me-
teorological forcings. However, since the model prior error
was considered in the GPF algorithm, the overall accuracy of
the ensemble simulations will be substantially enhanced, and
this is the reason why a satisfactory assimilation result at the
SNQ site can be obtained. ROPA was found to be a difficult
site to enhance the overall accuracy of the ensemble simula-
tions, with a CRPSS score of only 0.58. The snow cover was
highly unstable, and the variation of SD exhibited extreme
irregularity; these may be the main obstacles to snow data
assimilation at this site.

Based on these findings, we conclude that the effectiveness
of GPF varied among snow climates: it can be employed as
a snow data assimilation scheme across snow climates; how-
ever, its performance varied across different sites. It is neces-
sary to explore the sensitivity of the measurement frequency
and ensemble size for the GPF assimilation scheme at vari-
ous sites.

3.3 Sensitivity analysis of DA scheme to SD
measurement frequency

For complex land–snow process models, model errors can
gradually lead to the system deviating from the true value.
Therefore, it is necessary to continuously incorporate obser-
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Figure 3. Evaluation of the SD at eight sites from mean ensemble simulation and assimilation with the measurements.

vations into the model framework to adjust the operating tra-
jectory of the state. Obviously, the frequency of incorporat-
ing observations, that is, the assimilation interval, has an im-
portant impact on the assimilation system. To investigate the
effect of the SD measurement frequency on the performance

of GPF, we conducted a sensitivity experiment at eight sites.
We aimed to determine how reducing the frequency of SD
measurements affects the DA simulations. As expected, a de-
crease in SD measurement frequency led to a reduction in
the impact of the GPF updating on the model simulations,
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Figure 4. The KGE values of SD simulations; the OL and GPF-DA
are in green, red, respectively. The bottom and top edges of each
box indicate the 25th and 75th percentiles, respectively. The line in
the middle of each box is the median.

Figure 5. Comparison of the CRPSS values of GPF-DA at different
sites.

resulting in a gradual increase in the mean RMSE value.
Figure 6 illustrates the RMSE ensembles of SD simulations
resulting from assimilating different-frequency SD measure-
ments over the snow period at each site. Higher-frequency
SD assimilation improves the accuracy of the simulated SD,
as shown by the lower RMSE value achieved when the fre-
quency of the SD measurements was set to 5 d. This means
that more frequent SD measurements improve the accuracy
of the model, which is particularly useful in regions where
snow conditions can change rapidly. The range of RMSE val-
ues at different sites varied significantly as it was related to
the maximum value of SD. For instance, thick snow at the
SNQ and WFJ sites during the snow period led to larger RM-
SEs of SD simulations. Notably, an increase in the length of
the assimilation window generally resulted in a significant in-
crease in the RMSE value. However, an abnormal occurrence
was observed at the SDA site, where the assimilation effect
of 20 d of SD measurements was significantly better than that
of 15 d. Although the RMSE distribution of SD assimilation
results with 20 d of observations appeared to be superior to
that of 15 d, the RMSE mean values of the two were very
close: 0.08 and 0.07 m, respectively. Therefore, this anomaly

can be ignored. These results indicate that the frequency of
SD observations has a significant impact on the effectiveness
of the GPF algorithm and that a dense amount of observa-
tional data can effectively improve the assimilation results.

3.4 Sensitivity analysis of DA scheme to ensemble size

The results of the experiment aimed at evaluating the impact
of particle number on the assimilation performance of GPF
are presented in Fig. 7. As expected, increasing the particle
number up to the threshold leads to a significant improve-
ment in the percent effective sample size. However, the filter
performance does not improve significantly when the particle
number exceeds the threshold. Figure 7 shows that the GPF
algorithm yields the minimum error at all sites when the par-
ticle number is set to 100, indicating that 100 particles can
optimize the performance of the GPF algorithm. Although
a large particle number can enhance particle diversity and
prevent filter divergence, it increases the computation burden
without reducing the system error. As illustrated in Fig. 7,
the RMSEs are generally at the same level when the particle
number equals 120 and 160, and they are significantly larger
than the RMSE when the particle number is equal to 100.
The slight impact of the change in the particle number on
the performance of GPF when the particle number is below
the threshold indicates low system sensitivity to the ensem-
ble size, and this is observed at all sites. Essentially, blindly
increasing the particle number does not guarantee a better
DA performance of the GPF algorithm. As demonstrated in
Fig. 7, the RMSEs of simulated snow depth are virtually un-
changed at all sites despite an increase in the particle number
from 120 to 160. This suggests that blindly increasing the en-
semble size only increases the computational burden without
improving the performance of the GPF.

3.5 Compared to traditional resampling methods

To demonstrate the effectiveness of using genetic algorithms
for particle resampling, we compared the results of our ge-
netic algorithm (PF-G) to those of traditional resampling
methods: systematic resampling (PF-S) and multinomial re-
sampling (PF-M), which are both commonly used in parti-
cle resampling. The calculation process for these methods is
detailed in the references of the particle filter introduction.
Figure 8 shows the RMSE values for SD simulations ob-
tained using these three methods. We found that the PF-G
outperforms PF-M and PF-S at all sites, as evidenced by the
significantly smaller mean and median RMSE values. This
indicates that the PF-G is suitable for snow data assimilation
in various snow climates and is somewhat superior to tradi-
tional particle filters. At most sites (MOHE, ATY, SDA, and
ROPA), PF-M and PF-S showed similar performance, mean-
ing that these methods did not produce a significant differ-
ence in the assimilation results. This is because these tra-
ditional resampling methods can only mitigate particle de-
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Figure 6. The RMSE values of SD simulations at different sites; from left to right in each subfigure are the assimilation observation frequen-
cies of 5, 10, 15, and 20 d, respectively, indicated with different colors.

Figure 7. Sensitivity analysis of the GPF snow DA scheme to par-
ticle number at eight sites during different snow periods.

generation by resampling particles but are unable to prevent
particle impoverishment. Therefore, they are unable to select
high-quality particles and keep the particles that have vari-
ety. Significantly, the mean and median RMSE values for PF-
G were lower than those of PF-M and PF-S at several sites
(SASP, SNQ, and WFJ) where the snow cover was relatively
thick, with maximum SD during the snow period reaching
2.45, 2.95, and 2.40 m, respectively. This suggests that PF-G
performs better in assimilating data from thick snow covers.

The multinomial and systematic resampling methods se-
lect particles from the original particle set at different levels
or based on the accumulation of particle weights. Both of the
resampling methods extract particles from the entire particle
set, and the corresponding particle values do not undergo any
essential changes. However, when compared to the two tra-
ditional particle resampling methods, the genetic algorithm
first uses the fitness function to calculate the survival rate of
each particle one by one and then performs crossover, muta-
tion, and other operations on the selected particles. This ap-
proach ensures that the resampled particles are high-quality
particles, which is the main reason why genetic particle fil-
tering has an advantage in the snow data assimilation exper-

iments. As Fig. 8 shows, the assimilation error of the genetic
particle filter is the smallest at all sites. From the results of the
real assimilation experiment, it can be seen that genetic parti-
cle filtering has more advantages over the other two methods.

4 Conclusions

In this study, we investigated the potential of using GPF as a
snow data assimilation scheme across eight sites with vary-
ing snow climates. We addressed the problem of degenera-
tion and impoverishment in the PF algorithm by using the
genetic algorithm to resample particles. We also examined
the sensitivity of the GPF scheme to measurement frequency
and ensemble size. The main findings of this study are out-
lined below.

The GPF was an effective snow data assimilation scheme
and can be used across different snow climates. The genetic
algorithm effectively addressed the problem of particle de-
generation and impoverishment in the PF algorithm.

Our experiment showed that the system has low sensitivity
to the particle number, and 100 particles can achieve a better
assimilation result across different snow climates. This indi-
cates that 100 particles are suitable for representing the high
dimensionality of the system.

We found that perturbations in meteorological-forcing
data were not sufficient to provide ensemble spread, result-
ing in poor filter performance. Particle inflation can make up
for this deficiency. Moreover, we observed that the RMSE of
simulated SD decreased significantly with the increase of the
frequency of SD measurement, indicating that dense obser-
vational data can improve the assimilation results.

Compared to the two classic resampling methods, the
particle filter with the genetic algorithm as the resampling
method shows a better assimilation performance, especially
in a thick snow cover; the distributed RMSEs are more cen-
tralized, and a smaller mean error will be obtained.

Our experiments were based on forcing data and snow ob-
servations from various sites with different snow climates.
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Figure 8. The RMSE values of SD simulations by three different resampling methods. For each subfigure, from left to right are the particles
resampled by genetic algorithm, multinominal method, and systematic method, respectively, and with different colors – specifically, the black
line indicates the mean, and the red line indicates the median; the kernel bandwidth was 0.05.

While our results provide a reference for applying GPF to
snow data assimilation, further research is needed to inves-
tigate the performance of GPF on a regional scale and to
explore the assimilation of snow observational data from re-
mote sensing or wireless sensor networks into land surface
models using GPF. In summary, our study demonstrates the
feasibility of using GPF for snow data assimilation and pro-
vides valuable insights for future research in this area.
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