Articles | Volume 27, issue 8
https://doi.org/10.5194/hess-27-1627-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-27-1627-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Methodology for constructing a flood-hazard map for a future climate
Yuki Kimura
CORRESPONDING AUTHOR
Risk Assessment Department, MS&AD InterRisk Research &
Consulting, Inc., 2-105 Kanda Awajicho, Chiyoda-ku, Tokyo 101-0063, Japan
Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
Yukiko Hirabayashi
Department of Civil Engineering, Shibaura Institute of Technology,
3-7-5 Toyosu, Koto-ku, Tokyo 135-8548, Japan
Yuki Kita
Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
Xudong Zhou
Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
Dai Yamazaki
Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan
Related authors
Yuki Kimura, Yukiko Hirabayashi, and Dai Yamazaki
EGUsphere, https://doi.org/10.22541/essoar.170365204.46854879/v1, https://doi.org/10.22541/essoar.170365204.46854879/v1, 2024
Short summary
Short summary
The limited number of ensemble members causes uncertainty in future climate predictions. To address this, using multiple simulations under a single future climate scenario can increase the sample size, but data availability is limited in the scenario-based future projection experiment of climate model intercomparison projects. Our proposed method integrates multiple climate scenarios at specific temperature increases, effectively reducing uncertainty in future flood hazard assessments globally.
Bernhard Lehner, Mira Anand, Etienne Fluet-Chouinard, Florence Tan, Filipe Aires, George H. Allen, Pilippe Bousquet, Josep G. Canadell, Nick Davidson, C. Max Finlayson, Thomas Gumbricht, Lammert Hilarides, Gustaf Hugelius, Robert B. Jackson, Maartje C. Korver, Peter B. McIntyre, Szabolcs Nagy, David Olefeldt, Tamlin M. Pavelsky, Jean-Francois Pekel, Benjamin Poulter, Catherine Prigent, Jida Wang, Thomas A. Worthington, Dai Yamazaki, and Michele Thieme
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-204, https://doi.org/10.5194/essd-2024-204, 2024
Preprint under review for ESSD
Short summary
Short summary
The Global Lakes and Wetlands Database (GLWD) version 2 distinguishes a total of 33 non-overlapping wetland classes, providing a static map of the world’s inland surface waters. It contains cell fractions of wetland extents per class at a grid cell resolution of ~500 m. The total combined extent of all classes including all inland and coastal waterbodies and wetlands of all inundation frequencies—that is, the maximum extent—covers 18.2 million km2, equivalent to 13.4 % of total global land area.
Yuki Kimura, Yukiko Hirabayashi, and Dai Yamazaki
EGUsphere, https://doi.org/10.22541/essoar.170365204.46854879/v1, https://doi.org/10.22541/essoar.170365204.46854879/v1, 2024
Short summary
Short summary
The limited number of ensemble members causes uncertainty in future climate predictions. To address this, using multiple simulations under a single future climate scenario can increase the sample size, but data availability is limited in the scenario-based future projection experiment of climate model intercomparison projects. Our proposed method integrates multiple climate scenarios at specific temperature increases, effectively reducing uncertainty in future flood hazard assessments globally.
Jingyu Lin, Peng Wang, Jinzhu Wang, Youping Zhou, Xudong Zhou, Pan Yang, Hao Zhang, Yanpeng Cai, and Zhifeng Yang
Earth Syst. Sci. Data, 16, 1137–1149, https://doi.org/10.5194/essd-16-1137-2024, https://doi.org/10.5194/essd-16-1137-2024, 2024
Short summary
Short summary
Our paper provides a repository comprising over 330 000 observations encompassing daily, weekly, and monthly records of surface water quality spanning the period 1980–2022. It included 18 distinct indicators, meticulously gathered at 2384 monitoring sites, ranging from inland locations to coastal and oceanic areas. This dataset will be very useful for researchers and decision-makers in the fields of hydrology, ecological studies, climate change, policy development, and oceanography.
Menaka Revel, Xudong Zhou, Prakat Modi, Jean-François Cretaux, Stephane Calmant, and Dai Yamazaki
Earth Syst. Sci. Data, 16, 75–88, https://doi.org/10.5194/essd-16-75-2024, https://doi.org/10.5194/essd-16-75-2024, 2024
Short summary
Short summary
As satellite technology advances, there is an incredible amount of remotely sensed data for observing terrestrial water. Satellite altimetry observations of water heights can be utilized to calibrate and validate large-scale hydrodynamic models. However, because large-scale models are discontinuous, comparing satellite altimetry to predicted water surface elevation is difficult. We developed a satellite altimetry mapping procedure for high-resolution river network data.
Md Safat Sikder, Jida Wang, George H. Allen, Yongwei Sheng, Dai Yamazaki, Chunqiao Song, Meng Ding, Jean-François Crétaux, and Tamlin M. Pavelsky
Earth Syst. Sci. Data, 15, 3483–3511, https://doi.org/10.5194/essd-15-3483-2023, https://doi.org/10.5194/essd-15-3483-2023, 2023
Short summary
Short summary
We introduce Lake-TopoCat to reveal detailed lake hydrography information. It contains the location of lake outlets, the boundary of lake catchments, and a wide suite of attributes that depict detailed lake drainage relationships. It was constructed using lake boundaries from a global lake dataset, with the help of high-resolution hydrography data. This database may facilitate a variety of applications including water quality, agriculture and fisheries, and integrated lake–river modeling.
Youjiang Shen, Karina Nielsen, Menaka Revel, Dedi Liu, and Dai Yamazaki
Earth Syst. Sci. Data, 15, 2781–2808, https://doi.org/10.5194/essd-15-2781-2023, https://doi.org/10.5194/essd-15-2781-2023, 2023
Short summary
Short summary
Res-CN fills a gap in a comprehensive and extensive dataset of reservoir-catchment characteristics for 3254 Chinese reservoirs with 512 catchment-level attributes and significantly enhanced spatial and temporal coverage (e.g., 67 % increase in water level and 225 % in storage anomaly) of time series of reservoir water level (data available for 20 % of 3254 reservoirs), water area (99 %), storage anomaly (92 %), and evaporation (98 %), supporting a wide range of applications and disciplines.
Jan Polcher, Anthony Schrapffer, Eliott Dupont, Lucia Rinchiuso, Xudong Zhou, Olivier Boucher, Emmanuel Mouche, Catherine Ottlé, and Jérôme Servonnat
Geosci. Model Dev., 16, 2583–2606, https://doi.org/10.5194/gmd-16-2583-2023, https://doi.org/10.5194/gmd-16-2583-2023, 2023
Short summary
Short summary
The proposed graphs of hydrological sub-grid elements for atmospheric models allow us to integrate the topographical elements needed in land surface models for a realistic representation of horizontal water and energy transport. The study demonstrates the numerical properties of the automatically built graphs and the simulated water flows.
Dirk Eilander, Anaïs Couasnon, Tim Leijnse, Hiroaki Ikeuchi, Dai Yamazaki, Sanne Muis, Job Dullaart, Arjen Haag, Hessel C. Winsemius, and Philip J. Ward
Nat. Hazards Earth Syst. Sci., 23, 823–846, https://doi.org/10.5194/nhess-23-823-2023, https://doi.org/10.5194/nhess-23-823-2023, 2023
Short summary
Short summary
In coastal deltas, flooding can occur from interactions between coastal, riverine, and pluvial drivers, so-called compound flooding. Global models however ignore these interactions. We present a framework for automated and reproducible compound flood modeling anywhere globally and validate it for two historical events in Mozambique with good results. The analysis reveals differences in compound flood dynamics between both events related to the magnitude of and time lag between drivers.
Menaka Revel, Xudong Zhou, Dai Yamazaki, and Shinjiro Kanae
Hydrol. Earth Syst. Sci., 27, 647–671, https://doi.org/10.5194/hess-27-647-2023, https://doi.org/10.5194/hess-27-647-2023, 2023
Short summary
Short summary
The capacity to discern surface water improved as satellites became more available. Because remote sensing data is discontinuous, integrating models with satellite observations will improve knowledge of water resources. However, given the current limitations (e.g., parameter errors) of water resource modeling, merging satellite data with simulations is problematic. Integrating observations and models with the unique approaches given here can lead to a better estimation of surface water dynamics.
Robert J. Parker, Chris Wilson, Edward Comyn-Platt, Garry Hayman, Toby R. Marthews, A. Anthony Bloom, Mark F. Lunt, Nicola Gedney, Simon J. Dadson, Joe McNorton, Neil Humpage, Hartmut Boesch, Martyn P. Chipperfield, Paul I. Palmer, and Dai Yamazaki
Biogeosciences, 19, 5779–5805, https://doi.org/10.5194/bg-19-5779-2022, https://doi.org/10.5194/bg-19-5779-2022, 2022
Short summary
Short summary
Wetlands are the largest natural source of methane, one of the most important climate gases. The JULES land surface model simulates these emissions. We use satellite data to evaluate how well JULES reproduces the methane seasonal cycle over different tropical wetlands. It performs well for most regions; however, it struggles for some African wetlands influenced heavily by river flooding. We explain the reasons for these deficiencies and highlight how future development will improve these areas.
Toby R. Marthews, Simon J. Dadson, Douglas B. Clark, Eleanor M. Blyth, Garry D. Hayman, Dai Yamazaki, Olivia R. E. Becher, Alberto Martínez-de la Torre, Catherine Prigent, and Carlos Jiménez
Hydrol. Earth Syst. Sci., 26, 3151–3175, https://doi.org/10.5194/hess-26-3151-2022, https://doi.org/10.5194/hess-26-3151-2022, 2022
Short summary
Short summary
Reliable data on global inundated areas remain uncertain. By matching a leading global data product on inundation extents (GIEMS) against predictions from a global hydrodynamic model (CaMa-Flood), we found small but consistent and non-random biases in well-known tropical wetlands (Sudd, Pantanal, Amazon and Congo). These result from known limitations in the data and the models used, which shows us how to improve our ability to make critical predictions of inundation events in the future.
Naota Hanasaki, Hikari Matsuda, Masashi Fujiwara, Yukiko Hirabayashi, Shinta Seto, Shinjiro Kanae, and Taikan Oki
Hydrol. Earth Syst. Sci., 26, 1953–1975, https://doi.org/10.5194/hess-26-1953-2022, https://doi.org/10.5194/hess-26-1953-2022, 2022
Short summary
Short summary
Global hydrological models (GHMs) are usually applied with a spatial resolution of about 50 km, but this time we applied the H08 model, one of the most advanced GHMs, with a high resolution of 2 km to Kyushu island, Japan. Since the model was not accurate as it was, we incorporated local information and improved the model, which revealed detailed water stress in subregions that were not visible with the previous resolution.
Dirk Eilander, Willem van Verseveld, Dai Yamazaki, Albrecht Weerts, Hessel C. Winsemius, and Philip J. Ward
Hydrol. Earth Syst. Sci., 25, 5287–5313, https://doi.org/10.5194/hess-25-5287-2021, https://doi.org/10.5194/hess-25-5287-2021, 2021
Short summary
Short summary
Digital elevation models and derived flow directions are crucial to distributed hydrological modeling. As the spatial resolution of models is typically coarser than these data, we need methods to upscale flow direction data while preserving the river structure. We propose the Iterative Hydrography Upscaling (IHU) method and show it outperforms other often-applied methods. We publish the multi-resolution MERIT Hydro IHU hydrography dataset and the algorithm as part of the pyflwdir Python package.
Daisuke Tokuda, Hyungjun Kim, Dai Yamazaki, and Taikan Oki
Geosci. Model Dev., 14, 5669–5693, https://doi.org/10.5194/gmd-14-5669-2021, https://doi.org/10.5194/gmd-14-5669-2021, 2021
Short summary
Short summary
We developed TCHOIR, a hydrologic simulation framework, to solve fluvial- and thermodynamics of the river–lake continuum. This provides an algorithm for upscaling high-resolution topography as well, which enables the representation of those interactions at the global scale. Validation against in situ and satellite observations shows that the coupled mode outperforms river- or lake-only modes. TCHOIR will contribute to elucidating the role of surface hydrology in Earth’s energy and water cycle.
Jun'ya Takakura, Shinichiro Fujimori, Kiyoshi Takahashi, Naota Hanasaki, Tomoko Hasegawa, Yukiko Hirabayashi, Yasushi Honda, Toshichika Iizumi, Chan Park, Makoto Tamura, and Yasuaki Hijioka
Geosci. Model Dev., 14, 3121–3140, https://doi.org/10.5194/gmd-14-3121-2021, https://doi.org/10.5194/gmd-14-3121-2021, 2021
Short summary
Short summary
To simplify calculating economic impacts of climate change, statistical methods called emulators are developed and evaluated. There are trade-offs between model complexity and emulation performance. Aggregated economic impacts can be approximated by relatively simple emulators, but complex emulators are necessary to accommodate finer-scale economic impacts.
Xudong Zhou, Wenchao Ma, Wataru Echizenya, and Dai Yamazaki
Nat. Hazards Earth Syst. Sci., 21, 1071–1085, https://doi.org/10.5194/nhess-21-1071-2021, https://doi.org/10.5194/nhess-21-1071-2021, 2021
Short summary
Short summary
This article assesses different uncertainties in the analysis of flood risk and found the runoff generated before the river routing is the primary uncertainty source. This calls for attention to be focused on selecting an appropriate runoff for the flood analysis. The uncertainties are reflected in the flood water depth, inundation area and the exposure of the population and economy to the floods.
Zun Yin, Catherine Ottlé, Philippe Ciais, Feng Zhou, Xuhui Wang, Polcher Jan, Patrice Dumas, Shushi Peng, Laurent Li, Xudong Zhou, Yan Bo, Yi Xi, and Shilong Piao
Hydrol. Earth Syst. Sci., 25, 1133–1150, https://doi.org/10.5194/hess-25-1133-2021, https://doi.org/10.5194/hess-25-1133-2021, 2021
Short summary
Short summary
We improved the irrigation module in a land surface model ORCHIDEE and developed a dam operation model with the aim to investigate how irrigation and dams affect the streamflow fluctuations of the Yellow River. Results show that irrigation mainly reduces the annual river flow. The dam operation, however, mainly affects streamflow variation. By considering two generic operation rules, flood control and base flow guarantee, our dam model can sustainably improve the simulation accuracy.
Tomohiro Hajima, Michio Watanabe, Akitomo Yamamoto, Hiroaki Tatebe, Maki A. Noguchi, Manabu Abe, Rumi Ohgaito, Akinori Ito, Dai Yamazaki, Hideki Okajima, Akihiko Ito, Kumiko Takata, Koji Ogochi, Shingo Watanabe, and Michio Kawamiya
Geosci. Model Dev., 13, 2197–2244, https://doi.org/10.5194/gmd-13-2197-2020, https://doi.org/10.5194/gmd-13-2197-2020, 2020
Short summary
Short summary
We developed a new Earth system model (ESM) named MIROC-ES2L. This model is based on a state-of-the-art climate model and includes carbon–nitrogen cycles for the land and multiple biogeochemical cycles for the ocean. The model's performances on reproducing historical climate and biogeochemical changes are confirmed to be reasonable, and the new model is likely to be an
optimisticmodel in projecting future climate change among ESMs in the Coupled Model Intercomparison Project Phase 6.
Xudong Zhou, Jan Polcher, Tao Yang, and Ching-Sheng Huang
Hydrol. Earth Syst. Sci., 24, 2061–2081, https://doi.org/10.5194/hess-24-2061-2020, https://doi.org/10.5194/hess-24-2061-2020, 2020
Short summary
Short summary
This article proposes a new estimation approach for assessing the uncertainty with multiple datasets by fully considering all variations in temporal and spatial dimensions. Comparisons demonstrate that classical metrics may underestimate the uncertainties among datasets due to an averaging process in their algorithms. This new approach is particularly suitable for overall assessment of multiple climatic products, but can be easily applied to other spatiotemporal products in related fields.
Hiroaki Tatebe, Tomoo Ogura, Tomoko Nitta, Yoshiki Komuro, Koji Ogochi, Toshihiko Takemura, Kengo Sudo, Miho Sekiguchi, Manabu Abe, Fuyuki Saito, Minoru Chikira, Shingo Watanabe, Masato Mori, Nagio Hirota, Yoshio Kawatani, Takashi Mochizuki, Kei Yoshimura, Kumiko Takata, Ryouta O'ishi, Dai Yamazaki, Tatsuo Suzuki, Masao Kurogi, Takahito Kataoka, Masahiro Watanabe, and Masahide Kimoto
Geosci. Model Dev., 12, 2727–2765, https://doi.org/10.5194/gmd-12-2727-2019, https://doi.org/10.5194/gmd-12-2727-2019, 2019
Short summary
Short summary
For a deeper understanding of a wide range of climate science issues, the latest version of the Japanese climate model, called MIROC6, was developed. The climate model represents observed mean climate and climate variations well, for example tropical precipitation, the midlatitude westerlies, and the East Asian monsoon, which influence human activity all over the world. The improved climate simulations could add reliability to climate predictions under global warming.
Trung Nguyen-Quang, Jan Polcher, Agnès Ducharne, Thomas Arsouze, Xudong Zhou, Ana Schneider, and Lluís Fita
Geosci. Model Dev., 11, 4965–4985, https://doi.org/10.5194/gmd-11-4965-2018, https://doi.org/10.5194/gmd-11-4965-2018, 2018
Short summary
Short summary
This study presents a revised river routing scheme for the Organising Carbon and Hydrology in Dynamic Ecosystems (ORCHIDEE) land surface model. The revision is carried out to benefit from the high-resolution topography provided by the Hydrological data and maps based on SHuttle Elevation Derivatives at multiple Scales (HydroSHEDS). We demonstrate that the finer description of the catchments allows for an improvement of the simulated river discharge of ORCHIDEE in an area with complex topography.
Xudong Zhou, Jan Polcher, Tao Yang, Yukiko Hirabayashi, and Trung Nguyen-Quang
Hydrol. Earth Syst. Sci., 22, 6087–6108, https://doi.org/10.5194/hess-22-6087-2018, https://doi.org/10.5194/hess-22-6087-2018, 2018
Short summary
Short summary
Model bias is commonly seen in discharge simulation by hydrological or land surface models. This study tested an approach with the Budyko hypothesis to retrospect the estimated discharge bias to different bias sources including the atmospheric variables and model structure. Results indicate that the bias is most likely caused by the forcing variables, and the forcing bias should firstly be assessed and reduced in order to perform pertinent analysis of the regional water cycle.
Cherry May R. Mateo, Dai Yamazaki, Hyungjun Kim, Adisorn Champathong, Jai Vaze, and Taikan Oki
Hydrol. Earth Syst. Sci., 21, 5143–5163, https://doi.org/10.5194/hess-21-5143-2017, https://doi.org/10.5194/hess-21-5143-2017, 2017
Short summary
Short summary
Providing large-scale (regional or global) simulation of floods at fine spatial resolution is difficult due to computational constraints but is necessary to provide consistent estimates of hazards, especially in data-scarce regions. We assessed the capability of an advanced global-scale river model to simulate an extreme flood at fine resolution. We found that when multiple flow connections in rivers are represented, the model can provide reliable fine-resolution predictions of flood inundation.
N. K. Gunasekara, S. Kazama, D. Yamazaki, and T. Oki
Hydrol. Earth Syst. Sci., 17, 4429–4440, https://doi.org/10.5194/hess-17-4429-2013, https://doi.org/10.5194/hess-17-4429-2013, 2013
Related subject area
Subject: Global hydrology | Techniques and Approaches: Modelling approaches
Drivers of global irrigation expansion: the role of discrete global grid choice
Changes in mean evapotranspiration dominate groundwater recharge in semi-arid regions
Merging modelled and reported flood impacts in Europe in a combined flood event catalogue for 1950–2020
Global-scale evaluation of precipitation datasets for hydrological modelling
Influence of irrigation on root zone storage capacity estimation
River flow in the near future: a global perspective in the context of a high-emission climate change scenario
A high-resolution perspective of extreme rainfall and river flow under extreme climate change in Southeast Asia
Unveiling hydrological dynamics in data-scarce regions: experiences from the Ethiopian Rift Valley Lakes Basin
Technical note: Comparing three different methods for allocating river points to coarse-resolution hydrological modelling grid cells
Representing farmer irrigated crop area adaptation in a large-scale hydrological model
The effect of climate change on the simulated streamflow of six Canadian rivers based on the CanRCM4 regional climate model
Combined impacts of climate and land-use change on future water resources in Africa
Deep learning for quality control of surface physiographic fields using satellite Earth observations
Global dryland aridity changes indicated by atmospheric, hydrological, and vegetation observations at meteorological stations
Root zone soil moisture in over 25 % of global land permanently beyond pre-industrial variability as early as 2050 without climate policy
The benefits and trade-offs of multi-variable calibration of WGHM in the Ganges and Brahmaputra basins
Assessment of pluri-annual and decadal changes in terrestrial water storage predicted by global hydrological models in comparison with the GRACE satellite gravity mission
Improving the quantification of climate change hazards by hydrological models: a simple ensemble approach for considering the uncertain effect of vegetation response to climate change on potential evapotranspiration
Towards reducing the high cost of parameter sensitivity analysis in hydrologic modeling: a regional parameter sensitivity analysis approach
Point-scale multi-objective calibration of the Community Land Model (version 5.0) using in situ observations of water and energy fluxes and variables
Diagnosing modeling errors in global terrestrial water storage interannual variability
Hyper-resolution PCR-GLOBWB: opportunities and challenges from refining model spatial resolution to 1 km over the European continent
Poor correlation between large-scale environmental flow violations and freshwater biodiversity: implications for water resource management and the freshwater planetary boundary
Accuracy of five ground heat flux empirical simulation methods in the surface-energy-balance-based remote-sensing evapotranspiration models
Coupling a global glacier model to a global hydrological model prevents underestimation of glacier runoff
Revisiting large-scale interception patterns constrained by a synthesis of global experimental data
Investigating coastal backwater effects and flooding in the coastal zone using a global river transport model on an unstructured mesh
Using a long short-term memory (LSTM) neural network to boost river streamflow forecasts over the western United States
Quantifying overlapping and differing information of global precipitation for GCM forecasts and El Niño–Southern Oscillation
Globally widespread and increasing violations of environmental flow envelopes
Inundation prediction in tropical wetlands from JULES-CaMa-Flood global land surface simulations
Soil moisture estimation in South Asia via assimilation of SMAP retrievals
Toward hyper-resolution global hydrological models including human activities: application to Kyushu island, Japan
Towards hybrid modeling of the global hydrological cycle
The importance of vegetation in understanding terrestrial water storage variations
Large-scale sensitivities of groundwater and surface water to groundwater withdrawal
A hydrography upscaling method for scale-invariant parametrization of distributed hydrological models
A novel method to identify sub-seasonal clustering episodes of extreme precipitation events and their contributions to large accumulation periods
Bright and blind spots of water research in Latin America and the Caribbean
Land surface modeling over the Dry Chaco: the impact of model structures, and soil, vegetation and land cover parameters
Nonstationary weather and water extremes: a review of methods for their detection, attribution, and management
Robust historical evapotranspiration trends across climate regimes
A note on leveraging synergy in multiple meteorological data sets with deep learning for rainfall–runoff modeling
Global scenarios of irrigation water abstractions for bioenergy production: a systematic review
Coordination and control – limits in standard representations of multi-reservoir operations in hydrological modeling
Uncertainty of simulated groundwater recharge at different global warming levels: a global-scale multi-model ensemble study
Ubiquitous increases in flood magnitude in the Columbia River basin under climate change
Evaluation of 18 satellite- and model-based soil moisture products using in situ measurements from 826 sensors
The role of household adaptation measures in reducing vulnerability to flooding: a coupled agent-based and flood modelling approach
Assessing global water mass transfers from continents to oceans over the period 1948–2016
Sophie Wagner, Fabian Stenzel, Tobias Krueger, and Jana de Wiljes
Hydrol. Earth Syst. Sci., 28, 5049–5068, https://doi.org/10.5194/hess-28-5049-2024, https://doi.org/10.5194/hess-28-5049-2024, 2024
Short summary
Short summary
Statistical models that explain global irrigation rely on location-referenced data. Traditionally, a system based on longitude and latitude lines is chosen. However, this introduces bias to the analysis due to the Earth's curvature. We propose using a system based on hexagonal grid cells that allows for distortion-free representation of the data. We show that this increases the model's accuracy by 28 % and identify biophysical and socioeconomic drivers of historical global irrigation expansion.
Tuvia Turkeltaub and Golan Bel
Hydrol. Earth Syst. Sci., 28, 4263–4274, https://doi.org/10.5194/hess-28-4263-2024, https://doi.org/10.5194/hess-28-4263-2024, 2024
Short summary
Short summary
Future climate projections suggest that climate change will impact groundwater recharge, with its exact effects being uncertain due to incomplete understanding of rainfall, evapotranspiration, and recharge relations. We studied the effects of changes in the average, spread, and frequency of extreme events of rainfall and evapotranspiration on groundwater recharge. We found that increasing or decreasing the potential evaporation has the most dominant effect on groundwater recharge.
Dominik Paprotny, Belinda Rhein, Michalis I. Vousdoukas, Paweł Terefenko, Francesco Dottori, Simon Treu, Jakub Śledziowski, Luc Feyen, and Heidi Kreibich
Hydrol. Earth Syst. Sci., 28, 3983–4010, https://doi.org/10.5194/hess-28-3983-2024, https://doi.org/10.5194/hess-28-3983-2024, 2024
Short summary
Short summary
Long-term trends in flood losses are regulated by multiple factors, including climate variation, population and economic growth, land-use transitions, reservoir construction, and flood risk reduction measures. Here, we reconstruct the factual circumstances in which almost 15 000 potential riverine, coastal and compound floods in Europe occurred between 1950 and 2020. About 10 % of those events are reported to have caused significant socioeconomic impacts.
Solomon H. Gebrechorkos, Julian Leyland, Simon J. Dadson, Sagy Cohen, Louise Slater, Michel Wortmann, Philip J. Ashworth, Georgina L. Bennett, Richard Boothroyd, Hannah Cloke, Pauline Delorme, Helen Griffith, Richard Hardy, Laurence Hawker, Stuart McLelland, Jeffrey Neal, Andrew Nicholas, Andrew J. Tatem, Ellie Vahidi, Yinxue Liu, Justin Sheffield, Daniel R. Parsons, and Stephen E. Darby
Hydrol. Earth Syst. Sci., 28, 3099–3118, https://doi.org/10.5194/hess-28-3099-2024, https://doi.org/10.5194/hess-28-3099-2024, 2024
Short summary
Short summary
This study evaluated six high-resolution global precipitation datasets for hydrological modelling. MSWEP and ERA5 showed better performance, but spatial variability was high. The findings highlight the importance of careful dataset selection for river discharge modelling due to the lack of a universally superior dataset. Further improvements in global precipitation data products are needed.
Fransje van Oorschot, Ruud J. van der Ent, Andrea Alessandri, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 28, 2313–2328, https://doi.org/10.5194/hess-28-2313-2024, https://doi.org/10.5194/hess-28-2313-2024, 2024
Short summary
Short summary
Vegetation plays a crucial role in regulating the water cycle by transporting water from the subsurface to the atmosphere via roots; this transport depends on the extent of the root system. In this study, we quantified the effect of irrigation on roots at a global scale. Our results emphasize the importance of accounting for irrigation in estimating the vegetation root extent, which is essential to adequately represent the water cycle in hydrological and climate models.
Omar V. Müller, Patrick C. McGuire, Pier Luigi Vidale, and Ed Hawkins
Hydrol. Earth Syst. Sci., 28, 2179–2201, https://doi.org/10.5194/hess-28-2179-2024, https://doi.org/10.5194/hess-28-2179-2024, 2024
Short summary
Short summary
This work evaluates how rivers are projected to change in the near future compared to the recent past in the context of a warming world. We show that important rivers of the world will notably change their flows, mainly during peaks, exceeding the variations that rivers used to exhibit. Such large changes may produce more frequent floods, alter hydropower generation, and potentially affect the ocean's circulation.
Mugni Hadi Hariadi, Gerard van der Schrier, Gert-Jan Steeneveld, Samuel J. Sutanto, Edwin Sutanudjaja, Dian Nur Ratri, Ardhasena Sopaheluwakan, and Albert Klein Tank
Hydrol. Earth Syst. Sci., 28, 1935–1956, https://doi.org/10.5194/hess-28-1935-2024, https://doi.org/10.5194/hess-28-1935-2024, 2024
Short summary
Short summary
We utilize the high-resolution CMIP6 for extreme rainfall and streamflow projection over Southeast Asia. This region will experience an increase in both dry and wet extremes in the near future. We found a more extreme low flow and high flow, along with an increasing probability of low-flow and high-flow events. We reveal that the changes in low-flow events and their probabilities are not only influenced by extremely dry climates but also by the catchment characteristics.
Ayenew D. Ayalew, Paul D. Wagner, Dejene Sahlu, and Nicola Fohrer
Hydrol. Earth Syst. Sci., 28, 1853–1872, https://doi.org/10.5194/hess-28-1853-2024, https://doi.org/10.5194/hess-28-1853-2024, 2024
Short summary
Short summary
The study presents a pioneering comprehensive integrated approach to unravel hydrological complexities in data-scarce regions. By integrating diverse data sources and advanced analytics, we offer a holistic understanding of water systems, unveiling hidden patterns and driving factors. This innovative method holds immense promise for informed decision-making and sustainable water resource management, addressing a critical need in hydrological science.
Juliette Godet, Eric Gaume, Pierre Javelle, Pierre Nicolle, and Olivier Payrastre
Hydrol. Earth Syst. Sci., 28, 1403–1413, https://doi.org/10.5194/hess-28-1403-2024, https://doi.org/10.5194/hess-28-1403-2024, 2024
Short summary
Short summary
This work was performed in order to precisely address a point that is often neglected by hydrologists: the allocation of points located on a river network to grid cells, which is often a mandatory step for hydrological modelling.
Jim Yoon, Nathalie Voisin, Christian Klassert, Travis Thurber, and Wenwei Xu
Hydrol. Earth Syst. Sci., 28, 899–916, https://doi.org/10.5194/hess-28-899-2024, https://doi.org/10.5194/hess-28-899-2024, 2024
Short summary
Short summary
Global and regional models used to evaluate water shortages typically neglect the possibility that irrigated crop areas may change in response to future hydrological conditions, such as the fallowing of crops in response to drought. Here, we enhance a model used for water shortage analysis with farmer agents that dynamically adapt their irrigated crop areas based on simulated hydrological conditions. Results indicate that such cropping adaptation can strongly alter simulated water shortages.
Vivek K. Arora, Aranildo Lima, and Rajesh Shrestha
EGUsphere, https://doi.org/10.5194/egusphere-2024-182, https://doi.org/10.5194/egusphere-2024-182, 2024
Short summary
Short summary
This study is likely the first Canada-wide assessment of climate change impact on the hydro-climatology of its major river basins. It finds that the precipitation, runoff, and temperature are all expected to increase over Canada in the future. The northerly Mackenzie and Yukon Rivers are relatively less affected by climate change compared to the southerly Fraser and Columbia Rivers which are located in the milder Pacific north-western region.
Celray James Chawanda, Albert Nkwasa, Wim Thiery, and Ann van Griensven
Hydrol. Earth Syst. Sci., 28, 117–138, https://doi.org/10.5194/hess-28-117-2024, https://doi.org/10.5194/hess-28-117-2024, 2024
Short summary
Short summary
Africa's water resources are being negatively impacted by climate change and land-use change. The SWAT+ hydrological model was used to simulate the hydrological cycle in Africa, and results show likely decreases in river flows in the Zambezi and Congo rivers and highest flows in the Niger River basins due to climate change. Land cover change had the biggest impact in the Congo River basin, emphasizing the importance of including land-use change in studies.
Tom Kimpson, Margarita Choulga, Matthew Chantry, Gianpaolo Balsamo, Souhail Boussetta, Peter Dueben, and Tim Palmer
Hydrol. Earth Syst. Sci., 27, 4661–4685, https://doi.org/10.5194/hess-27-4661-2023, https://doi.org/10.5194/hess-27-4661-2023, 2023
Short summary
Short summary
Lakes play an important role when we try to explain and predict the weather. More accurate and up-to-date description of lakes all around the world for numerical models is a continuous task. However, it is difficult to assess the impact of updated lake description within a weather prediction system. In this work, we develop a method to quickly and automatically define how, where, and when updated lake description affects weather prediction.
Haiyang Shi, Geping Luo, Olaf Hellwich, Xiufeng He, Alishir Kurban, Philippe De Maeyer, and Tim Van de Voorde
Hydrol. Earth Syst. Sci., 27, 4551–4562, https://doi.org/10.5194/hess-27-4551-2023, https://doi.org/10.5194/hess-27-4551-2023, 2023
Short summary
Short summary
Using evidence from meteorological stations, this study assessed the climatic, hydrological, and ecological aridity changes in global drylands and their associated mechanisms. A decoupling between atmospheric, hydrological, and vegetation aridity was found. This highlights the added value of using station-scale data to assess dryland change as a complement to results based on coarse-resolution reanalysis data and land surface models.
En Ning Lai, Lan Wang-Erlandsson, Vili Virkki, Miina Porkka, and Ruud J. van der Ent
Hydrol. Earth Syst. Sci., 27, 3999–4018, https://doi.org/10.5194/hess-27-3999-2023, https://doi.org/10.5194/hess-27-3999-2023, 2023
Short summary
Short summary
This research scrutinized predicted changes in root zone soil moisture dynamics across different climate scenarios and different climate regions globally between 2021 and 2100. The Mediterranean and most of South America stood out as regions that will likely experience permanently drier conditions, with greater severity observed in the no-climate-policy scenarios. These findings underscore the impact that possible future climates can have on green water resources.
H. M. Mehedi Hasan, Petra Döll, Seyed-Mohammad Hosseini-Moghari, Fabrice Papa, and Andreas Güntner
EGUsphere, https://doi.org/10.5194/egusphere-2023-2324, https://doi.org/10.5194/egusphere-2023-2324, 2023
Short summary
Short summary
We calibrate a global hydrological model using multiple observations to analyse the benefits and trade-offs of multi-variable calibration. We found such an approach to be very important for understanding the real-world system. However, some observations are very essential to the system, in particular streamflow. We also showed uncertainties in the calibration results, which is often useful for making informed decisions. We emphasis to consider observation uncertainty in model calibration.
Julia Pfeffer, Anny Cazenave, Alejandro Blazquez, Bertrand Decharme, Simon Munier, and Anne Barnoud
Hydrol. Earth Syst. Sci., 27, 3743–3768, https://doi.org/10.5194/hess-27-3743-2023, https://doi.org/10.5194/hess-27-3743-2023, 2023
Short summary
Short summary
The GRACE (Gravity Recovery And Climate Experiment) satellite mission enabled the quantification of water mass redistributions from 2002 to 2017. The analysis of GRACE satellite data shows here that slow changes in terrestrial water storage occurring over a few years to a decade are severely underestimated by global hydrological models. Several sources of errors may explain such biases, likely including the inaccurate representation of groundwater storage changes.
Thedini Asali Peiris and Petra Döll
Hydrol. Earth Syst. Sci., 27, 3663–3686, https://doi.org/10.5194/hess-27-3663-2023, https://doi.org/10.5194/hess-27-3663-2023, 2023
Short summary
Short summary
Hydrological models often overlook vegetation's response to CO2 and climate, impairing their ability to forecast impacts on evapotranspiration and water resources. To address this, we suggest involving two model variants: (1) the standard method and (2) a modified approach (proposed here) based on the Priestley–Taylor equation (PT-MA). While not universally applicable, a dual approach helps consider uncertainties related to vegetation responses to climate change, enhancing model representation.
Samah Larabi, Juliane Mai, Markus Schnorbus, Bryan A. Tolson, and Francis Zwiers
Hydrol. Earth Syst. Sci., 27, 3241–3263, https://doi.org/10.5194/hess-27-3241-2023, https://doi.org/10.5194/hess-27-3241-2023, 2023
Short summary
Short summary
The computational cost of sensitivity analysis (SA) becomes prohibitive for large hydrologic modeling domains. Here, using a large-scale Variable Infiltration Capacity (VIC) deployment, we show that watershed classification helps identify the spatial pattern of parameter sensitivity within the domain at a reduced cost. Findings reveal the opportunity to leverage climate and land cover attributes to reduce the cost of SA and facilitate more rapid deployment of large-scale land surface models.
Tanja Denager, Torben O. Sonnenborg, Majken C. Looms, Heye Bogena, and Karsten H. Jensen
Hydrol. Earth Syst. Sci., 27, 2827–2845, https://doi.org/10.5194/hess-27-2827-2023, https://doi.org/10.5194/hess-27-2827-2023, 2023
Short summary
Short summary
This study contributes to improvements in the model characterization of water and energy fluxes. The results show that multi-objective autocalibration in combination with mathematical regularization is a powerful tool to improve land surface models. Using the direct measurement of turbulent fluxes as the target variable, parameter optimization matches simulations and observations of latent heat, whereas sensible heat is clearly biased.
Hoontaek Lee, Martin Jung, Nuno Carvalhais, Tina Trautmann, Basil Kraft, Markus Reichstein, Matthias Forkel, and Sujan Koirala
Hydrol. Earth Syst. Sci., 27, 1531–1563, https://doi.org/10.5194/hess-27-1531-2023, https://doi.org/10.5194/hess-27-1531-2023, 2023
Short summary
Short summary
We spatially attribute the variance in global terrestrial water storage (TWS) interannual variability (IAV) and its modeling error with two data-driven hydrological models. We find error hotspot regions that show a disproportionately large significance in the global mismatch and the association of the error regions with a smaller-scale lateral convergence of water. Our findings imply that TWS IAV modeling can be efficiently improved by focusing on model representations for the error hotspots.
Jannis M. Hoch, Edwin H. Sutanudjaja, Niko Wanders, Rens L. P. H. van Beek, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci., 27, 1383–1401, https://doi.org/10.5194/hess-27-1383-2023, https://doi.org/10.5194/hess-27-1383-2023, 2023
Short summary
Short summary
To facilitate locally relevant simulations over large areas, global hydrological models (GHMs) have moved towards ever finer spatial resolutions. After a decade-long quest for hyper-resolution (i.e. equal to or smaller than 1 km), the presented work is a first application of a GHM at 1 km resolution over Europe. This not only shows that hyper-resolution can be achieved but also allows for a thorough evaluation of model results at unprecedented detail and the formulation of future research.
Chinchu Mohan, Tom Gleeson, James S. Famiglietti, Vili Virkki, Matti Kummu, Miina Porkka, Lan Wang-Erlandsson, Xander Huggins, Dieter Gerten, and Sonja C. Jähnig
Hydrol. Earth Syst. Sci., 26, 6247–6262, https://doi.org/10.5194/hess-26-6247-2022, https://doi.org/10.5194/hess-26-6247-2022, 2022
Short summary
Short summary
The relationship between environmental flow violations and freshwater biodiversity at a large scale is not well explored. This study intended to carry out an exploratory evaluation of this relationship at a large scale. While our results suggest that streamflow and EF may not be the only determinants of freshwater biodiversity at large scales, they do not preclude the existence of relationships at smaller scales or with more holistic EF methods or with other biodiversity data or metrics.
Zhaofei Liu
Hydrol. Earth Syst. Sci., 26, 6207–6226, https://doi.org/10.5194/hess-26-6207-2022, https://doi.org/10.5194/hess-26-6207-2022, 2022
Short summary
Short summary
Ground heat flux (G) accounts for a significant fraction of the surface energy balance (SEB), but there is insufficient research on these models compared with other flux. The accuracy of G simulation methods in the SEB-based remote sensing evapotranspiration models is evaluated. Results show that the accuracy of each method varied significantly at different sites and at half-hour intervals. Further improvement of G simulations is recommended for the remote sensing evapotranspiration modelers.
Pau Wiersma, Jerom Aerts, Harry Zekollari, Markus Hrachowitz, Niels Drost, Matthias Huss, Edwin H. Sutanudjaja, and Rolf Hut
Hydrol. Earth Syst. Sci., 26, 5971–5986, https://doi.org/10.5194/hess-26-5971-2022, https://doi.org/10.5194/hess-26-5971-2022, 2022
Short summary
Short summary
We test whether coupling a global glacier model (GloGEM) with a global hydrological model (PCR-GLOBWB 2) leads to a more realistic glacier representation and to improved basin runoff simulations across 25 large-scale basins. The coupling does lead to improved glacier representation, mainly by accounting for glacier flow and net glacier mass loss, and to improved basin runoff simulations, mostly in strongly glacier-influenced basins, which is where the coupling has the most impact.
Feng Zhong, Shanhu Jiang, Albert I. J. M. van Dijk, Liliang Ren, Jaap Schellekens, and Diego G. Miralles
Hydrol. Earth Syst. Sci., 26, 5647–5667, https://doi.org/10.5194/hess-26-5647-2022, https://doi.org/10.5194/hess-26-5647-2022, 2022
Short summary
Short summary
A synthesis of rainfall interception data from past field campaigns is performed, including 166 forests and 17 agricultural plots distributed worldwide. These site data are used to constrain and validate an interception model that considers sub-grid heterogeneity and vegetation dynamics. A global, 40-year (1980–2019) interception dataset is generated at a daily temporal and 0.1° spatial resolution. This dataset will serve as a benchmark for future investigations of the global hydrological cycle.
Dongyu Feng, Zeli Tan, Darren Engwirda, Chang Liao, Donghui Xu, Gautam Bisht, Tian Zhou, Hong-Yi Li, and L. Ruby Leung
Hydrol. Earth Syst. Sci., 26, 5473–5491, https://doi.org/10.5194/hess-26-5473-2022, https://doi.org/10.5194/hess-26-5473-2022, 2022
Short summary
Short summary
Sea level rise, storm surge and river discharge can cause coastal backwater effects in downstream sections of rivers, creating critical flood risks. This study simulates the backwater effects using a large-scale river model on a coastal-refined computational mesh. By decomposing the backwater drivers, we revealed their relative importance and long-term variations. Our analysis highlights the increasing strength of backwater effects due to sea level rise and more frequent storm surge.
Kieran M. R. Hunt, Gwyneth R. Matthews, Florian Pappenberger, and Christel Prudhomme
Hydrol. Earth Syst. Sci., 26, 5449–5472, https://doi.org/10.5194/hess-26-5449-2022, https://doi.org/10.5194/hess-26-5449-2022, 2022
Short summary
Short summary
In this study, we use three models to forecast river streamflow operationally for 13 months (September 2020 to October 2021) at 10 gauges in the western US. The first model is a state-of-the-art physics-based streamflow model (GloFAS). The second applies a bias-correction technique to GloFAS. The third is a type of neural network (an LSTM). We find that all three are capable of producing skilful forecasts but that the LSTM performs the best, with skilful 5 d forecasts at nine stations.
Tongtiegang Zhao, Haoling Chen, Yu Tian, Denghua Yan, Weixin Xu, Huayang Cai, Jiabiao Wang, and Xiaohong Chen
Hydrol. Earth Syst. Sci., 26, 4233–4249, https://doi.org/10.5194/hess-26-4233-2022, https://doi.org/10.5194/hess-26-4233-2022, 2022
Short summary
Short summary
This paper develops a novel set operations of coefficients of determination (SOCD) method to explicitly quantify the overlapping and differing information for GCM forecasts and ENSO teleconnection. Specifically, the intersection operation of the coefficient of determination derives the overlapping information for GCM forecasts and the Niño3.4 index, and then the difference operation determines the differing information in GCM forecasts (Niño3.4 index) from the Niño3.4 index (GCM forecasts).
Vili Virkki, Elina Alanärä, Miina Porkka, Lauri Ahopelto, Tom Gleeson, Chinchu Mohan, Lan Wang-Erlandsson, Martina Flörke, Dieter Gerten, Simon N. Gosling, Naota Hanasaki, Hannes Müller Schmied, Niko Wanders, and Matti Kummu
Hydrol. Earth Syst. Sci., 26, 3315–3336, https://doi.org/10.5194/hess-26-3315-2022, https://doi.org/10.5194/hess-26-3315-2022, 2022
Short summary
Short summary
Direct and indirect human actions have altered streamflow across the world since pre-industrial times. Here, we apply a method of environmental flow envelopes (EFEs) that develops the existing global environmental flow assessments by methodological advances and better consideration of uncertainty. By assessing the violations of the EFE, we comprehensively quantify the frequency, severity, and trends of flow alteration during the past decades, illustrating anthropogenic effects on streamflow.
Toby R. Marthews, Simon J. Dadson, Douglas B. Clark, Eleanor M. Blyth, Garry D. Hayman, Dai Yamazaki, Olivia R. E. Becher, Alberto Martínez-de la Torre, Catherine Prigent, and Carlos Jiménez
Hydrol. Earth Syst. Sci., 26, 3151–3175, https://doi.org/10.5194/hess-26-3151-2022, https://doi.org/10.5194/hess-26-3151-2022, 2022
Short summary
Short summary
Reliable data on global inundated areas remain uncertain. By matching a leading global data product on inundation extents (GIEMS) against predictions from a global hydrodynamic model (CaMa-Flood), we found small but consistent and non-random biases in well-known tropical wetlands (Sudd, Pantanal, Amazon and Congo). These result from known limitations in the data and the models used, which shows us how to improve our ability to make critical predictions of inundation events in the future.
Jawairia A. Ahmad, Barton A. Forman, and Sujay V. Kumar
Hydrol. Earth Syst. Sci., 26, 2221–2243, https://doi.org/10.5194/hess-26-2221-2022, https://doi.org/10.5194/hess-26-2221-2022, 2022
Short summary
Short summary
Assimilation of remotely sensed data into a land surface model to improve the spatiotemporal estimation of soil moisture across South Asia exhibits potential. Satellite retrieval assimilation corrects biases that are generated due to an unmodeled hydrologic phenomenon, i.e., irrigation. The improvements in fine-scale, modeled soil moisture estimates by assimilating coarse-scale retrievals indicates the utility of the described methodology for data-scarce regions.
Naota Hanasaki, Hikari Matsuda, Masashi Fujiwara, Yukiko Hirabayashi, Shinta Seto, Shinjiro Kanae, and Taikan Oki
Hydrol. Earth Syst. Sci., 26, 1953–1975, https://doi.org/10.5194/hess-26-1953-2022, https://doi.org/10.5194/hess-26-1953-2022, 2022
Short summary
Short summary
Global hydrological models (GHMs) are usually applied with a spatial resolution of about 50 km, but this time we applied the H08 model, one of the most advanced GHMs, with a high resolution of 2 km to Kyushu island, Japan. Since the model was not accurate as it was, we incorporated local information and improved the model, which revealed detailed water stress in subregions that were not visible with the previous resolution.
Basil Kraft, Martin Jung, Marco Körner, Sujan Koirala, and Markus Reichstein
Hydrol. Earth Syst. Sci., 26, 1579–1614, https://doi.org/10.5194/hess-26-1579-2022, https://doi.org/10.5194/hess-26-1579-2022, 2022
Short summary
Short summary
We present a physics-aware machine learning model of the global hydrological cycle. As the model uses neural networks under the hood, the simulations of the water cycle are learned from data, and yet they are informed and constrained by physical knowledge. The simulated patterns lie within the range of existing hydrological models and are plausible. The hybrid modeling approach has the potential to tackle key environmental questions from a novel perspective.
Tina Trautmann, Sujan Koirala, Nuno Carvalhais, Andreas Güntner, and Martin Jung
Hydrol. Earth Syst. Sci., 26, 1089–1109, https://doi.org/10.5194/hess-26-1089-2022, https://doi.org/10.5194/hess-26-1089-2022, 2022
Short summary
Short summary
We assess the effect of how vegetation is defined in a global hydrological model on the composition of total water storage (TWS). We compare two experiments, one with globally uniform and one with vegetation parameters that vary in space and time. While both experiments are constrained against observational data, we found a drastic change in the partitioning of TWS, highlighting the important role of the interaction between groundwater–soil moisture–vegetation in understanding TWS variations.
Marc F. P. Bierkens, Edwin H. Sutanudjaja, and Niko Wanders
Hydrol. Earth Syst. Sci., 25, 5859–5878, https://doi.org/10.5194/hess-25-5859-2021, https://doi.org/10.5194/hess-25-5859-2021, 2021
Short summary
Short summary
We introduce a simple analytical framework that allows us to estimate to what extent large-scale groundwater withdrawal affects groundwater levels and streamflow. It also calculates which part of the groundwater withdrawal comes out of groundwater storage and which part from a reduction in streamflow. Global depletion rates obtained with the framework are compared with estimates from satellites, from global- and continental-scale groundwater models, and from in situ datasets.
Dirk Eilander, Willem van Verseveld, Dai Yamazaki, Albrecht Weerts, Hessel C. Winsemius, and Philip J. Ward
Hydrol. Earth Syst. Sci., 25, 5287–5313, https://doi.org/10.5194/hess-25-5287-2021, https://doi.org/10.5194/hess-25-5287-2021, 2021
Short summary
Short summary
Digital elevation models and derived flow directions are crucial to distributed hydrological modeling. As the spatial resolution of models is typically coarser than these data, we need methods to upscale flow direction data while preserving the river structure. We propose the Iterative Hydrography Upscaling (IHU) method and show it outperforms other often-applied methods. We publish the multi-resolution MERIT Hydro IHU hydrography dataset and the algorithm as part of the pyflwdir Python package.
Jérôme Kopp, Pauline Rivoire, S. Mubashshir Ali, Yannick Barton, and Olivia Martius
Hydrol. Earth Syst. Sci., 25, 5153–5174, https://doi.org/10.5194/hess-25-5153-2021, https://doi.org/10.5194/hess-25-5153-2021, 2021
Short summary
Short summary
Episodes of extreme rainfall events happening in close temporal succession can lead to floods with dramatic impacts. We developed a novel method to individually identify those episodes and deduced the regions where they occur frequently and where their impact is substantial. Those regions are the east and northeast of the Asian continent, central Canada and the south of California, Afghanistan, Pakistan, the southwest of the Iberian Peninsula, and north of Argentina and south of Bolivia.
Alyssa J. DeVincentis, Hervé Guillon, Romina Díaz Gómez, Noelle K. Patterson, Francine van den Brandeler, Arthur Koehl, J. Pablo Ortiz-Partida, Laura E. Garza-Díaz, Jennifer Gamez-Rodríguez, Erfan Goharian, and Samuel Sandoval Solis
Hydrol. Earth Syst. Sci., 25, 4631–4650, https://doi.org/10.5194/hess-25-4631-2021, https://doi.org/10.5194/hess-25-4631-2021, 2021
Short summary
Short summary
Latin America and the Caribbean face many water-related stresses which are expected to worsen with climate change. To assess the vulnerability, we reviewed over 20 000 multilingual research articles using machine learning and an understanding of the regional landscape. Results reveal that the region’s inherent vulnerability is compounded by research blind spots in niche topics (reservoirs and risk assessment) and subregions (Caribbean nations), as well as by its reliance on one country (Brazil).
Michiel Maertens, Gabriëlle J. M. De Lannoy, Sebastian Apers, Sujay V. Kumar, and Sarith P. P. Mahanama
Hydrol. Earth Syst. Sci., 25, 4099–4125, https://doi.org/10.5194/hess-25-4099-2021, https://doi.org/10.5194/hess-25-4099-2021, 2021
Short summary
Short summary
In this study, we simulated the water balance over the South American Dry Chaco and assessed the impact of land cover changes thereon using three different land surface models. Our simulations indicated that different models result in a different partitioning of the total water budget, but all showed an increase in soil moisture and percolation over the deforested areas. We also found that, relative to independent data, no specific land surface model is significantly better than another.
Louise J. Slater, Bailey Anderson, Marcus Buechel, Simon Dadson, Shasha Han, Shaun Harrigan, Timo Kelder, Katie Kowal, Thomas Lees, Tom Matthews, Conor Murphy, and Robert L. Wilby
Hydrol. Earth Syst. Sci., 25, 3897–3935, https://doi.org/10.5194/hess-25-3897-2021, https://doi.org/10.5194/hess-25-3897-2021, 2021
Short summary
Short summary
Weather and water extremes have devastating effects each year. One of the principal challenges for society is understanding how extremes are likely to evolve under the influence of changes in climate, land cover, and other human impacts. This paper provides a review of the methods and challenges associated with the detection, attribution, management, and projection of nonstationary weather and water extremes.
Sanaa Hobeichi, Gab Abramowitz, and Jason P. Evans
Hydrol. Earth Syst. Sci., 25, 3855–3874, https://doi.org/10.5194/hess-25-3855-2021, https://doi.org/10.5194/hess-25-3855-2021, 2021
Short summary
Short summary
Evapotranspiration (ET) links the water, energy and carbon cycle on land. Reliable ET estimates are key to understand droughts and flooding. We develop a new ET dataset, DOLCE V3, by merging multiple global ET datasets, and we show that it matches ET observations better and hence is more reliable than its parent datasets. Next, we use DOLCE V3 to examine recent changes in ET and find that ET has increased over most of the land, decreased in some regions, and has not changed in some other regions
Frederik Kratzert, Daniel Klotz, Sepp Hochreiter, and Grey S. Nearing
Hydrol. Earth Syst. Sci., 25, 2685–2703, https://doi.org/10.5194/hess-25-2685-2021, https://doi.org/10.5194/hess-25-2685-2021, 2021
Short summary
Short summary
We investigate how deep learning models use different meteorological data sets in the task of (regional) rainfall–runoff modeling. We show that performance can be significantly improved when using different data products as input and further show how the model learns to combine those meteorological input differently across time and space. The results are carefully benchmarked against classical approaches, showing the supremacy of the presented approach.
Fabian Stenzel, Dieter Gerten, and Naota Hanasaki
Hydrol. Earth Syst. Sci., 25, 1711–1726, https://doi.org/10.5194/hess-25-1711-2021, https://doi.org/10.5194/hess-25-1711-2021, 2021
Short summary
Short summary
Ideas to mitigate climate change include the large-scale cultivation of fast-growing plants to capture atmospheric CO2 in biomass. To maximize the productivity of these plants, they will likely be irrigated. However, there is strong disagreement in the literature on how much irrigation water is needed globally, potentially inducing water stress. We provide a comprehensive overview of global irrigation demand studies for biomass production and discuss the diverse underlying study assumptions.
Charles Rougé, Patrick M. Reed, Danielle S. Grogan, Shan Zuidema, Alexander Prusevich, Stanley Glidden, Jonathan R. Lamontagne, and Richard B. Lammers
Hydrol. Earth Syst. Sci., 25, 1365–1388, https://doi.org/10.5194/hess-25-1365-2021, https://doi.org/10.5194/hess-25-1365-2021, 2021
Short summary
Short summary
Amid growing interest in using large-scale hydrological models for flood and drought monitoring and forecasting, it is important to evaluate common assumptions these models make. We investigated the representation of reservoirs as separate (non-coordinated) infrastructure. We found that not appropriately representing coordination and control processes can lead a hydrological model to simulate flood and drought events that would not occur given the coordinated emergency response in the basin.
Robert Reinecke, Hannes Müller Schmied, Tim Trautmann, Lauren Seaby Andersen, Peter Burek, Martina Flörke, Simon N. Gosling, Manolis Grillakis, Naota Hanasaki, Aristeidis Koutroulis, Yadu Pokhrel, Wim Thiery, Yoshihide Wada, Satoh Yusuke, and Petra Döll
Hydrol. Earth Syst. Sci., 25, 787–810, https://doi.org/10.5194/hess-25-787-2021, https://doi.org/10.5194/hess-25-787-2021, 2021
Short summary
Short summary
Billions of people rely on groundwater as an accessible source of drinking water and for irrigation, especially in times of drought. Groundwater recharge is the primary process of regenerating groundwater resources. We find that groundwater recharge will increase in northern Europe by about 19 % and decrease by 10 % in the Amazon with 3 °C global warming. In the Mediterranean, a 2 °C warming has already lead to a reduction in recharge by 38 %. However, these model predictions are uncertain.
Laura E. Queen, Philip W. Mote, David E. Rupp, Oriana Chegwidden, and Bart Nijssen
Hydrol. Earth Syst. Sci., 25, 257–272, https://doi.org/10.5194/hess-25-257-2021, https://doi.org/10.5194/hess-25-257-2021, 2021
Short summary
Short summary
Using a large ensemble of simulated flows throughout the northwestern USA, we compare daily flood statistics in the past (1950–1999) and future (2050–1999) periods and find that nearly all locations will experience an increase in flood magnitudes. The flood season expands significantly in many currently snow-dominant rivers, moving from only spring to both winter and spring. These results, properly extended, may help inform flood risk management and negotiations of the Columbia River Treaty.
Hylke E. Beck, Ming Pan, Diego G. Miralles, Rolf H. Reichle, Wouter A. Dorigo, Sebastian Hahn, Justin Sheffield, Lanka Karthikeyan, Gianpaolo Balsamo, Robert M. Parinussa, Albert I. J. M. van Dijk, Jinyang Du, John S. Kimball, Noemi Vergopolan, and Eric F. Wood
Hydrol. Earth Syst. Sci., 25, 17–40, https://doi.org/10.5194/hess-25-17-2021, https://doi.org/10.5194/hess-25-17-2021, 2021
Short summary
Short summary
We evaluated the largest and most diverse set of surface soil moisture products ever evaluated in a single study. We found pronounced differences in performance among individual products and product groups. Our results provide guidance to choose the most suitable product for a particular application.
Yared Abayneh Abebe, Amineh Ghorbani, Igor Nikolic, Natasa Manojlovic, Angelika Gruhn, and Zoran Vojinovic
Hydrol. Earth Syst. Sci., 24, 5329–5354, https://doi.org/10.5194/hess-24-5329-2020, https://doi.org/10.5194/hess-24-5329-2020, 2020
Short summary
Short summary
The paper presents a coupled agent-based and flood model for Hamburg, Germany. It explores residents’ adaptation behaviour in relation to flood event scenarios, economic incentives and shared and individual strategies. We found that unique trajectories of adaptation behaviour emerge from different flood event series. Providing subsidies improves adaptation behaviour in the long run. The coupled modelling technique allows the role of individual measures in flood risk management to be examined.
Denise Cáceres, Ben Marzeion, Jan Hendrik Malles, Benjamin Daniel Gutknecht, Hannes Müller Schmied, and Petra Döll
Hydrol. Earth Syst. Sci., 24, 4831–4851, https://doi.org/10.5194/hess-24-4831-2020, https://doi.org/10.5194/hess-24-4831-2020, 2020
Short summary
Short summary
We analysed how and to which extent changes in water storage on continents had an effect on global ocean mass over the period 1948–2016. Continents lost water to oceans at an accelerated rate, inducing sea level rise. Shrinking glaciers explain 81 % of the long-term continental water mass loss, while declining groundwater levels, mainly due to sustained groundwater pumping for irrigation, is the second major driver. This long-term decline was partly offset by the impoundment of water in dams.
Cited articles
Alfieri, L., Bisselink, B., Dottori, F., Naumann, G., de Roo, A., Salamon,
P., Wyser K, and Feyen, L.: Global projections of river flood risk in a
warmer world, Earth's Future, 5, 171–182.
https://doi.org/10.1002/2016EF000485, 2017.
Aqueduct Floods Hazard Maps: https://www.wri.org/aqueduct/data, last access:
25 October 2022.
Bates, P. D., Savage, J., Wing, O., Quinn, N., Sampson, C., Neal, J., and Smith, A.: A climate-conditioned catastrophe risk model for UK flooding, Nat. Hazards Earth Syst. Sci., 23, 891–908, https://doi.org/10.5194/nhess-23-891-2023, 2023.
Beck, H. E., De Roo, A., and van Dijk, A. I.: Global maps of streamflow
characteristics based on observations from several thousand catchments, J. Hydrometeorol., 16, 1478–1501,
https://doi.org/10.1175/JHM-D-14-0155.1, 2015.
Bernhofen, M. V., Whyman, C., Trigg, M. A., Sleigh, P. A., Smith, A. M.,
Sampson, C. C., Yamazaki, D., Ward, J. P., and Winsemius, H. C.: A first
collective validation of global fluvial flood models for major floods in
Nigeria and Mozambique, Environ. Res. Lett., 13, 104007, https://doi.org/10.1088/1748-9326/aae014, 2018.
Center for International Earth Science Information Network (CIESIN),
Columbia University: Documentation for the Gridded Population of the World,
Version 4 (GPWv4), Revision 11 Data Sets, NASA Socioeconomic Data and
Applications Center (SEDAC) [data set], Palisades, NY,
https://doi.org/10.7927/H45Q4T5F, 2018.
Dankers, R. and Feyen, L.: Climate change impact on flood hazard in Europe:
An assessment based on high-resolution climate simulations, J. Geophys. Res.-Atmos., 113, D19105, https://doi.org/10.1029/2007JD009719, 2008.
de Moel, H., van Alphen, J., and Aerts, J. C. J. H.: Flood maps in Europe – methods, availability and use, Nat. Hazards Earth Syst. Sci., 9, 289–301, https://doi.org/10.5194/nhess-9-289-2009, 2009.
Dottori, F., Szewczyk, W., Ciscar, J. C., Zhao, F., Alfieri, L.,
Hirabayashi, Y., Bianchi, A., Mongelli, I., Frieler, K., Betts, R. A., and
Feyen, L.: Increased human and economic losses from river flooding with
anthropogenic warming, Nat. Clim. Change, 8, 781–786,
https://doi.org/10.1038/s41558-018-0257-z, 2018.
Dottori, F., Alfieri, L., Bianchi, A., Skoien, J., and Salamon, P.: A new dataset of river flood hazard maps for Europe and the Mediterranean Basin, Earth Syst. Sci. Data, 14, 1549–1569, https://doi.org/10.5194/essd-14-1549-2022, 2022.
Earth System Grid Federation: CMIP6 Data Search, https://esgf-node.llnl.gov/search/cmip6/, last access: 14 April 2023.
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016.
Federal Emergency Management Agency (FEMA): Flood Maps and Zones Explained,
https://www.fema.gov/blog/fema-flood-maps-and-zones-explained (last access: 16 October 2022), 2018 (last
updated 17 March 2021).
Global Assessment Report 2015 (GAR 2015): Global Risk Data Platform,
https://preview.grid.unep.ch/ (last access 16 October 2022), 2015.
Hempel, S., Frieler, K., Warszawski, L., Schewe, J., and Piontek, F.: A trend-preserving bias correction – the ISI-MIP approach, Earth Syst. Dynam., 4, 219–236, https://doi.org/10.5194/esd-4-219-2013, 2013.
Hirabayashi, Y., Mahendran, R., Koirala, S., Konoshima, L., Yamazaki, D.,
Watanabe, S., Kim, H., and Kanae, S.: Global flood risk under climate change,
Nat. Clim. Change, 3, 816–821, https://doi.org/10.1038/NCLIMATE19,
2013.
Hirabayashi, Y., Tanoue, M., Sasaki, O., Zhou, X., and Yamazaki, D.: Global
exposure to flooding from the new CMIP6 climate model projections,
Sci. Rep., 11, 1–7, https://doi.org/10.1038/s41598-021-83279-w,
2021.
Hirabayashi, Y., Yamada, K., Yamazaki, D., Ishikawa, Y., Arai, M., Inuzuka,
T., Hisamatsu, R., and Ogawada, D.: Comparative Evaluation of Global Flood
Hazard Maps and Recommendations for Corporate Practice,
Journal of Japan Society of Hydrology and Water Resources, 35, 175–191,
https://doi.org/10.3178/jjshwr.35.175, 2022.
Hosking, J. R. M.: L-Moments, in: Wiley StatsRef: Statistics Reference
Online, John Wiley and Sons, Ltd., Hoboken, USA, 1–8,
https://doi.org/10.1002/9781118445112.stat00570.pub2, 2015.
Huang, S., Krysanova, V., and Hattermann, F. F.: Does bias correction
increase reliability of flood projections under climate change? A case study
of large rivers in Germany, Int. J. Climatol., 34,
3780–3800, https://doi.org/10.1002/joc.3945, 2014.
Japan Institute of Country-ology and Engineering 39th report,
https://www.jice.or.jp/tech/reports/detail/16/43 (last access: 16 October 2022), 2021.
Joint Research Centre (JRC): River Flood Hazard Maps at European and
Global Scale, https://data.jrc.ec.europa.eu/collection/id-0054, last access:
16 October 2022.
Kita, Y. and Yamazaki, D.: Verification of the Usability of Global River
Inundation Model Output for Hazard Maps in Japan, Journal of Japan Society of Hydrology and Water Resources, 35, 267–278, https://doi.org/10.3178/jjshwr.35.1743, 2022.
LaFond, K. M., Griffis, V. W., and Spellman, P.: Forcing hydrologic models with GCM output: Bias correction vs. the “delta change” method, American Society of Civil Engineers, https://doi.org/10.1061/9780784413548.214, 2014
Li, C., Zwiers, F., Zhang, X., Li, G., Sun, Y., and Wehner, M.: Changes in
annual extremes of daily temperature and precipitation in CMIP6 models,
J. Climate, 34, 3441–3460,
https://doi.org/10.1175/JCLI-D-19-1013.1, 2021.
Liang, X., Lettenmaier, D. P., Wood, E. F., and Burges, S. J.: A simple
hydrologically based model of land surface water and energy fluxes for
general circulation models, J. Geophys. Res.-Atmos.,
99, 14415–14428, https://doi.org/10.1029/94JD00483, 1994.
Liang, X., Wood, E. F., and Lettenmaier, D. P.: Surface soil moisture
parameterization of the VIC-2L model: Evaluation and modification, Global Planet. Change, 13, 195–206,
https://doi.org/10.1016/0921-8181(95)00046-1, 1996.
Lu, J., Carbone, G. J., and Crego, J. M.: Uncertainty and hotspots in 21st
century projections of agricultural drought from CMIP5 models, Sci. Rep., 9, 4922, https://doi.org/10.1038/s41598-019-41196-z, 2019.
Panofsky, H. A. and Brier, G. W.: Some applications of statistics to meteorology,
The Pennsylvania State University Press, 224 pp., 1968.
Reachhydro.org: Global Reach-level Flood Reanalysis, https://www.reachhydro.org/home/records/grfr, last access: 14 April 2023.
Sampson, C. C., Smith, A. M., Bates, P. D., Neal, J. C., Alfieri, L., and
Freer, J. E.: A high-resolution global flood hazard model, Water Resour. Res., 51, 7358–7381, https://doi.org/10.1002/2015WR016954, 2015.
Seneviratne, S. I., Zhang, X., Adnan, M., Badi, W., Dereczynski, C., Di Luca,
A., Ghosh, S., Iskandar, I., Kossin, J., Lewis, S., Otto, F., Pinto, I.,
Satoh, M., Vicente-Serrano, S. M., Wehner, M., and Zhou, B.: Weather and
Climate Extreme Events in a Changing Climate, in: Climate Change 2021: The
Physical Science Basis. Contribution of Working Group I to the Sixth
Assessment Report of the Intergovernmental Panel on Climate Change, edited by: MassonDelmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, United Kingdom
and New York, NY, USA, 1513–1766, https://www.ipcc.ch/report/ar6/wg1/chapter/chapter-11/ (last access: 14 April 2023), 2021.
Smith, A., Bates, P. D., Wing, O., Sampson, C., Quinn, N., and Neal, J.: New
estimates of flood exposure in developing countries using high-resolution
population data, Nat. Commun., 10, 1–7,
https://doi.org/10.1038/s41467-019-09282-y, 2019.
Taguchi, R., Tanoue, M., Yamazaki, D., and Hirabayashi, Y.: Global-Scale
Assessment of Economic Losses Caused by Flood-Related Business Interruption,
Water, 14, 967, https://doi.org/10.3390/w14060967, 2022.
Trigg, M. A., Birch, C. E., Neal, J. C., Bates, P. D., Smith, A., Sampson,
C. C., Yamazaki, D., Hirabayashi, Y., Pappenberger, F., Dutra, E., Ward, P.
J., Winsemius, H. C., Salamon, P., Dottori, F., Rudari, R., Kappes, M. S.,
Simpson, A. L., Hadzilacos, G., and Fewtrell, T. J.: The credibility challenge
for global fluvial flood risk analysis, Environ. Res. Lett.,
11, 094014, https://doi.org/10.1088/1748-9326/11/9/094014, 2016.
United Nations Office for Disaster Risk Reduction (UNISDR): Sendai Framework
for Disaster Risk Reduction 2015–2030, United Nations,
http://www.unisdr.org/files/43291_sendaiframeworkfordrren.pdf (last access: 17 October 2022), 2015.
Watanabe, S., Kanae, S., Seto, S., Yeh, P. J. F., Hirabayashi, Y., and Oki,
T.: Intercomparison of bias-correction methods for monthly temperature and
precipitation simulated by multiple climate models, J. Geophys. Res.-Atmos., 117, D23114, https://doi.org/10.1029/2012JD018192, 2012.
Watanabe, S.: Bias correction of climate model output values (1) Organizing
feature-based methods, Journal of Japan Society of Hydrology and Water
Resources, 33, 243–262, https://doi.org/10.3178/jjshwr.33.243,
2020.
Ward, P. J., Winsemius, H. C., Kuzma, S., Bierkens, M. F. P., Bouwman, A.,
Moel, H. D. E., and Luo, T.: Aqueduct floods methodology, World Resources
Institute, 1–28, https://www.wri.org/research/aqueduct-floods-methodology (last access: 17 October 2022),
2020a.
Ward, P. J., Blauhut, V., Bloemendaal, N., Daniell, J. E., de Ruiter, M. C., Duncan, M. J., Emberson, R., Jenkins, S. F., Kirschbaum, D., Kunz, M., Mohr, S., Muis, S., Riddell, G. A., Schäfer, A., Stanley, T., Veldkamp, T. I. E., and Winsemius, H. C.: Review article: Natural hazard risk assessments at the global scale, Nat. Hazards Earth Syst. Sci., 20, 1069–1096, https://doi.org/10.5194/nhess-20-1069-2020, 2020b.
Wing, O. E., Lehman, W., Bates, P. D., Sampson, C. C., Quinn, N., Smith, A.
M., Neal, J. C, Porter, J. R., and Kousky, C.: Inequitable patterns of US
flood risk in the Anthropocene, Nat. Clim. Change, 12, 156–162,
https://doi.org/10.1038/s41558-021-01265-6, 2022.
Yamazaki, D.: MERIT Hydro: global hydrography datasets, http://hydro.iis.u-tokyo.ac.jp/~yamadai/MERIT_Hydro/, last access 14 April 2023.
Yamazaki, D., Kanae, S., Kim, H., and Oki, T.: A physically based
description of floodplain inundation dynamics in a global river routing
model, Water Resour. Res., 47, W04501, https://doi.org/10.1029/2010WR009726,
2011.
Yamazaki, D., de Almeida, G. A., and Bates, P. D.: Improving computational
efficiency in global river models by implementing the local inertial flow
equation and a vector-based river network map, Water Resour. Res.,
49, 7221–7235, https://doi.org/10.1002/wrcr.20552, 2013.
Yamazaki, D., Sato, T., Kanae, S., Hirabayashi, Y., and Bates, P. D.:
Regional flood dynamics in a bifurcating mega delta simulated in a global
river model, Geophys. Res. Lett., 41, 3127–3135,
https://doi.org/10.1002/2014GL059744, 2014.
Yamazaki, D., Ikeshima, D., Sosa, J., Bates, P. D., Allen, G. H., and
Pavelsky, T. M.: MERIT Hydro: A high-resolution global hydrography map based
on latest topography dataset, Water Resour. Res., 55, 5053–5073,
https://doi.org/10.1029/2019WR024873, 2019.
Yamazaki, D., Revel, M., Hanazaki, R., Zhou, X., and Nitta, T.:
global-hydrodynamics/CaMa-Flood_v4, CaMa-Flood (v4.01),
Zenodo [code], https://doi.org/10.5281/zenodo.4659583, 2021.
Yang, Y., Pan, M., Lin, P., Beck, H. E., Zeng, Z., Yamazaki, D., David,
C.H., Lu, H. Yang, K., Hong, Y., and Wood, E. F.: Global Reach-Level
3-Hourly River Flood Reanalysis (1980–2019), B. Am. Meteorol. Soc., 102, E2086–E2105,
https://doi.org/10.1175/BAMS-D-20-0057.1, 2021.
Zhou, X., Ma, W., Echizenya, W., and Yamazaki, D.: The uncertainty of flood frequency analyses in hydrodynamic model simulations, Nat. Hazards Earth Syst. Sci., 21, 1071–1085, https://doi.org/10.5194/nhess-21-1071-2021, 2021.
Short summary
Since both the frequency and magnitude of flood will increase by climate change, information on spatial distributions of potential inundation depths (i.e., flood-hazard map) is required. We developed a method for constructing realistic future flood-hazard maps which addresses issues due to biases in climate models. A larger population is estimated to face risk in the future flood-hazard map, suggesting that only focusing on flood-frequency change could cause underestimation of future risk.
Since both the frequency and magnitude of flood will increase by climate change, information on...