Articles | Volume 26, issue 23
https://doi.org/10.5194/hess-26-6247-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-26-6247-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Poor correlation between large-scale environmental flow violations and freshwater biodiversity: implications for water resource management and the freshwater planetary boundary
Global Institute for Water Security, University of Saskatchewan,
Saskatoon, Saskatchewan, Canada
Department of Civil Engineering, University of Victoria, Victoria,
British Columbia, Canada
Waterplan (YC S21), San Francisco, California, USA
Department of Civil Engineering, University of Victoria, Victoria,
British Columbia, Canada
School of Earth and Ocean Sciences, University of Victoria,
Victoria, British Columbia, Canada
James S. Famiglietti
Global Institute for Water Security, University of Saskatchewan,
Saskatoon, Saskatchewan, Canada
School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
Vili Virkki
Water and Development Research Group, Aalto University, Espoo,
Finland
Matti Kummu
Water and Development Research Group, Aalto University, Espoo,
Finland
Miina Porkka
Water and Development Research Group, Aalto University, Espoo,
Finland
Global Economic Dynamics and the Biosphere, Royal Swedish Academy
of Sciences, Stockholm, Sweden
Lan Wang-Erlandsson
Stockholm Resilience Centre, Stockholm University, Stockholm,
Sweden
Bolin Centre for Climate Research, Stockholm University, Stockholm,
Sweden
Potsdam Institute for Climate Impact Research (PIK), Member of the
Leibniz Association, Potsdam, Germany
Xander Huggins
Global Institute for Water Security, University of Saskatchewan,
Saskatoon, Saskatchewan, Canada
Department of Civil Engineering, University of Victoria, Victoria,
British Columbia, Canada
Dieter Gerten
Potsdam Institute for Climate Impact Research (PIK), Member of the
Leibniz Association, Potsdam, Germany
Humboldt-Universität zu Berlin, Geography Department and
Integrative Research Institute on Transformations of Human–Environment
Systems, Berlin, Germany
Sonja C. Jähnig
Humboldt-Universität zu Berlin, Geography Department and
Integrative Research Institute on Transformations of Human–Environment
Systems, Berlin, Germany
Leibniz Institute of Freshwater Ecology and Inland Fisheries,
Müggelseedamm 310, Berlin, Germany
Related authors
Chinchu Mohan, Andrew W. Western, Yongping Wei, and Margarita Saft
Hydrol. Earth Syst. Sci., 22, 2689–2703, https://doi.org/10.5194/hess-22-2689-2018, https://doi.org/10.5194/hess-22-2689-2018, 2018
Short summary
Short summary
To ensure a sustainable supply of groundwater, scientific information about what is going into the system as recharge and what is taken out of the system via pumping is essential. This study identified the most influential factors in groundwater recharge and developed an empirical global recharge model. The meteorological and vegetation factors were the most important factors, and the long-term global average recharge was 134 mm per year. This model will aid in groundwater policy-making.
Chandrakant Singh, Ruud van der Ent, Ingo Fetzer, and Lan Wang-Erlandsson
EGUsphere, https://doi.org/10.5194/egusphere-2023-1486, https://doi.org/10.5194/egusphere-2023-1486, 2023
Short summary
Short summary
Tropical rainforests risk transforming into savanna-like landscapes under future climate change. By investigating the root zone storage dynamics and analyzing hydroclimate data from 33 Earth System Models (ESMs), we project the risk of rainforest tipping. While certain risks may be inevitable, the majority of them can still be avoided by adopting less severe climate scenarios. It is crucial to limit global surface temperatures below the Paris Agreement to preserve these valuable ecosystems.
Zhe Zhang, Yanping Li, Fei Chen, Phillip Harder, Warren Helgason, James Famiglietti, Prasanth Valayamkunnath, Cenlin He, and Zhenhua Li
Geosci. Model Dev., 16, 3809–3825, https://doi.org/10.5194/gmd-16-3809-2023, https://doi.org/10.5194/gmd-16-3809-2023, 2023
Short summary
Short summary
Crop models incorporated in Earth system models are essential to accurately simulate crop growth processes on Earth's surface and agricultural production. In this study, we aim to model the spring wheat in the Northern Great Plains, focusing on three aspects: (1) develop the wheat model at a point scale, (2) apply dynamic planting and harvest schedules, and (3) adopt a revised heat stress function. The results show substantial improvements and have great importance for agricultural production.
Jinghua Xiong, Abhishek, Li Xu, Hrishikesh A. Chandanpurkar, James S. Famiglietti, Chong Zhang, Gionata Ghiggi, Shenglian Guo, Yun Pan, and Bramha Dutt Vishwakarma
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-188, https://doi.org/10.5194/essd-2023-188, 2023
Revised manuscript accepted for ESSD
Short summary
Short summary
To overcome the shortcomings associated with limited spatiotemporal coverage, input data quality, and model simplifications in prevailing evaporation (ET) estimates, here, we developed an ensemble of 4669 unique terrestrial ET subsets using an independent mass balance approach. Long-term mean annual ET is within 500–600 mm/yr with a unimodal seasonal cycle and several piecewise trends during 2002–2021. The uncertainty-constrained results underpin the notion of increasing ET in a warming climate.
En Ning Lai, Lan Wang-Erlandsson, Vili Virkki, Miina Porkka, and Ruud J. van der Ent
EGUsphere, https://doi.org/10.5194/egusphere-2022-971, https://doi.org/10.5194/egusphere-2022-971, 2022
Short summary
Short summary
Root-zone soil moisture, important for ecosystems and agriculture, is now substantially modified by human activities and global warming. We studied how it changes in possible future climates (2021–2100). Based on the output of climate models, we can say that the Mediterranean, South Africa, parts of North and South America will become permanently drier, while Northern Africa and Southern Asia become wetter. This occurs even under mitigation scenarios, making climate adaptation imperative.
Tunde Olarinoye, Tom Gleeson, and Andreas Hartmann
Hydrol. Earth Syst. Sci., 26, 5431–5447, https://doi.org/10.5194/hess-26-5431-2022, https://doi.org/10.5194/hess-26-5431-2022, 2022
Short summary
Short summary
Analysis of karst spring recession is essential for management of groundwater. In karst, recession is dominated by slow and fast components; separating these components is by manual and subjective approaches. In our study, we tested the applicability of automated streamflow recession extraction procedures for a karst spring. Results showed that, by simple modification, streamflow extraction methods can identify slow and fast components: derived recession parameters are within reasonable ranges.
Sara Sadri, James S. Famiglietti, Ming Pan, Hylke E. Beck, Aaron Berg, and Eric F. Wood
Hydrol. Earth Syst. Sci., 26, 5373–5390, https://doi.org/10.5194/hess-26-5373-2022, https://doi.org/10.5194/hess-26-5373-2022, 2022
Short summary
Short summary
A farm-scale hydroclimatic machine learning framework to advise farmers was developed. FarmCan uses remote sensing data and farmers' input to forecast crop water deficits. The 8 d composite variables are better than daily ones for forecasting water deficit. Evapotranspiration (ET) and potential ET are more effective than soil moisture at predicting crop water deficit. FarmCan uses a crop-specific schedule to use surface or root zone soil moisture.
Vili Virkki, Elina Alanärä, Miina Porkka, Lauri Ahopelto, Tom Gleeson, Chinchu Mohan, Lan Wang-Erlandsson, Martina Flörke, Dieter Gerten, Simon N. Gosling, Naota Hanasaki, Hannes Müller Schmied, Niko Wanders, and Matti Kummu
Hydrol. Earth Syst. Sci., 26, 3315–3336, https://doi.org/10.5194/hess-26-3315-2022, https://doi.org/10.5194/hess-26-3315-2022, 2022
Short summary
Short summary
Direct and indirect human actions have altered streamflow across the world since pre-industrial times. Here, we apply a method of environmental flow envelopes (EFEs) that develops the existing global environmental flow assessments by methodological advances and better consideration of uncertainty. By assessing the violations of the EFE, we comprehensively quantify the frequency, severity, and trends of flow alteration during the past decades, illustrating anthropogenic effects on streamflow.
Alexander J. Horton, Nguyen V. K. Triet, Long P. Hoang, Sokchhay Heng, Panha Hok, Sarit Chung, Jorma Koponen, and Matti Kummu
Nat. Hazards Earth Syst. Sci., 22, 967–983, https://doi.org/10.5194/nhess-22-967-2022, https://doi.org/10.5194/nhess-22-967-2022, 2022
Short summary
Short summary
We studied the cumulative impact of future development and climate change scenarios on discharge and floods in the Cambodian Mekong floodplain. We found that hydropower impacts dominate, acting in opposition to climate change impacts to drastically increase dry season flows and reduce wet season flows even when considering the higher RCP8.5 level. The consequent reduction in flood extent and duration may reduce regional flood risk but may also have negative impacts on floodplain productivity.
Tom Gleeson, Thorsten Wagener, Petra Döll, Samuel C. Zipper, Charles West, Yoshihide Wada, Richard Taylor, Bridget Scanlon, Rafael Rosolem, Shams Rahman, Nurudeen Oshinlaja, Reed Maxwell, Min-Hui Lo, Hyungjun Kim, Mary Hill, Andreas Hartmann, Graham Fogg, James S. Famiglietti, Agnès Ducharne, Inge de Graaf, Mark Cuthbert, Laura Condon, Etienne Bresciani, and Marc F. P. Bierkens
Geosci. Model Dev., 14, 7545–7571, https://doi.org/10.5194/gmd-14-7545-2021, https://doi.org/10.5194/gmd-14-7545-2021, 2021
Short summary
Short summary
Groundwater is increasingly being included in large-scale (continental to global) land surface and hydrologic simulations. However, it is challenging to evaluate these simulations because groundwater is
hiddenunderground and thus hard to measure. We suggest using multiple complementary strategies to assess the performance of a model (
model evaluation).
Marko Kallio, Joseph H. A. Guillaume, Vili Virkki, Matti Kummu, and Kirsi Virrantaus
Geosci. Model Dev., 14, 5155–5181, https://doi.org/10.5194/gmd-14-5155-2021, https://doi.org/10.5194/gmd-14-5155-2021, 2021
Short summary
Short summary
Different runoff and streamflow products are freely available but may come with unsuitable spatial units. On the other hand, starting a new modelling exercise may require considerable resources. Hydrostreamer improves the usability of existing runoff products, allowing runoff and streamflow estimates at the desired spatial units with minimal data requirements and intuitive workflow. The case study shows that Hydrostreamer performs well compared to benchmark products and observation data.
Fabian Stenzel, Dieter Gerten, and Naota Hanasaki
Hydrol. Earth Syst. Sci., 25, 1711–1726, https://doi.org/10.5194/hess-25-1711-2021, https://doi.org/10.5194/hess-25-1711-2021, 2021
Short summary
Short summary
Ideas to mitigate climate change include the large-scale cultivation of fast-growing plants to capture atmospheric CO2 in biomass. To maximize the productivity of these plants, they will likely be irrigated. However, there is strong disagreement in the literature on how much irrigation water is needed globally, potentially inducing water stress. We provide a comprehensive overview of global irrigation demand studies for biomass production and discuss the diverse underlying study assumptions.
Tom Gleeson, Thorsten Wagener, Petra Döll, Samuel C. Zipper, Charles West, Yoshihide Wada, Richard Taylor, Bridget Scanlon, Rafael Rosolem, Shams Rahman, Nurudeen Oshinlaja, Reed Maxwell, Min-Hui Lo, Hyungjun Kim, Mary Hill, Andreas Hartmann, Graham Fogg, James S. Famiglietti, Agnès Ducharne, Inge de Graaf, Mark Cuthbert, Laura Condon, Etienne Bresciani, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-378, https://doi.org/10.5194/hess-2020-378, 2020
Revised manuscript not accepted
Hong Xuan Do, Fang Zhao, Seth Westra, Michael Leonard, Lukas Gudmundsson, Julien Eric Stanislas Boulange, Jinfeng Chang, Philippe Ciais, Dieter Gerten, Simon N. Gosling, Hannes Müller Schmied, Tobias Stacke, Camelia-Eliza Telteu, and Yoshihide Wada
Hydrol. Earth Syst. Sci., 24, 1543–1564, https://doi.org/10.5194/hess-24-1543-2020, https://doi.org/10.5194/hess-24-1543-2020, 2020
Short summary
Short summary
We presented a global comparison between observed and simulated trends in a flood index over the 1971–2005 period using the Global Streamflow Indices and Metadata archive and six global hydrological models available through The Inter-Sectoral Impact Model Intercomparison Project. Streamflow simulations over 2006–2099 period robustly project high flood hazard in several regions. These high-flood-risk areas, however, are under-sampled by the current global streamflow databases.
Matias Heino, Joseph H. A. Guillaume, Christoph Müller, Toshichika Iizumi, and Matti Kummu
Earth Syst. Dynam., 11, 113–128, https://doi.org/10.5194/esd-11-113-2020, https://doi.org/10.5194/esd-11-113-2020, 2020
Short summary
Short summary
In this study, we analyse the impacts of three major climate oscillations on global crop production. Our results show that maize, rice, soybean, and wheat yields are influenced by climate oscillations to a wide extent and in several important crop-producing regions. We observe larger impacts if crops are rainfed or fully fertilized, while irrigation tends to mitigate the impacts. These results can potentially help to increase the resilience of the global food system to climate-related shocks.
Jens Heinke, Christoph Müller, Mats Lannerstad, Dieter Gerten, and Wolfgang Lucht
Earth Syst. Dynam., 10, 205–217, https://doi.org/10.5194/esd-10-205-2019, https://doi.org/10.5194/esd-10-205-2019, 2019
Lan Wang-Erlandsson, Ingo Fetzer, Patrick W. Keys, Ruud J. van der Ent, Hubert H. G. Savenije, and Line J. Gordon
Hydrol. Earth Syst. Sci., 22, 4311–4328, https://doi.org/10.5194/hess-22-4311-2018, https://doi.org/10.5194/hess-22-4311-2018, 2018
Short summary
Short summary
Winds carry air moisture from one place to another. Thus, land-use change that alters air moisture content can also modify downwind rainfall and distant river flows. This aspect has rarely been taken into account in studies of river flow changes. We show here that remote land-use change effect on rainfall can exceed that of local, and that foreign nation influence on river flows is much more prevalent than previously thought. This has important implications for both land and water governance.
Stefanie R. Lutz, Andrea Popp, Tim van Emmerik, Tom Gleeson, Liz Kalaugher, Karsten Möbius, Tonie Mudde, Brett Walton, Rolf Hut, Hubert Savenije, Louise J. Slater, Anna Solcerova, Cathelijne R. Stoof, and Matthias Zink
Hydrol. Earth Syst. Sci., 22, 3589–3599, https://doi.org/10.5194/hess-22-3589-2018, https://doi.org/10.5194/hess-22-3589-2018, 2018
Short summary
Short summary
Media play a key role in the communication between scientists and the general public. However, the interaction between scientists and journalists is not always straightforward. In this opinion paper, we present insights from hydrologists and journalists into the benefits, aftermath and potential pitfalls of science–media interaction. We aim to encourage scientists to participate in the diverse and evolving media landscape, and we call on the scientific community to support scientists who do so.
Patrick W. Keys and Lan Wang-Erlandsson
Earth Syst. Dynam., 9, 829–847, https://doi.org/10.5194/esd-9-829-2018, https://doi.org/10.5194/esd-9-829-2018, 2018
Short summary
Short summary
Moisture recycling is the atmospheric branch of the water cycle, including evaporation and precipitation. While the physical water cycle is well-understood, the social links among the recipients of precipitation back to the sources of evaporation are not. In this work, we develop a method to determine how these social connections unfold, using a mix of quantitative and qualitative methods, finding that there are distinct types of social connections with corresponding policy and management tools.
Dieter Gerten, Martin Schönfeld, and Bernhard Schauberger
Earth Syst. Dynam., 9, 849–863, https://doi.org/10.5194/esd-9-849-2018, https://doi.org/10.5194/esd-9-849-2018, 2018
Short summary
Short summary
Cultural processes are underrepresented in Earth system models, although they decisively shape humanity’s planetary imprint. We set forth ideas on how Earth system analysis can be enriched by formalising aspects of religion (understood broadly as a collective belief in things held sacred). We sketch possible modelling avenues (extensions of existing Earth system models and new co-evolutionary models) and suggest research primers to explicate and quantify mental aspects of the Anthropocene.
Hafsa Ahmed Munia, Joseph H. A. Guillaume, Naho Mirumachi, Yoshihide Wada, and Matti Kummu
Hydrol. Earth Syst. Sci., 22, 2795–2809, https://doi.org/10.5194/hess-22-2795-2018, https://doi.org/10.5194/hess-22-2795-2018, 2018
Short summary
Short summary
An analytical framework is developed drawing on ideas of regime shifts from resilience literature to understand the transition between cases where water scarcity is or is not experienced depending on whether water from upstream is or is not available. The analysis shows 386 million people dependent on upstream water to avoid possible stress and 306 million people dependent on upstream water to avoid possible shortage. This provides insights into implications for negotiations between sub-basins.
Chinchu Mohan, Andrew W. Western, Yongping Wei, and Margarita Saft
Hydrol. Earth Syst. Sci., 22, 2689–2703, https://doi.org/10.5194/hess-22-2689-2018, https://doi.org/10.5194/hess-22-2689-2018, 2018
Short summary
Short summary
To ensure a sustainable supply of groundwater, scientific information about what is going into the system as recharge and what is taken out of the system via pumping is essential. This study identified the most influential factors in groundwater recharge and developed an empirical global recharge model. The meteorological and vegetation factors were the most important factors, and the long-term global average recharge was 134 mm per year. This model will aid in groundwater policy-making.
Zhongwei Huang, Mohamad Hejazi, Xinya Li, Qiuhong Tang, Chris Vernon, Guoyong Leng, Yaling Liu, Petra Döll, Stephanie Eisner, Dieter Gerten, Naota Hanasaki, and Yoshihide Wada
Hydrol. Earth Syst. Sci., 22, 2117–2133, https://doi.org/10.5194/hess-22-2117-2018, https://doi.org/10.5194/hess-22-2117-2018, 2018
Short summary
Short summary
This study generate a historical global monthly gridded water withdrawal data (0.5 × 0.5 degrees) for the period 1971–2010, distinguishing six water use sectors (irrigation, domestic, electricity generation, livestock, mining, and manufacturing). This dataset is the first reconstructed global water withdrawal data product at sub-annual and gridded resolution that is derived from different models and data sources, and was generated by spatially and temporally downscaling country-scale estimates.
Dung Duc Tran, Gerardo van Halsema, Petra J. G. J. Hellegers, Long Phi Hoang, Tho Quang Tran, Matti Kummu, and Fulco Ludwig
Hydrol. Earth Syst. Sci., 22, 1875–1896, https://doi.org/10.5194/hess-22-1875-2018, https://doi.org/10.5194/hess-22-1875-2018, 2018
Short summary
Short summary
We modeled hydrological changes under impacts of large-scale dike constructions for intensive rice production in the floodplain of the Vietnamese Mekong Delta. Four scenarios show a significant increase in peak water levels in the upstream rivers, but very few water level changes are found downstream. Water balance calculations show where the floodwater goes under four dike construction scenarios. Its impacts on the tidal areas need to be clarified in the future with a 3-D hydraulic model.
Nguyen Van Khanh Triet, Nguyen Viet Dung, Hideto Fujii, Matti Kummu, Bruno Merz, and Heiko Apel
Hydrol. Earth Syst. Sci., 21, 3991–4010, https://doi.org/10.5194/hess-21-3991-2017, https://doi.org/10.5194/hess-21-3991-2017, 2017
Short summary
Short summary
In this study we provide a numerical quantification of changes in flood hazard in the Vietnamese Mekong Delta as a result of dyke development. Other important drivers to the alteration of delta flood hazard are also investigated, e.g. tidal level. The findings of our study are substantial valuable for the decision makers in Vietnam to develop holistic and harmonized floods and flood-related issues management plan for the whole delta.
Timo A. Räsänen, Ville Lindgren, Joseph H. A. Guillaume, Brendan M. Buckley, and Matti Kummu
Clim. Past, 12, 1889–1905, https://doi.org/10.5194/cp-12-1889-2016, https://doi.org/10.5194/cp-12-1889-2016, 2016
Short summary
Short summary
El Niño-Southern Oscillation (ENSO) is linked to severe droughts and floods in mainland Southeast Asia. This research provides a more accurate and uniform picture of the spatio-temporal effects of ENSO on precipitation (1980–2013) and improves our understanding of long-term (1650–2004) ENSO teleconnection and its variability over the study area. The results reveal not only recognisable spatio-temporal patterns but also a high degree of variability and non-stationarity in the effects of ENSO.
Long Phi Hoang, Hannu Lauri, Matti Kummu, Jorma Koponen, Michelle T. H. van Vliet, Iwan Supit, Rik Leemans, Pavel Kabat, and Fulco Ludwig
Hydrol. Earth Syst. Sci., 20, 3027–3041, https://doi.org/10.5194/hess-20-3027-2016, https://doi.org/10.5194/hess-20-3027-2016, 2016
Short summary
Short summary
We modelled hydrological changes under climate change in the Mekong River, focusing on extreme events. The scenario ensemble shows an intensification of the hydrological cycle under climate change. Annual river flow increases between 5 and 16 % depending on locations. Extreme high flows increase substantially in both magnitude and frequency, posing threats to flood safety in the basin. Extreme low-flow events are projected to reduce as a result of increased river flow during the dry season.
Lan Wang-Erlandsson, Wim G. M. Bastiaanssen, Hongkai Gao, Jonas Jägermeyr, Gabriel B. Senay, Albert I. J. M. van Dijk, Juan P. Guerschman, Patrick W. Keys, Line J. Gordon, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 20, 1459–1481, https://doi.org/10.5194/hess-20-1459-2016, https://doi.org/10.5194/hess-20-1459-2016, 2016
Short summary
Short summary
We present an "Earth observation-based" method for estimating root zone storage capacity – a critical parameter in land surface modelling that represents the maximum amount of soil moisture available for vegetation. Variability within a land cover type is captured, and a global model evaporation simulation is overall improved, particularly in sub-humid to humid regions with seasonality. This new method can eliminate the need for unreliable soil and root depth data in land surface modelling.
W. Greuell, J. C. M. Andersson, C. Donnelly, L. Feyen, D. Gerten, F. Ludwig, G. Pisacane, P. Roudier, and S. Schaphoff
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-12-10289-2015, https://doi.org/10.5194/hessd-12-10289-2015, 2015
Revised manuscript has not been submitted
Short summary
Short summary
The main aims of this paper are the evaluation of five large-scale hydrological models across Europe and the assessment of the suitability of the models for making projections under climate change. While we found large inter-model differences in biases, the skill to simulate interannual variability in discharge did not differ much between the models. Assuming that the skill of a model to simulate interannual variability provides a measure for the model’s ability to make projections under climate
J. Jägermeyr, D. Gerten, J. Heinke, S. Schaphoff, M. Kummu, and W. Lucht
Hydrol. Earth Syst. Sci., 19, 3073–3091, https://doi.org/10.5194/hess-19-3073-2015, https://doi.org/10.5194/hess-19-3073-2015, 2015
Short summary
Short summary
We present a process-based simulation of global irrigation systems for the world’s major crop types. This study advances the global quantification of irrigation systems while providing a framework for assessing potential future transitions in these systems, a prerequisite for refined simulation of crop yields under climate change. We reveal for many river basins the potential for sizeable water savings and related increases in water productivity through irrigation improvements.
A. Hartmann, T. Gleeson, R. Rosolem, F. Pianosi, Y. Wada, and T. Wagener
Geosci. Model Dev., 8, 1729–1746, https://doi.org/10.5194/gmd-8-1729-2015, https://doi.org/10.5194/gmd-8-1729-2015, 2015
Short summary
Short summary
We present a new approach to assess karstic groundwater recharge over Europe and the Mediterranean. Cluster analysis is used to subdivide all karst regions into four typical karst landscapes and to simulate karst recharge with a process-based karst model. We estimate its parameters by a combination of a priori information and observations of soil moisture and evapotranspiration. Independent observations of recharge that present large-scale models significantly under-estimate karstic recharge.
S. Siebert, M. Kummu, M. Porkka, P. Döll, N. Ramankutty, and B. R. Scanlon
Hydrol. Earth Syst. Sci., 19, 1521–1545, https://doi.org/10.5194/hess-19-1521-2015, https://doi.org/10.5194/hess-19-1521-2015, 2015
Short summary
Short summary
We developed the historical irrigation data set (HID) depicting the spatio-temporal development of the area equipped for irrigation (AEI) between 1900 and 2005 at 5arcmin resolution.
The HID reflects very well the spatial patterns of irrigated land as shown on two historical maps for 1910 and 1960.
Global AEI increased from 63 million ha (Mha) in 1900 to 111 Mha in 1950 and 306 Mha in 2005. Mean aridity on irrigated land increased and mean natural river discharge decreased from 1900 to 1950.
M. E. Arias, T. Piman, H. Lauri, T. A. Cochrane, and M. Kummu
Hydrol. Earth Syst. Sci., 18, 5303–5315, https://doi.org/10.5194/hess-18-5303-2014, https://doi.org/10.5194/hess-18-5303-2014, 2014
Short summary
Short summary
Hydrological modeling and assessment tools were used to provide evidence of the expected hydrological alterations that hydropower development in the lower Mekong tributaries could bring to the Tonle Sap. The most significant alterations are in terms of water levels during the dry season and rates of water level rise/drop which are crucial for tree seed germination and fish migrations, and therefore major ecological disruptions are likely to follow.
L. Wang-Erlandsson, R. J. van der Ent, L. J. Gordon, and H. H. G. Savenije
Earth Syst. Dynam., 5, 441–469, https://doi.org/10.5194/esd-5-441-2014, https://doi.org/10.5194/esd-5-441-2014, 2014
Short summary
Short summary
We investigate the temporal characteristics of partitioned evaporation on land, and we present STEAM (Simple Terrestrial Evaporation to Atmosphere Model) -- a hydrological land-surface model developed to provide inputs to moisture tracking. The terrestrial residence timescale of transpiration (days to months) has larger inter-seasonal variation and is substantially longer than that of interception (hours). This can cause differences in moisture recycling, which is investigated more in Part 2.
R. J. van der Ent, L. Wang-Erlandsson, P. W. Keys, and H. H. G. Savenije
Earth Syst. Dynam., 5, 471–489, https://doi.org/10.5194/esd-5-471-2014, https://doi.org/10.5194/esd-5-471-2014, 2014
V. Huber, H. J. Schellnhuber, N. W. Arnell, K. Frieler, A. D. Friend, D. Gerten, I. Haddeland, P. Kabat, H. Lotze-Campen, W. Lucht, M. Parry, F. Piontek, C. Rosenzweig, J. Schewe, and L. Warszawski
Earth Syst. Dynam., 5, 399–408, https://doi.org/10.5194/esd-5-399-2014, https://doi.org/10.5194/esd-5-399-2014, 2014
M. Kummu, D. Gerten, J. Heinke, M. Konzmann, and O. Varis
Hydrol. Earth Syst. Sci., 18, 447–461, https://doi.org/10.5194/hess-18-447-2014, https://doi.org/10.5194/hess-18-447-2014, 2014
H. Hoff, P. Döll, M. Fader, D. Gerten, S. Hauser, and S. Siebert
Hydrol. Earth Syst. Sci., 18, 213–226, https://doi.org/10.5194/hess-18-213-2014, https://doi.org/10.5194/hess-18-213-2014, 2014
P. J. Ward, S. Eisner, M. Flörke, M. D. Dettinger, and M. Kummu
Hydrol. Earth Syst. Sci., 18, 47–66, https://doi.org/10.5194/hess-18-47-2014, https://doi.org/10.5194/hess-18-47-2014, 2014
J. Heinke, S. Ostberg, S. Schaphoff, K. Frieler, C. Müller, D. Gerten, M. Meinshausen, and W. Lucht
Geosci. Model Dev., 6, 1689–1703, https://doi.org/10.5194/gmd-6-1689-2013, https://doi.org/10.5194/gmd-6-1689-2013, 2013
D. Gerten
Hydrol. Earth Syst. Sci., 17, 3841–3852, https://doi.org/10.5194/hess-17-3841-2013, https://doi.org/10.5194/hess-17-3841-2013, 2013
S. Ostberg, W. Lucht, S. Schaphoff, and D. Gerten
Earth Syst. Dynam., 4, 347–357, https://doi.org/10.5194/esd-4-347-2013, https://doi.org/10.5194/esd-4-347-2013, 2013
C. Zang, J. Liu, L. Jiang, and D. Gerten
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hessd-10-9477-2013, https://doi.org/10.5194/hessd-10-9477-2013, 2013
Revised manuscript not accepted
T. A. Räsänen, C. Lehr, I. Mellin, P. J. Ward, and M. Kummu
Hydrol. Earth Syst. Sci., 17, 2069–2081, https://doi.org/10.5194/hess-17-2069-2013, https://doi.org/10.5194/hess-17-2069-2013, 2013
M. Meybeck, M. Kummu, and H. H. Dürr
Hydrol. Earth Syst. Sci., 17, 1093–1111, https://doi.org/10.5194/hess-17-1093-2013, https://doi.org/10.5194/hess-17-1093-2013, 2013
P. B. Holden, N. R. Edwards, D. Gerten, and S. Schaphoff
Biogeosciences, 10, 339–355, https://doi.org/10.5194/bg-10-339-2013, https://doi.org/10.5194/bg-10-339-2013, 2013
H. Lauri, H. de Moel, P. J. Ward, T. A. Räsänen, M. Keskinen, and M. Kummu
Hydrol. Earth Syst. Sci., 16, 4603–4619, https://doi.org/10.5194/hess-16-4603-2012, https://doi.org/10.5194/hess-16-4603-2012, 2012
Related subject area
Subject: Global hydrology | Techniques and Approaches: Modelling approaches
Towards reducing the high cost of parameter sensitivity analysis in hydrologic modeling: a regional parameter sensitivity analysis approach
Point-scale multi-objective calibration of the Community Land Model (version 5.0) using in situ observations of water and energy fluxes and variables
Methodology for constructing a flood-hazard map for a future climate
Diagnosing modeling errors in global terrestrial water storage interannual variability
Hyper-resolution PCR-GLOBWB: opportunities and challenges from refining model spatial resolution to 1 km over the European continent
Detection of slow changes in terrestrial water storage with GRACE and GRACE-FO satellite gravity missions
Accuracy of five ground heat flux empirical simulation methods in the surface-energy-balance-based remote-sensing evapotranspiration models
Coupling a global glacier model to a global hydrological model prevents underestimation of glacier runoff
Root zone soil moisture in over 25 % of global land permanently beyond pre-industrial variability as early as 2050
Revisiting large-scale interception patterns constrained by a synthesis of global experimental data
Investigating coastal backwater effects and flooding in the coastal zone using a global river transport model on an unstructured mesh
Using a long short-term memory (LSTM) neural network to boost river streamflow forecasts over the western United States
Quantifying overlapping and differing information of global precipitation for GCM forecasts and El Niño–Southern Oscillation
Improving the quantification of climate change hazards by hydrological models: A simple approach for mimicking the impact of active vegetation on potential evapotranspiration
Globally widespread and increasing violations of environmental flow envelopes
Inundation prediction in tropical wetlands from JULES-CaMa-Flood global land surface simulations
Soil moisture estimation in South Asia via assimilation of SMAP retrievals
Toward hyper-resolution global hydrological models including human activities: application to Kyushu island, Japan
Towards hybrid modeling of the global hydrological cycle
The importance of vegetation in understanding terrestrial water storage variations
Large-scale sensitivities of groundwater and surface water to groundwater withdrawal
A hydrography upscaling method for scale-invariant parametrization of distributed hydrological models
A novel method to identify sub-seasonal clustering episodes of extreme precipitation events and their contributions to large accumulation periods
Bright and blind spots of water research in Latin America and the Caribbean
Land surface modeling over the Dry Chaco: the impact of model structures, and soil, vegetation and land cover parameters
Nonstationary weather and water extremes: a review of methods for their detection, attribution, and management
Robust historical evapotranspiration trends across climate regimes
A note on leveraging synergy in multiple meteorological data sets with deep learning for rainfall–runoff modeling
Global scenarios of irrigation water abstractions for bioenergy production: a systematic review
Coordination and control – limits in standard representations of multi-reservoir operations in hydrological modeling
Uncertainty of simulated groundwater recharge at different global warming levels: a global-scale multi-model ensemble study
Ubiquitous increases in flood magnitude in the Columbia River basin under climate change
Evaluation of 18 satellite- and model-based soil moisture products using in situ measurements from 826 sensors
The role of household adaptation measures in reducing vulnerability to flooding: a coupled agent-based and flood modelling approach
Assessing global water mass transfers from continents to oceans over the period 1948–2016
Weak sensitivity of the terrestrial water budget to global soil texture maps in the ORCHIDEE land surface model
The influence of assimilating leaf area index in a land surface model on global water fluxes and storages
Comparison of generalized non-data-driven lake and reservoir routing models for global-scale hydrologic forecasting of reservoir outflow at diurnal time steps
The pantropical response of soil moisture to El Niño
HESS Opinions: Beyond the long-term water balance: evolving Budyko's supply–demand framework for the Anthropocene towards a global synthesis of land-surface fluxes under natural and human-altered watersheds
Global assessment of how averaging over spatial heterogeneity in precipitation and potential evapotranspiration affects modeled evapotranspiration rates
Evaluation of global terrestrial evapotranspiration using state-of-the-art approaches in remote sensing, machine learning and land surface modeling
Quantification of drainable water storage volumes on landmasses and in river networks based on GRACE and river runoff using a cascaded storage approach – first application on the Amazon
Global catchment modelling using World-Wide HYPE (WWH), open data, and stepwise parameter estimation
Projected increases in magnitude and socioeconomic exposure of global droughts in 1.5 and 2 °C warmer climates
Spatiotemporal assimilation–interpolation of discharge records through inverse streamflow routing
Towards learning universal, regional, and local hydrological behaviors via machine learning applied to large-sample datasets
Climate change, reforestation/afforestation, and urbanization impacts on evapotranspiration and streamflow in Europe
Multi-decadal hydrologic change and variability in the Amazon River basin: understanding terrestrial water storage variations and drought characteristics
Multimodel assessments of human and climate impacts on mean annual streamflow in China
Samah Larabi, Juliane Mai, Markus Schnorbus, Bryan A. Tolson, and Francis Zwiers
Hydrol. Earth Syst. Sci., 27, 3241–3263, https://doi.org/10.5194/hess-27-3241-2023, https://doi.org/10.5194/hess-27-3241-2023, 2023
Short summary
Short summary
The computational cost of sensitivity analysis (SA) becomes prohibitive for large hydrologic modeling domains. Here, using a large-scale Variable Infiltration Capacity (VIC) deployment, we show that watershed classification helps identify the spatial pattern of parameter sensitivity within the domain at a reduced cost. Findings reveal the opportunity to leverage climate and land cover attributes to reduce the cost of SA and facilitate more rapid deployment of large-scale land surface models.
Tanja Denager, Torben O. Sonnenborg, Majken C. Looms, Heye Bogena, and Karsten H. Jensen
Hydrol. Earth Syst. Sci., 27, 2827–2845, https://doi.org/10.5194/hess-27-2827-2023, https://doi.org/10.5194/hess-27-2827-2023, 2023
Short summary
Short summary
This study contributes to improvements in the model characterization of water and energy fluxes. The results show that multi-objective autocalibration in combination with mathematical regularization is a powerful tool to improve land surface models. Using the direct measurement of turbulent fluxes as the target variable, parameter optimization matches simulations and observations of latent heat, whereas sensible heat is clearly biased.
Yuki Kimura, Yukiko Hirabayashi, Yuki Kita, Xudong Zhou, and Dai Yamazaki
Hydrol. Earth Syst. Sci., 27, 1627–1644, https://doi.org/10.5194/hess-27-1627-2023, https://doi.org/10.5194/hess-27-1627-2023, 2023
Short summary
Short summary
Since both the frequency and magnitude of flood will increase by climate change, information on spatial distributions of potential inundation depths (i.e., flood-hazard map) is required. We developed a method for constructing realistic future flood-hazard maps which addresses issues due to biases in climate models. A larger population is estimated to face risk in the future flood-hazard map, suggesting that only focusing on flood-frequency change could cause underestimation of future risk.
Hoontaek Lee, Martin Jung, Nuno Carvalhais, Tina Trautmann, Basil Kraft, Markus Reichstein, Matthias Forkel, and Sujan Koirala
Hydrol. Earth Syst. Sci., 27, 1531–1563, https://doi.org/10.5194/hess-27-1531-2023, https://doi.org/10.5194/hess-27-1531-2023, 2023
Short summary
Short summary
We spatially attribute the variance in global terrestrial water storage (TWS) interannual variability (IAV) and its modeling error with two data-driven hydrological models. We find error hotspot regions that show a disproportionately large significance in the global mismatch and the association of the error regions with a smaller-scale lateral convergence of water. Our findings imply that TWS IAV modeling can be efficiently improved by focusing on model representations for the error hotspots.
Jannis M. Hoch, Edwin H. Sutanudjaja, Niko Wanders, Rens L. P. H. van Beek, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci., 27, 1383–1401, https://doi.org/10.5194/hess-27-1383-2023, https://doi.org/10.5194/hess-27-1383-2023, 2023
Short summary
Short summary
To facilitate locally relevant simulations over large areas, global hydrological models (GHMs) have moved towards ever finer spatial resolutions. After a decade-long quest for hyper-resolution (i.e. equal to or smaller than 1 km), the presented work is a first application of a GHM at 1 km resolution over Europe. This not only shows that hyper-resolution can be achieved but also allows for a thorough evaluation of model results at unprecedented detail and the formulation of future research.
Julia Pfeffer, Anny Cazenave, Alejandro Blazquez, Bertrand Decharme, Simon Munier, and Anne Barnoud
EGUsphere, https://doi.org/10.5194/egusphere-2022-1032, https://doi.org/10.5194/egusphere-2022-1032, 2022
Short summary
Short summary
Global hydrological models (GHMs) are essential tools to predict changes in water resources in a changing climate. Compared to satellite gravity observations, GHMs underestimate slow changes in terrestrial water storage occurring over several years to a few decades. GHMs might be improved by systematic calibration and validation with satellite gravity data, conveying more information on long time scales than traditional calibration/validation datasets focusing on surface hydrology.
Zhaofei Liu
Hydrol. Earth Syst. Sci., 26, 6207–6226, https://doi.org/10.5194/hess-26-6207-2022, https://doi.org/10.5194/hess-26-6207-2022, 2022
Short summary
Short summary
Ground heat flux (G) accounts for a significant fraction of the surface energy balance (SEB), but there is insufficient research on these models compared with other flux. The accuracy of G simulation methods in the SEB-based remote sensing evapotranspiration models is evaluated. Results show that the accuracy of each method varied significantly at different sites and at half-hour intervals. Further improvement of G simulations is recommended for the remote sensing evapotranspiration modelers.
Pau Wiersma, Jerom Aerts, Harry Zekollari, Markus Hrachowitz, Niels Drost, Matthias Huss, Edwin H. Sutanudjaja, and Rolf Hut
Hydrol. Earth Syst. Sci., 26, 5971–5986, https://doi.org/10.5194/hess-26-5971-2022, https://doi.org/10.5194/hess-26-5971-2022, 2022
Short summary
Short summary
We test whether coupling a global glacier model (GloGEM) with a global hydrological model (PCR-GLOBWB 2) leads to a more realistic glacier representation and to improved basin runoff simulations across 25 large-scale basins. The coupling does lead to improved glacier representation, mainly by accounting for glacier flow and net glacier mass loss, and to improved basin runoff simulations, mostly in strongly glacier-influenced basins, which is where the coupling has the most impact.
En Ning Lai, Lan Wang-Erlandsson, Vili Virkki, Miina Porkka, and Ruud J. van der Ent
EGUsphere, https://doi.org/10.5194/egusphere-2022-971, https://doi.org/10.5194/egusphere-2022-971, 2022
Short summary
Short summary
Root-zone soil moisture, important for ecosystems and agriculture, is now substantially modified by human activities and global warming. We studied how it changes in possible future climates (2021–2100). Based on the output of climate models, we can say that the Mediterranean, South Africa, parts of North and South America will become permanently drier, while Northern Africa and Southern Asia become wetter. This occurs even under mitigation scenarios, making climate adaptation imperative.
Feng Zhong, Shanhu Jiang, Albert I. J. M. van Dijk, Liliang Ren, Jaap Schellekens, and Diego G. Miralles
Hydrol. Earth Syst. Sci., 26, 5647–5667, https://doi.org/10.5194/hess-26-5647-2022, https://doi.org/10.5194/hess-26-5647-2022, 2022
Short summary
Short summary
A synthesis of rainfall interception data from past field campaigns is performed, including 166 forests and 17 agricultural plots distributed worldwide. These site data are used to constrain and validate an interception model that considers sub-grid heterogeneity and vegetation dynamics. A global, 40-year (1980–2019) interception dataset is generated at a daily temporal and 0.1° spatial resolution. This dataset will serve as a benchmark for future investigations of the global hydrological cycle.
Dongyu Feng, Zeli Tan, Darren Engwirda, Chang Liao, Donghui Xu, Gautam Bisht, Tian Zhou, Hong-Yi Li, and L. Ruby Leung
Hydrol. Earth Syst. Sci., 26, 5473–5491, https://doi.org/10.5194/hess-26-5473-2022, https://doi.org/10.5194/hess-26-5473-2022, 2022
Short summary
Short summary
Sea level rise, storm surge and river discharge can cause coastal backwater effects in downstream sections of rivers, creating critical flood risks. This study simulates the backwater effects using a large-scale river model on a coastal-refined computational mesh. By decomposing the backwater drivers, we revealed their relative importance and long-term variations. Our analysis highlights the increasing strength of backwater effects due to sea level rise and more frequent storm surge.
Kieran M. R. Hunt, Gwyneth R. Matthews, Florian Pappenberger, and Christel Prudhomme
Hydrol. Earth Syst. Sci., 26, 5449–5472, https://doi.org/10.5194/hess-26-5449-2022, https://doi.org/10.5194/hess-26-5449-2022, 2022
Short summary
Short summary
In this study, we use three models to forecast river streamflow operationally for 13 months (September 2020 to October 2021) at 10 gauges in the western US. The first model is a state-of-the-art physics-based streamflow model (GloFAS). The second applies a bias-correction technique to GloFAS. The third is a type of neural network (an LSTM). We find that all three are capable of producing skilful forecasts but that the LSTM performs the best, with skilful 5 d forecasts at nine stations.
Tongtiegang Zhao, Haoling Chen, Yu Tian, Denghua Yan, Weixin Xu, Huayang Cai, Jiabiao Wang, and Xiaohong Chen
Hydrol. Earth Syst. Sci., 26, 4233–4249, https://doi.org/10.5194/hess-26-4233-2022, https://doi.org/10.5194/hess-26-4233-2022, 2022
Short summary
Short summary
This paper develops a novel set operations of coefficients of determination (SOCD) method to explicitly quantify the overlapping and differing information for GCM forecasts and ENSO teleconnection. Specifically, the intersection operation of the coefficient of determination derives the overlapping information for GCM forecasts and the Niño3.4 index, and then the difference operation determines the differing information in GCM forecasts (Niño3.4 index) from the Niño3.4 index (GCM forecasts).
Thedini Asali Peiris and Petra Döll
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-230, https://doi.org/10.5194/hess-2022-230, 2022
Revised manuscript accepted for HESS
Short summary
Short summary
GHMs are overestimating the reduction of renewable water resources in the future. Neglect of the vegetation response to the atmospheric CO2 concentration and climate change is one of the main reasons for this. We developed a simple approach for hydrological models, that allows them to mimic the impact of active vegetation on potential evapotranspiration (PET) under climate change. This will allow hydrological models to better estimate future renewable water resources under climate change.
Vili Virkki, Elina Alanärä, Miina Porkka, Lauri Ahopelto, Tom Gleeson, Chinchu Mohan, Lan Wang-Erlandsson, Martina Flörke, Dieter Gerten, Simon N. Gosling, Naota Hanasaki, Hannes Müller Schmied, Niko Wanders, and Matti Kummu
Hydrol. Earth Syst. Sci., 26, 3315–3336, https://doi.org/10.5194/hess-26-3315-2022, https://doi.org/10.5194/hess-26-3315-2022, 2022
Short summary
Short summary
Direct and indirect human actions have altered streamflow across the world since pre-industrial times. Here, we apply a method of environmental flow envelopes (EFEs) that develops the existing global environmental flow assessments by methodological advances and better consideration of uncertainty. By assessing the violations of the EFE, we comprehensively quantify the frequency, severity, and trends of flow alteration during the past decades, illustrating anthropogenic effects on streamflow.
Toby R. Marthews, Simon J. Dadson, Douglas B. Clark, Eleanor M. Blyth, Garry D. Hayman, Dai Yamazaki, Olivia R. E. Becher, Alberto Martínez-de la Torre, Catherine Prigent, and Carlos Jiménez
Hydrol. Earth Syst. Sci., 26, 3151–3175, https://doi.org/10.5194/hess-26-3151-2022, https://doi.org/10.5194/hess-26-3151-2022, 2022
Short summary
Short summary
Reliable data on global inundated areas remain uncertain. By matching a leading global data product on inundation extents (GIEMS) against predictions from a global hydrodynamic model (CaMa-Flood), we found small but consistent and non-random biases in well-known tropical wetlands (Sudd, Pantanal, Amazon and Congo). These result from known limitations in the data and the models used, which shows us how to improve our ability to make critical predictions of inundation events in the future.
Jawairia A. Ahmad, Barton A. Forman, and Sujay V. Kumar
Hydrol. Earth Syst. Sci., 26, 2221–2243, https://doi.org/10.5194/hess-26-2221-2022, https://doi.org/10.5194/hess-26-2221-2022, 2022
Short summary
Short summary
Assimilation of remotely sensed data into a land surface model to improve the spatiotemporal estimation of soil moisture across South Asia exhibits potential. Satellite retrieval assimilation corrects biases that are generated due to an unmodeled hydrologic phenomenon, i.e., irrigation. The improvements in fine-scale, modeled soil moisture estimates by assimilating coarse-scale retrievals indicates the utility of the described methodology for data-scarce regions.
Naota Hanasaki, Hikari Matsuda, Masashi Fujiwara, Yukiko Hirabayashi, Shinta Seto, Shinjiro Kanae, and Taikan Oki
Hydrol. Earth Syst. Sci., 26, 1953–1975, https://doi.org/10.5194/hess-26-1953-2022, https://doi.org/10.5194/hess-26-1953-2022, 2022
Short summary
Short summary
Global hydrological models (GHMs) are usually applied with a spatial resolution of about 50 km, but this time we applied the H08 model, one of the most advanced GHMs, with a high resolution of 2 km to Kyushu island, Japan. Since the model was not accurate as it was, we incorporated local information and improved the model, which revealed detailed water stress in subregions that were not visible with the previous resolution.
Basil Kraft, Martin Jung, Marco Körner, Sujan Koirala, and Markus Reichstein
Hydrol. Earth Syst. Sci., 26, 1579–1614, https://doi.org/10.5194/hess-26-1579-2022, https://doi.org/10.5194/hess-26-1579-2022, 2022
Short summary
Short summary
We present a physics-aware machine learning model of the global hydrological cycle. As the model uses neural networks under the hood, the simulations of the water cycle are learned from data, and yet they are informed and constrained by physical knowledge. The simulated patterns lie within the range of existing hydrological models and are plausible. The hybrid modeling approach has the potential to tackle key environmental questions from a novel perspective.
Tina Trautmann, Sujan Koirala, Nuno Carvalhais, Andreas Güntner, and Martin Jung
Hydrol. Earth Syst. Sci., 26, 1089–1109, https://doi.org/10.5194/hess-26-1089-2022, https://doi.org/10.5194/hess-26-1089-2022, 2022
Short summary
Short summary
We assess the effect of how vegetation is defined in a global hydrological model on the composition of total water storage (TWS). We compare two experiments, one with globally uniform and one with vegetation parameters that vary in space and time. While both experiments are constrained against observational data, we found a drastic change in the partitioning of TWS, highlighting the important role of the interaction between groundwater–soil moisture–vegetation in understanding TWS variations.
Marc F. P. Bierkens, Edwin H. Sutanudjaja, and Niko Wanders
Hydrol. Earth Syst. Sci., 25, 5859–5878, https://doi.org/10.5194/hess-25-5859-2021, https://doi.org/10.5194/hess-25-5859-2021, 2021
Short summary
Short summary
We introduce a simple analytical framework that allows us to estimate to what extent large-scale groundwater withdrawal affects groundwater levels and streamflow. It also calculates which part of the groundwater withdrawal comes out of groundwater storage and which part from a reduction in streamflow. Global depletion rates obtained with the framework are compared with estimates from satellites, from global- and continental-scale groundwater models, and from in situ datasets.
Dirk Eilander, Willem van Verseveld, Dai Yamazaki, Albrecht Weerts, Hessel C. Winsemius, and Philip J. Ward
Hydrol. Earth Syst. Sci., 25, 5287–5313, https://doi.org/10.5194/hess-25-5287-2021, https://doi.org/10.5194/hess-25-5287-2021, 2021
Short summary
Short summary
Digital elevation models and derived flow directions are crucial to distributed hydrological modeling. As the spatial resolution of models is typically coarser than these data, we need methods to upscale flow direction data while preserving the river structure. We propose the Iterative Hydrography Upscaling (IHU) method and show it outperforms other often-applied methods. We publish the multi-resolution MERIT Hydro IHU hydrography dataset and the algorithm as part of the pyflwdir Python package.
Jérôme Kopp, Pauline Rivoire, S. Mubashshir Ali, Yannick Barton, and Olivia Martius
Hydrol. Earth Syst. Sci., 25, 5153–5174, https://doi.org/10.5194/hess-25-5153-2021, https://doi.org/10.5194/hess-25-5153-2021, 2021
Short summary
Short summary
Episodes of extreme rainfall events happening in close temporal succession can lead to floods with dramatic impacts. We developed a novel method to individually identify those episodes and deduced the regions where they occur frequently and where their impact is substantial. Those regions are the east and northeast of the Asian continent, central Canada and the south of California, Afghanistan, Pakistan, the southwest of the Iberian Peninsula, and north of Argentina and south of Bolivia.
Alyssa J. DeVincentis, Hervé Guillon, Romina Díaz Gómez, Noelle K. Patterson, Francine van den Brandeler, Arthur Koehl, J. Pablo Ortiz-Partida, Laura E. Garza-Díaz, Jennifer Gamez-Rodríguez, Erfan Goharian, and Samuel Sandoval Solis
Hydrol. Earth Syst. Sci., 25, 4631–4650, https://doi.org/10.5194/hess-25-4631-2021, https://doi.org/10.5194/hess-25-4631-2021, 2021
Short summary
Short summary
Latin America and the Caribbean face many water-related stresses which are expected to worsen with climate change. To assess the vulnerability, we reviewed over 20 000 multilingual research articles using machine learning and an understanding of the regional landscape. Results reveal that the region’s inherent vulnerability is compounded by research blind spots in niche topics (reservoirs and risk assessment) and subregions (Caribbean nations), as well as by its reliance on one country (Brazil).
Michiel Maertens, Gabriëlle J. M. De Lannoy, Sebastian Apers, Sujay V. Kumar, and Sarith P. P. Mahanama
Hydrol. Earth Syst. Sci., 25, 4099–4125, https://doi.org/10.5194/hess-25-4099-2021, https://doi.org/10.5194/hess-25-4099-2021, 2021
Short summary
Short summary
In this study, we simulated the water balance over the South American Dry Chaco and assessed the impact of land cover changes thereon using three different land surface models. Our simulations indicated that different models result in a different partitioning of the total water budget, but all showed an increase in soil moisture and percolation over the deforested areas. We also found that, relative to independent data, no specific land surface model is significantly better than another.
Louise J. Slater, Bailey Anderson, Marcus Buechel, Simon Dadson, Shasha Han, Shaun Harrigan, Timo Kelder, Katie Kowal, Thomas Lees, Tom Matthews, Conor Murphy, and Robert L. Wilby
Hydrol. Earth Syst. Sci., 25, 3897–3935, https://doi.org/10.5194/hess-25-3897-2021, https://doi.org/10.5194/hess-25-3897-2021, 2021
Short summary
Short summary
Weather and water extremes have devastating effects each year. One of the principal challenges for society is understanding how extremes are likely to evolve under the influence of changes in climate, land cover, and other human impacts. This paper provides a review of the methods and challenges associated with the detection, attribution, management, and projection of nonstationary weather and water extremes.
Sanaa Hobeichi, Gab Abramowitz, and Jason P. Evans
Hydrol. Earth Syst. Sci., 25, 3855–3874, https://doi.org/10.5194/hess-25-3855-2021, https://doi.org/10.5194/hess-25-3855-2021, 2021
Short summary
Short summary
Evapotranspiration (ET) links the water, energy and carbon cycle on land. Reliable ET estimates are key to understand droughts and flooding. We develop a new ET dataset, DOLCE V3, by merging multiple global ET datasets, and we show that it matches ET observations better and hence is more reliable than its parent datasets. Next, we use DOLCE V3 to examine recent changes in ET and find that ET has increased over most of the land, decreased in some regions, and has not changed in some other regions
Frederik Kratzert, Daniel Klotz, Sepp Hochreiter, and Grey S. Nearing
Hydrol. Earth Syst. Sci., 25, 2685–2703, https://doi.org/10.5194/hess-25-2685-2021, https://doi.org/10.5194/hess-25-2685-2021, 2021
Short summary
Short summary
We investigate how deep learning models use different meteorological data sets in the task of (regional) rainfall–runoff modeling. We show that performance can be significantly improved when using different data products as input and further show how the model learns to combine those meteorological input differently across time and space. The results are carefully benchmarked against classical approaches, showing the supremacy of the presented approach.
Fabian Stenzel, Dieter Gerten, and Naota Hanasaki
Hydrol. Earth Syst. Sci., 25, 1711–1726, https://doi.org/10.5194/hess-25-1711-2021, https://doi.org/10.5194/hess-25-1711-2021, 2021
Short summary
Short summary
Ideas to mitigate climate change include the large-scale cultivation of fast-growing plants to capture atmospheric CO2 in biomass. To maximize the productivity of these plants, they will likely be irrigated. However, there is strong disagreement in the literature on how much irrigation water is needed globally, potentially inducing water stress. We provide a comprehensive overview of global irrigation demand studies for biomass production and discuss the diverse underlying study assumptions.
Charles Rougé, Patrick M. Reed, Danielle S. Grogan, Shan Zuidema, Alexander Prusevich, Stanley Glidden, Jonathan R. Lamontagne, and Richard B. Lammers
Hydrol. Earth Syst. Sci., 25, 1365–1388, https://doi.org/10.5194/hess-25-1365-2021, https://doi.org/10.5194/hess-25-1365-2021, 2021
Short summary
Short summary
Amid growing interest in using large-scale hydrological models for flood and drought monitoring and forecasting, it is important to evaluate common assumptions these models make. We investigated the representation of reservoirs as separate (non-coordinated) infrastructure. We found that not appropriately representing coordination and control processes can lead a hydrological model to simulate flood and drought events that would not occur given the coordinated emergency response in the basin.
Robert Reinecke, Hannes Müller Schmied, Tim Trautmann, Lauren Seaby Andersen, Peter Burek, Martina Flörke, Simon N. Gosling, Manolis Grillakis, Naota Hanasaki, Aristeidis Koutroulis, Yadu Pokhrel, Wim Thiery, Yoshihide Wada, Satoh Yusuke, and Petra Döll
Hydrol. Earth Syst. Sci., 25, 787–810, https://doi.org/10.5194/hess-25-787-2021, https://doi.org/10.5194/hess-25-787-2021, 2021
Short summary
Short summary
Billions of people rely on groundwater as an accessible source of drinking water and for irrigation, especially in times of drought. Groundwater recharge is the primary process of regenerating groundwater resources. We find that groundwater recharge will increase in northern Europe by about 19 % and decrease by 10 % in the Amazon with 3 °C global warming. In the Mediterranean, a 2 °C warming has already lead to a reduction in recharge by 38 %. However, these model predictions are uncertain.
Laura E. Queen, Philip W. Mote, David E. Rupp, Oriana Chegwidden, and Bart Nijssen
Hydrol. Earth Syst. Sci., 25, 257–272, https://doi.org/10.5194/hess-25-257-2021, https://doi.org/10.5194/hess-25-257-2021, 2021
Short summary
Short summary
Using a large ensemble of simulated flows throughout the northwestern USA, we compare daily flood statistics in the past (1950–1999) and future (2050–1999) periods and find that nearly all locations will experience an increase in flood magnitudes. The flood season expands significantly in many currently snow-dominant rivers, moving from only spring to both winter and spring. These results, properly extended, may help inform flood risk management and negotiations of the Columbia River Treaty.
Hylke E. Beck, Ming Pan, Diego G. Miralles, Rolf H. Reichle, Wouter A. Dorigo, Sebastian Hahn, Justin Sheffield, Lanka Karthikeyan, Gianpaolo Balsamo, Robert M. Parinussa, Albert I. J. M. van Dijk, Jinyang Du, John S. Kimball, Noemi Vergopolan, and Eric F. Wood
Hydrol. Earth Syst. Sci., 25, 17–40, https://doi.org/10.5194/hess-25-17-2021, https://doi.org/10.5194/hess-25-17-2021, 2021
Short summary
Short summary
We evaluated the largest and most diverse set of surface soil moisture products ever evaluated in a single study. We found pronounced differences in performance among individual products and product groups. Our results provide guidance to choose the most suitable product for a particular application.
Yared Abayneh Abebe, Amineh Ghorbani, Igor Nikolic, Natasa Manojlovic, Angelika Gruhn, and Zoran Vojinovic
Hydrol. Earth Syst. Sci., 24, 5329–5354, https://doi.org/10.5194/hess-24-5329-2020, https://doi.org/10.5194/hess-24-5329-2020, 2020
Short summary
Short summary
The paper presents a coupled agent-based and flood model for Hamburg, Germany. It explores residents’ adaptation behaviour in relation to flood event scenarios, economic incentives and shared and individual strategies. We found that unique trajectories of adaptation behaviour emerge from different flood event series. Providing subsidies improves adaptation behaviour in the long run. The coupled modelling technique allows the role of individual measures in flood risk management to be examined.
Denise Cáceres, Ben Marzeion, Jan Hendrik Malles, Benjamin Daniel Gutknecht, Hannes Müller Schmied, and Petra Döll
Hydrol. Earth Syst. Sci., 24, 4831–4851, https://doi.org/10.5194/hess-24-4831-2020, https://doi.org/10.5194/hess-24-4831-2020, 2020
Short summary
Short summary
We analysed how and to which extent changes in water storage on continents had an effect on global ocean mass over the period 1948–2016. Continents lost water to oceans at an accelerated rate, inducing sea level rise. Shrinking glaciers explain 81 % of the long-term continental water mass loss, while declining groundwater levels, mainly due to sustained groundwater pumping for irrigation, is the second major driver. This long-term decline was partly offset by the impoundment of water in dams.
Salma Tafasca, Agnès Ducharne, and Christian Valentin
Hydrol. Earth Syst. Sci., 24, 3753–3774, https://doi.org/10.5194/hess-24-3753-2020, https://doi.org/10.5194/hess-24-3753-2020, 2020
Short summary
Short summary
In land surface models (LSMs), soil properties are inferred from soil texture. In this study, we use different input global soil texture maps from the literature to investigate the impact of soil texture on the simulated water budget in an LSM. The medium loamy textures give the highest evapotranspiration and lowest total runoff rates. However, the different soil texture maps result in similar water budgets because of their inherent similarities, especially when upscaled at the 0.5° resolution.
Xinxuan Zhang, Viviana Maggioni, Azbina Rahman, Paul Houser, Yuan Xue, Timothy Sauer, Sujay Kumar, and David Mocko
Hydrol. Earth Syst. Sci., 24, 3775–3788, https://doi.org/10.5194/hess-24-3775-2020, https://doi.org/10.5194/hess-24-3775-2020, 2020
Short summary
Short summary
This study assesses the extent to which a land surface model can be optimized via the assimilation of leaf area index (LAI) observations at the global scale. The model performance is evaluated by the model-estimated LAI and five water flux/storage variables. Results show the LAI assimilation reduces errors in the model-estimated LAI. The LAI assimilation also improves the five water variables under wet conditions, but some of the model-estimated variables tend to be worse under dry conditions.
Joseph L. Gutenson, Ahmad A. Tavakoly, Mark D. Wahl, and Michael L. Follum
Hydrol. Earth Syst. Sci., 24, 2711–2729, https://doi.org/10.5194/hess-24-2711-2020, https://doi.org/10.5194/hess-24-2711-2020, 2020
Short summary
Short summary
Global-scale hydrologic forecasts should account for attenuation through lakes and reservoirs. There is no consensus on the best approach to estimating this attenuation in large-spatial-scale hydrologic forecasts. This article investigates two existing parsimonious approaches to estimating reservoir outflows. We test each method at 60 reservoirs in the United States. We find that a method first developed in 2003 can provide a reasonable approximation of diurnal reservoir outflows.
Kurt C. Solander, Brent D. Newman, Alessandro Carioca de Araujo, Holly R. Barnard, Z. Carter Berry, Damien Bonal, Mario Bretfeld, Benoit Burban, Luiz Antonio Candido, Rolando Célleri, Jeffery Q. Chambers, Bradley O. Christoffersen, Matteo Detto, Wouter A. Dorigo, Brent E. Ewers, Savio José Filgueiras Ferreira, Alexander Knohl, L. Ruby Leung, Nate G. McDowell, Gretchen R. Miller, Maria Terezinha Ferreira Monteiro, Georgianne W. Moore, Robinson Negron-Juarez, Scott R. Saleska, Christian Stiegler, Javier Tomasella, and Chonggang Xu
Hydrol. Earth Syst. Sci., 24, 2303–2322, https://doi.org/10.5194/hess-24-2303-2020, https://doi.org/10.5194/hess-24-2303-2020, 2020
Short summary
Short summary
We evaluate the soil moisture response in the humid tropics to El Niño during the three most recent super El Niño events. Our estimates are compared to in situ soil moisture estimates that span five continents. We find the strongest and most consistent soil moisture decreases in the Amazon and maritime southeastern Asia, while the most consistent increases occur over eastern Africa. Our results can be used to improve estimates of soil moisture in tropical ecohydrology models at multiple scales.
A. Sankarasubramanian, Dingbao Wang, Stacey Archfield, Meredith Reitz, Richard M. Vogel, Amirhossein Mazrooei, and Sudarshana Mukhopadhyay
Hydrol. Earth Syst. Sci., 24, 1975–1984, https://doi.org/10.5194/hess-24-1975-2020, https://doi.org/10.5194/hess-24-1975-2020, 2020
Short summary
Short summary
The Budyko framework which relies on the supply and demand concept could be effectively adapted and extended to quantify the role of drivers – both changing climate and local human disturbances – in altering the land-surface response. This framework is extended with a few illustrative examples for quantifying the variability in land-surface fluxes for natural and human-altered watersheds. Potential for using observed and remotely sensed datasets in capturing this variability is also discussed.
Elham Rouholahnejad Freund, Ying Fan, and James W. Kirchner
Hydrol. Earth Syst. Sci., 24, 1927–1938, https://doi.org/10.5194/hess-24-1927-2020, https://doi.org/10.5194/hess-24-1927-2020, 2020
Short summary
Short summary
Evapotranspiration (ET) rates and properties that regulate them are spatially heterogeneous. Averaging over spatial heterogeneity in precipitation (P) and potential evapotranspiration (PET) as the main drivers of ET may lead to biased estimates of energy and water fluxes from the land to the atmosphere. We show that this bias is largest in mountainous terrains, in regions with temperate climates and dry summers, and in landscapes where spatial variations in P and PET are inversely correlated.
Shufen Pan, Naiqing Pan, Hanqin Tian, Pierre Friedlingstein, Stephen Sitch, Hao Shi, Vivek K. Arora, Vanessa Haverd, Atul K. Jain, Etsushi Kato, Sebastian Lienert, Danica Lombardozzi, Julia E. M. S. Nabel, Catherine Ottlé, Benjamin Poulter, Sönke Zaehle, and Steven W. Running
Hydrol. Earth Syst. Sci., 24, 1485–1509, https://doi.org/10.5194/hess-24-1485-2020, https://doi.org/10.5194/hess-24-1485-2020, 2020
Short summary
Short summary
Evapotranspiration (ET) links global water, carbon and energy cycles. We used 4 remote sensing models, 2 machine-learning algorithms and 14 land surface models to analyze the changes in global terrestrial ET. These three categories of approaches agreed well in terms of ET intensity. For 1982–2011, all models showed that Earth greening enhanced terrestrial ET. The small interannual variability of global terrestrial ET suggests it has a potential planetary boundary of around 600 mm yr-1.
Johannes Riegger
Hydrol. Earth Syst. Sci., 24, 1447–1465, https://doi.org/10.5194/hess-24-1447-2020, https://doi.org/10.5194/hess-24-1447-2020, 2020
Short summary
Short summary
The combined use of GRACE mass anomalies and observed river discharge for the first time allows us to quantify the water storage volumes drainable by gravity on global scales. Modelling of catchment and river network storages in a cascade with different dynamics reveals the time lag between total mass and runoff is caused by a non-zero river network storage. This allows catchment and river network storage volumes to be distinguished and is thus of great importance for water resources management.
Berit Arheimer, Rafael Pimentel, Kristina Isberg, Louise Crochemore, Jafet C. M. Andersson, Abdulghani Hasan, and Luis Pineda
Hydrol. Earth Syst. Sci., 24, 535–559, https://doi.org/10.5194/hess-24-535-2020, https://doi.org/10.5194/hess-24-535-2020, 2020
Short summary
Short summary
How far can we reach in predicting river flow globally, using integrated catchment modelling and open global data? For the first time, a catchment model was applied world-wide, covering the entire globe with a relatively high resolution. The results show that stepwise calibration provided better performance than traditional modelling of the globe. The study highlights that open data and models are crucial to advance hydrological sciences by sharing knowledge and enabling transparent evaluation.
Lei Gu, Jie Chen, Jiabo Yin, Sylvia C. Sullivan, Hui-Min Wang, Shenglian Guo, Liping Zhang, and Jong-Suk Kim
Hydrol. Earth Syst. Sci., 24, 451–472, https://doi.org/10.5194/hess-24-451-2020, https://doi.org/10.5194/hess-24-451-2020, 2020
Short summary
Short summary
Focusing on the multifaceted nature of droughts, this study quantifies the change in global drought risks for 1.5 and 2.0 °C warming trajectories by a multi-model ensemble under three representative concentration pathways (RCP2.6, 4.5 and 8.5). Socioeconomic exposures are investigated by incorporating the dynamic shared socioeconomic pathways (SSPs) into the drought impact assessment. The results show that even the ambitious 1.5 °C warming level can cause substantial increases on the global scale.
Colby K. Fisher, Ming Pan, and Eric F. Wood
Hydrol. Earth Syst. Sci., 24, 293–305, https://doi.org/10.5194/hess-24-293-2020, https://doi.org/10.5194/hess-24-293-2020, 2020
Short summary
Short summary
Poorly monitored river flows in many regions of the world have been hindering our ability to accurately estimate global water usage. In this paper we present a method to derive continuous records of streamflow from a set of in situ gauges. Applying this method to the Ohio River basin, we found that we could reliably generate estimates of streamflow throughout the basin using only a small set of streamflow gauges, which can be useful for global river basins where we do not have good observations.
Frederik Kratzert, Daniel Klotz, Guy Shalev, Günter Klambauer, Sepp Hochreiter, and Grey Nearing
Hydrol. Earth Syst. Sci., 23, 5089–5110, https://doi.org/10.5194/hess-23-5089-2019, https://doi.org/10.5194/hess-23-5089-2019, 2019
Short summary
Short summary
A new approach for regional rainfall–runoff modeling using long short-term memory (LSTM)-based models is presented and benchmarked against a range of well-known hydrological models. The approach significantly outperforms regionally calibrated hydrological models but also basin-wise calibrated models. Furthermore, we propose an adaption of the LSTM that allows us to extract the learned catchment understanding of the model and show that it matches our hydrology expert knowledge.
Adriaan J. Teuling, Emile A. G. de Badts, Femke A. Jansen, Richard Fuchs, Joost Buitink, Anne J. Hoek van Dijke, and Shannon M. Sterling
Hydrol. Earth Syst. Sci., 23, 3631–3652, https://doi.org/10.5194/hess-23-3631-2019, https://doi.org/10.5194/hess-23-3631-2019, 2019
Short summary
Short summary
Over the past decades, changes in land use and climate over Europe have impacted the average flow of water flowing through rivers and reservoirs (the so-called
water yield). We quantify these changes using a simple but widely tested modelling approach constrained by observations of lysimeters across Europe. Results show that the contribution of land use to changes in water yield are of the same order as changes in climate, showing that impacts of land use changes cannot be neglected.
Suyog Chaudhari, Yadu Pokhrel, Emilio Moran, and Gonzalo Miguez-Macho
Hydrol. Earth Syst. Sci., 23, 2841–2862, https://doi.org/10.5194/hess-23-2841-2019, https://doi.org/10.5194/hess-23-2841-2019, 2019
Short summary
Short summary
Comprehensive characterization of extreme drought events in the Amazon is provided with respect to their cause, type, spatial extent, and impact on different water stores. Basin-averaged trends in water storage indicate that the Amazon is getting wetter; however its southern and southeastern portions are getting drier. Water deficit is found to be 3-fold higher than the total water supplied during some drought years. Water deficit due to low precipitation events is absorbed by the groundwater.
Xingcai Liu, Wenfeng Liu, Hong Yang, Qiuhong Tang, Martina Flörke, Yoshimitsu Masaki, Hannes Müller Schmied, Sebastian Ostberg, Yadu Pokhrel, Yusuke Satoh, and Yoshihide Wada
Hydrol. Earth Syst. Sci., 23, 1245–1261, https://doi.org/10.5194/hess-23-1245-2019, https://doi.org/10.5194/hess-23-1245-2019, 2019
Short summary
Short summary
Human activities associated with water resource management have significantly increased in China during the past decades. This assessment helps us understand how streamflow has been affected by climate and human activities in China. Our analyses indicate that the climate impact has dominated streamflow changes in most areas, and human activities (in terms of water withdrawals) have increasingly decreased streamflow in the northern basins of China which are vulnerable to future climate change.
Cited articles
Abell, R., Thieme, M. L., Revenga, C., Bryer, M., Kottelat, M., Bogutskaya,
N., Coad, B., Mandrak, N., Balderas, S. C., Bussing, W., and Stiassny, M. L.:
Freshwater ecoregions of the world: a new map of biogeographic units for freshwater biodiversity conservation, BioScience, 58, 403–414, https://doi.org/10.1641/B580507,
2008.
Albert, J. S., Destouni, G., Duke-Sylvester, S. M., Magurran, A. E., Oberdorff, T., Reis, R. E., Winemiller, K. O., and Ripple, W. J.: Scientists' warning to humanity on the freshwater biodiversity crisis, Ambio, 50, 85–94, https://doi.org/10.1007/s13280-020-01318-8, 2021.
AL-Budeiri, A. S.: The role of zooplankton in the pelagic food webs of tropical lakes, PhD Thesis, University of Leicester, Leicester, https://leicester.figshare.com/articles/thesis/The_Role_Of_Zooplankton_In_The_Pelagic_Food_Webs_Of_Tropical_Lakes/14587689, last access: 25 October 2021.
Allan, J. D. and Flecker, A. S.: Biodiversity conservation in running waters, BioScience, 43, 32–43, 1993.
Allan, J. D., Abell, R., Hogan, Z., Revenga, C., Taylor, B. W., Welcomme, R.
L., and Winemiller, K.: Overfishing of inland waters, BioScience, 55,
1041–1051, https://doi.org/10.1641/0006-3568(2005)055[1041:OOIW]2.0.CO;2, 2005.
Anderson, K. E., Paul, A. J., McCauley, E., Jackson, L. J., Post, J. R., and
Nisbet, R. M.: Instream flow needs in streams and rivers: the importance of
understanding ecological dynamics, Fron. Ecol. Environ., 4, 309–318, https://doi.org/10.1890/1540-9295(2006)4[309:IFNISA]2.0.CO;2, 2006.
Arthington, A. H. and Pusey, B. J.: Flow restoration and protection in Australian rivers, River Res. Appl.,,19, 377–395, https://doi.org/10.1002/rra.745, 2003.
Arthington, A. H., Bhaduri, A., Bunn, S.E., Jackson, S.E., Tharme, R.E., Tickner, D., Young, B., Acreman, M., Baker, N., Capon, S., and Horne, A. C.: The Brisbane declaration and global action agenda on environmental flows. Frontiers in Environmental Science, 6, 45, https://doi.org/10.3389/fenvs.2018.00045, 2018.
Bélanger, J. and Pilling, D.: The state of the world's biodiversity for
food and agriculture, FAO Commission on Genetic Resources for Food and
Agriculture Assessments, ISBN 978-92-5-131270-4, https://www.fao.org/documents/card/en/c/ca3129en/ (last access: 7 November 2020), 2019.
Bergkamp, G., McCartney, M., Dugan, P., McNeely, J., and Acreman, M.: Dams,
ecosystem functions and environmental restoration, Thematic review II, World Commission on Dams (WCD), 1, 1–187, https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=d9e44a8af697dfd76c0465d8dbb8f9eb0cb0b927
(last access: 17 February 2021), 2000.
Brisbane Declaration: Environmental flows are essential for freshwater ecosystem health and human well-being, in 10th International River Symposium and International Environmental Flows Conference (Brisbane, QLD),
https://www.conservationgateway.org/ConservationPractices/Freshwater/EnvironmentalFlows/MethodsandTools/ELOHA/Pages/Brisbane-Declaration.aspx (last access: 23 June 2021), 2007.
Brook, B. W., Ellis, E. C., Perring, M. P., Mackay, A. W., and Blomqvist, L.: Does the terrestrial biosphere have planetary tipping points?, Trends Ecol. Evol., 28, 396–401, https://doi.org/10.1016/j.tree.2013.01.016, 2013.
Brooks, B. W., Lazorchak, J. M., Howard, M. D. A., Johnson, M.-V. V., Morton, S. L., Perkins, D. A. K., Reavie, E. D., Scott, G. I., Smith, S. A., and Steevens, J. A.: Are harmful algal blooms becoming the greatest inland water quality threat to public health and aquatic ecosystems?, Environ. Toxicol. Chem., 35, 6–13, https://doi.org/10.1002/etc.3220, 2016.
Clausen, R. and York, R.: Global biodiversity decline of marine and freshwater fish: A cross-national analysis of economic, demographic, and ecological influences, Social Sci. Res., 37, 1310–1320,
https://doi.org/10.1016/j.ssresearch.2007.10.002, 2008.
Collins, W. J., Bellouin, N., Doutriaux-Boucher, M., Gedney, N., Halloran,
P., Hinton, T., Hughes, J., Jones, C. D., Joshi, M., Liddicoat, S., Martin,
G., O'Connor, F., Rae, J., Senior, C., Sitch, S., Totterdell, I., Wiltshire,
A., and Woodward, S.: Development and evaluation of an Earth-System model –
HadGEM2, Geosci. Model Dev., 4, 1051–1075, https://doi.org/10.5194/gmd-4-1051-2011, 2011.
Comte, L., Carvajal-Quintero, J., Tedesco, P. A., Giam, X., Brose, U., Erős, T., Filipe, A. F., Fortin, M.-J., Irving, K., Jacquet, C., Larsen,
S., Sharma, S., Ruhi, A., Becker, F. G., Casatti, L., Castaldelli, G.,
Dala-Corte, R. B., Davenport, S. R., Franssen, N. R., García-Berthou,
E., Gavioli, A., Gido, K. B., Jimenez-Segura, L., Leitão, R. P., McLarney, B., Meador, J., Milardi, M., Moffatt, D. B., Occhi, T. V. T.,
Pompeu, P. S., Propst, D. L., Pyron, M., Salvador, G. N., Stefferud, J. A.,
Sutela, T., Taylor, C., Terui, A., Urabe, H., Vehanen, T., Vitule, J. R. S.,
Zeni, J. O., and Olden, J. D.: RivFishTIME: A global database of fish
time-series to study global change ecology in riverine systems, Global Ecol. Biogeogr., 30, 38–50, https://doi.org/10.1111/geb.13210, 2021.
Darwall, W., Bremerich, V., De Wever, A., Dell, A. I., Freyhof, J., Mark O. Gessner, M. O., Grossart, H., Harrison, I., Irvine, K., Jähnig, S. C., Jeschke, J. C., Lee, J. J., Lu, C., Lewandowska, A., Monaghan, M., Nejstgaard, J., Patricio, H., Schmidt-Kloiber, A., Stuart, S., Thieme, M., Tockner, K., Turak, E., and Weyl, O.: The Alliance for Freshwater Life: A global call to
unite efforts for freshwater biodiversity science and conservation,
Aquat. Conserv., 28, 1015–1022, 2018.
Darwall, W. R. and Freyhof, J.: Lost fishes, who is counting? The extent of
the threat to freshwater fish biodiversity, Conservation of freshwater
fishes, Cambridge University Press, ISBN 978-1-101-61609-7, 1–36, 2016.
Davies, P. M.: Climate change implications for river restoration in global
biodiversity hotspots, Restor. Ecol., 18, 261–268, 2010.
Domisch, S., Portmann, F. T., Kuemmerlen, M., O'Hara, R.
B., Johnson, R. K., Davy-Bowker, J., Baekken, T., ZamoraMuñoz, C., Sáinz-Bariáin, M., Bonada, N., Haase, P., Doll, P., and Jahnig, S. C.: Using streamflow observations to estimate the impact of hydrological regimes and anthropogenic water use on European stream macroinvertebrate occurrences, Ecohydrology, 10, e1895,
https://doi.org/10.1002/eco.1895, 2017.
Dudgeon, D.: Fisheries: pollution and habitat degradation in tropical Asian rivers, Encyclopaedia of Global Environmental Change, Volume 3, edited by: Douglas, I., John Wiley & Sons, Chichester, 316–323, ISBN 978-0-470-85362-7, 2002.
Dudgeon, D.: Prospects for sustaining freshwater biodiversity in the 21st century: linking ecosystem structure and function, Curr. Opin. Environ. Sustain., 2, 422–430, 2010.
Dudgeon, D., Arthington, A. H., Gessner, M. O., Kawabata, Z.-I., Knowler, D.
J., Lévêque, C., Naiman, R. J., Prieur-Richard, A.-H., Soto, D., and
Stiassny, M. L.: Freshwater biodiversity: importance, threats, status and
conservation challenges, Biol. Rev., 81, 163–182, 2006.
Dufresne, J.-L., Foujols, M.-A., Denvil, S., Caubel, A., Marti, O., Aumont,
O., Balkanski, Y., Bekki, S., Bellenger, H., and Benshila, R.: Climate
change projections using the IPSL-CM5 Earth System Model: from CMIP3 to
CMIP5, Clim. Dynam., 40, 2123–2165, 2013.
Dunne, J. P., John, J. G., Adcroft, A. J., Griffies, S. M., Hallberg, R. W.,
Shevliakova, E., Stouffer, R. J., Cooke, W., Dunne, K. A., and Harrison, M.
J.: GFDL's ESM2 global coupled climate–carbon earth system models. Part I:
Physical formulation and baseline simulation characteristics, J. Climate, 25, 6646–6665, 2012.
Frieler, K., Lange, S., Piontek, F., Reyer, C. P. O., Schewe, J., Warszawski, L., Zhao, F., Chini, L., Denvil, S., Emanuel, K., Geiger, T., Halladay, K., Hurtt, G., Mengel, M., Murakami, D., Ostberg, S., Popp, A., Riva, R., Stevanovic, M., Suzuki, T., Volkholz, J., Burke, E., Ciais, P., Ebi, K., Eddy, T. D., Elliott, J., Galbraith, E., Gosling, S. N., Hattermann, F., Hickler, T., Hinkel, J., Hof, C., Huber, V., Jägermeyr, J., Krysanova, V., Marcé, R., Müller Schmied, H., Mouratiadou, I., Pierson, D., Tittensor, D. P., Vautard, R., van Vliet, M., Biber, M. F., Betts, R. A., Bodirsky, B. L., Deryng, D., Frolking, S., Jones, C. D., Lotze, H. K., Lotze-Campen, H., Sahajpal, R., Thonicke, K., Tian, H., and Yamagata, Y.: Assessing the impacts of 1.5 ∘C global warming – simulation protocol of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b), Geosci. Model Dev., 10, 4321–4345, https://doi.org/10.5194/gmd-10-4321-2017, 2017.
Gädeke, A., Krysanova, V., Aryal, A., Chang, J., Grillakis, M., Hanasaki, N., Koutroulis, A., Pokhrel, Y., Satoh, Y., and Schaphoff, S.: Performance evaluation of global hydrological models in six large Pan-Arctic watersheds, Climatic Change, 163, 1329–1351, 2020.
Gerten, D., Hoff, H., Rockström, J., Jägermeyr, J., Kummu, M., and
Pastor, A. V.: Towards a revised planetary boundary for consumptive freshwater use: role of environmental flow requirements, Curr. Opin. Environ. Sustain., 5, 551–558, 2013.
Gleeson, T., Wang-Erlandsson, L., Porkka, M., Zipper, S. C., Jaramillo, F.,
Gerten, D., Fetzer, I., Cornell, S. E., Piemontese, L., and Gordon, L. J.:
Illuminating water cycle modifications and Earth system resilience in the
Anthropocene, Water Resour. Res., 56, 4, https://doi.org/10.1029/2019WR024957, 2020a.
Gleeson, T., Wang-Erlandsson, L., Zipper, S. C., Porkka, M., Jaramillo, F.,
Gerten, D., Fetzer, I., Cornell, S. E., Piemontese, L., and Gordon, L. J.: The water planetary boundary: interrogation and revision, One Earth, 2,
223–234, 2020b.
Gleick, P. H.: Water resources, Encyclopedia of climate, Weather, 817–823, https://cir.nii.ac.jp/crid/1574231875534157696 (last access: 24 June 2021), 1996.
Gozlan, R. E., Britton, J. R., Cowx, I., and Copp, G. H.: Current knowledge
on non-native freshwater fish introductions, J. Fish Biol., 76, 751–786, 2010.
Grill, G., Lehner, B., Lumsdon, A. E., MacDonald, G. K., Zarfl, C., and Liermann, C. R.: An index-based framework for assessing patterns and trends
in river fragmentation and flow regulation by global dams at multiple
scales, Environ. Res. Lett., 10, 015001, https://doi.org/10.1088/1748-9326/10/1/015001, 2015.
Hanasaki, N., Yoshikawa, S., Pokhrel, Y., and Kanae, S.: A global hydrological simulation to specify the sources of water used by humans, Hydrol. Earth Syst. Sci., 22, 789–817, https://doi.org/10.5194/hess-22-789-2018, 2018.
Herrera-R, G. A., Oberdorff, T., Anderson, E. P., Brosse, S., Carvajal-Vallejos, F. M., Frederico, R. G., Hidalgo, M., Jézéquel,
C., Maldonado, M., Maldonado-Ocampo, J. A., Ortega, H., Radinger, J.,
Torrente-Vilara, G., Zuanon, J., and Tedesco, P. A.: The combined effects of
climate change and river fragmentation on the distribution of Andean Amazon
fishes, Global Change Biol., 26, 5509–5523, https://doi.org/10.1111/gcb.15285, 2020.
Horne, A. C., Webb, J. A., O'Donnell, E., Arthington, A. H., McClain, M.,
Bond, N., Acreman, M., Hart, B., Stewardson, M. J., and Richter, B.:
Research priorities to improve future environmental water outcomes, Front. Environ. Sci., 5, 89, https://doi.org/10.1016/B978-0-12-803907-6.00027-9, 2017.
Kabat, P., Claussen, M., Dirmeyer, P. A., Gash, J. H., de Guenni, L. B.,
Meybeck, M., Hutjes, R. W., Pielke Sr, R. A., Vorosmarty, C. J., and
Lütkemeier, S.: Vegetation, water, humans and the climate: A new perspective on an interactive system, Springer Science & Business Media,
ISBN 3-540-42400-8, 2004.
Knouft, J. H. and Ficklin, D. L.: The potential impacts of climate change on
biodiversity in flowing freshwater systems, Annu. Rev. Ecol. Evol. System., 48, 111–133, 2017.
Lehner, B. and Grill, G.: Global river hydrography and network routing:
baseline data and new approaches to study the world's large river systems,
Hydrol. Process., 27, 2171–2186, 2013.
Leprieur, F., Beauchard, O., Blanchet, S., Oberdorff, T., and Brosse, S.:
Fish invasions in the world's river systems: when natural processes are
blurred by human activities, PLoS Biol., 6, e28, https://doi.org/10.1371/journal.pbio.0060028, 2008.
Leprieur, F., Brosse, S., Garcia-Berthou, E., Oberdorff, T., Olden, J. D.,
and Townsend, C. R.: Scientific uncertainty and the assessment of risks posed by non-native freshwater fishes, Fish Fisheries, 10, 88–97, 2009.
Linnansaari, T., Monk, W. A., Baird, D. J., and Curry, R. A.: Review of
Approaches and Methods to Assess Environmental Flows Across
Canada and Internationally, Canadian Science Advisory
Secretariat, Research Document 2012/039 (New Brunswick:
Department of Fisheries and Oceans Canada), https://www.dfo-mpo.gc.ca/csas-sccs/Publications/ResDocs-DocRech/2012/2012_039-eng.html (last access: 3 March 2022), 2012.
Lundberg, J. G., Kottelat, M., Smith, G. R., Stiassny, M. L., and Gill, A.
C.: So many fishes, so little time: an overview of recent ichthyological
discovery in continental waters, Ann. Missouri Bot. Garden, 87, 26–62, https://doi.org/10.2307/2666207, 2000.
Mohan, C., Gleeson, T., Famiglietti, J. S., Virkki, V., Kummu, M., Porkka, M., Wang-Erlandsson, L., Huggins, X., Gerten, D., and Jähnig, S. C.: Data: Poor correlation between large-scale environmental flows violations and global freshwater biodiversity: implications for water resource management and the water planetary boundary, Borealis, V1, University of Victoria [data set] https://doi.org/10.5683/SP3/2BYXZZ, 2022a.
Mohan, C., Gleeson, T., Famiglietti, J. S., Virkki, V., Kummu, M., Porkka, M., Wang-Erlandsson, L., Huggins, X., Gerten, D., and Jähnig, S. C.: Poor correlation between large-scale environmental flow violations and freshwater biodiversity: implications for water resource management and the freshwater planetary boundary-Code (Version v1), Zenodo [code], https://doi.org/10.5281/zenodo.7378494, 2022b.
Meyer, J. L., Sale, M. J., Mulholland, P. J., and Poff, N. L.: Impacts of
climate change on aquatic ecosystem functioning and health, J. Am. Water Resour. Assoc., 1, 1373–1386, 1999.
Moyle, P. B. and Leidy, R. A.: Loss of biodiversity in aquatic ecosystems:
evidence from fish faunas, in: Conservation biology, Springer, 127–169,
https://doi.org/10.1007/978-1-4684-6426-9_6, 1992.
Müller Schmied, H., Adam, L., Eisner, S., Fink, G., Flörke, M., Kim, H., Oki, T., Portmann, F. T., Reinecke, R., Riedel, C., Song, Q., Zhang, J., and Döll, P.: Variations of global and continental water balance components as impacted by climate forcing uncertainty and human water use, Hydrol. Earth Syst. Sci., 20, 2877–2898, https://doi.org/10.5194/hess-20-2877-2016, 2016.
NCEFSAB: Recommendations for estimating flows to maintain ecological
integrity in streams and rivers in North Carolina, https://files.nc.gov/ncdeq/Water Resources/files/eflows/sab/EFSAB_Final_Report_to_NCDENR.pdf (last access: 22 May 2022), 2013.
Nilsson, C., Reidy, C. A., Dynesius, M., and Revenga, C.: Fragmentation and
flow regulation of the world's large river systems, Science, 308, 405–408,
2005.
Nykvist, B., Persson, Å., Moberg, F., Persson, L., Cornell, S., and
Rockström, J.: National environmental performance on planetary boundaries, A study for the Swedish Environmental Protection Agency, Stockholm Environment Institute, Stockholm, https://www.sei.org/publications/national-environmental-performance-on-planetary-boundaries/ (last access: 22 May 2022), ISBN 978-91-620-6576-8, 2017.
Nyström, P. E. R., Brönmark, C., and Graneli, W.: Patterns in benthic food webs: a role for omnivorous crayfish?, Freshwater Biol., 36, 631–646, 1996.
Olson, D. M. and Dinerstein, E.: The Global 200: Priority ecoregions for
global conservation, Ann. Missouri Bot. Garden, 199–224, https://doi.org/10.2307/3298564, 2002.
Pastor, A. V., Ludwig, F., Biemans, H., Hoff, H., and Kabat, P.: Accounting for environmental flow requirements in global water assessments, Hydrol. Earth Syst. Sci., 18, 5041–5059, https://doi.org/10.5194/hess-18-5041-2014, 2014.
Poff, N. L. and Zimmerman, J. K.: Ecological responses to altered flow
regimes: a literature review to inform the science and management of
environmental flows, Freshwater Biol., 55, 194–205, 2010.
Poff, N. L., Allan, J. D., Bain, M. B., Karr, J. R., Prestegaard, K. L., Richter, B. D., Sparks, R. E., and Stromberg, J. C.: The natural flow regime, BioScience, 47, 769–784, 1997.
Poff, N. L., Brinson, M. M., and Day, J. W.: Aquatic Ecosystems and Global Climate
Change. Potential Impacts on Inland Freshwater and Coastal Wetland
Ecosystems in United States. Pew Center on Global Climate Change, Arlington, https://www.c2es.org/wp-content/uploads/2002/01/aquatic.pdf (last access: 15 March 2021), 2002.
Poff, N. L., Richter, B. D., Arthington, A. H., Bunn, S. E., Naiman, R. J.,
Kendy, E., Acreman, M., Apse, C., Bledsoe, B. P., and Freeman, M. C.: The
ecological limits of hydrologic alteration (ELOHA): a new framework for
developing regional environmental flow standards, Freshwater Biol., 55,
147–170, 2010.
Poff, N. L., Tharme, R. E., and Arthington, A. H.: Evolution of environmental flows assessment science, principles, and methodologies, in: Water for the Environment, Elsevier, 203–236, https://doi.org/10.1016/B978-0-12-803907-6.00011-5, 2017.
Powell, S. J., Letcher, R. A., and Croke, B. F. W.: Modelling floodplain
inundation for environmental flows: Gwydir wetlands, Australia, Ecol. Model., 211, 350–362, 2008.
Reid, A. J., Carlson, A. K., Creed, I. F., Eliason, E. J., Gell, P. A., Johnson, P. T., Kidd, K. A., MacCormack, T. J., Olden, J. D., and Ormerod, S. J.: Emerging threats and persistent conservation challenges for freshwater biodiversity, Biol. Rev., 94, 849–873, 2019.
Richter, B., Baumgartner, J., Wigington, R., and Braun, D.: How much water
does a river need?, Freshwater Biol., 37, 231–249, 1997.
Richter, B. D., Mathews, R., Harrison, D. L., and Wigington, R.: Ecologically sustainable water management: managing river flows for ecological integrity, Ecol. Appl., 13, 206–224, 2003.
Richter, B. D., Davis, M. M., Apse, C., and Konrad, C.: A presumptive standard for environmental flow protection, River Res. Appl., 28, 1312–1321, 2012.
Rockström, J., Steffen, W., Noone, K., Persson, Å., Chapin III, F.
S., Lambin, E., Lenton, T. M., Scheffer, M., Folke, C., and Schellnhuber, H.
J.: Planetary boundaries: exploring the safe operating space for humanity,
Ecol. Soc., 14, 2, https://www.jstor.org/stable/26268316 (last access: 8 June 2020), 2009.
Schaphoff, S., von Bloh, W., Rammig, A., Thonicke, K., Biemans, H., Forkel, M., Gerten, D., Heinke, J., Jägermeyr, J., Knauer, J., Langerwisch, F., Lucht, W., Müller, C., Rolinski, S., and Waha, K.: LPJmL4 – a dynamic global vegetation model with managed land – Part 1: Model description, Geosci. Model Dev., 11, 1343–1375, https://doi.org/10.5194/gmd-11-1343-2018, 2018.
Shafroth, P. B., Wilcox, A. C., Lytle, D. A., Hickey, J. T., Andersen, D.
C., Beauchamp, V. B., Hautzinger, A., McMullen, L. E., and Warner, A.: Ecosystem effects of environmental flows: modelling and experimental floods
in a dryland river, Freshwater Biol., 55, 68–85, 2010.
Shesterin, I. S.: Water pollution and its impact on fish and aquatic
invertebrates, Interactions: Food, Agriculture And Environment UNESCO
Publishing – Eolss Publishers, Oxford, UK, 59–69, ISBN 978-1-84826-333-8, 2010.
Smakhtin, V., Revenga, C., and Döll, P.: A pilot global assessment of
environmental water requirements and scarcity, Water Int., 29, 307–317, 2004.
Smith, M. and Cartin, M.: Water vision to action: catalysing change through
the IUCN water and nature initiative, IUCN, Gland, Switzerland, https://policycommons.net/artifacts/1375106/water-vision-to-action/1989362/ (last access: 3 December 2020), ISBN 978-2-8317-1395-3, 2011.
Smith, V. H.: Eutrophication of freshwater and coastal marine ecosystems a
global problem, Environ. Sci. Poll. Res., 10, 126–139, 2003.
Steffen, W., Richardson, K., Rockström, J., Cornell, S. E., Fetzer, I.,
Bennett, E. M., Biggs, R., Carpenter, S. R., De Vries, W., and De Wit, C.
A.: Planetary boundaries: Guiding human development on a changing planet,
Science, 347, 1259855, https://doi.org/10.1126/science.1259855, 2015.
Su, G., Logez, M., Xu, J., Tao, S., Villéger, S., and Brosse, S.: Human
impacts on global freshwater fish biodiversity, Science, 371, 835–838, 2021.
Sutanudjaja, E. H., van Beek, R., Wanders, N., Wada, Y., Bosmans, J. H. C., Drost, N., van der Ent, R. J., de Graaf, I. E. M., Hoch, J. M., de Jong, K., Karssenberg, D., López López, P., Peßenteiner, S., Schmitz, O., Straatsma, M. W., Vannametee, E., Wisser, D., and Bierkens, M. F. P.: PCR-GLOBWB 2: a 5 arcmin global hydrological and water resources model, Geosci. Model Dev., 11, 2429–2453, https://doi.org/10.5194/gmd-11-2429-2018, 2018.
Tedesco, P. A., Beauchard, O., Bigorne, R., Blanchet, S., Buisson, L., Conti, L., Cornu, J.-F., Dias, M. S., Grenouillet, G., and Hugueny, B.: A global database on freshwater fish species occurrence in drainage basins, Scient. Data, 4, 1–6, 2017.
Tennant, D. L.: Instream flow regimens for fish, wildlife, recreation and
related environmental resources, Fisheries, 1, 6–10, 1976.
Tessmann, S. A.: Environmental Use Sector: Reconnaissance Elements of the Western Dakotas Region of South Dakota Study,
Water Resources Institute, South Dakota State University, 264 pp., 1979.
The HadGEM2 Development Team: G. M. Martin, Bellouin, N., Collins, W. J., Culverwell, I. D., Halloran, P. R., Hardiman, S. C., Hinton, T. J., Jones, C. D., McDonald, R. E., McLaren, A. J., O'Connor, F. M., Roberts, M. J., Rodriguez, J. M., Woodward, S., Best, M. J., Brooks, M. E., Brown, A. R., Butchart, N., Dearden, C., Derbyshire, S. H., Dharssi, I., Doutriaux-Boucher, M., Edwards, J. M., Falloon, P. D., Gedney, N., Gray, L. J., Hewitt, H. T., Hobson, M., Huddleston, M. R., Hughes, J., Ineson, S., Ingram, W. J., James, P. M., Johns, T. C., Johnson, C. E., Jones, A., Jones, C. P., Joshi, M. M., Keen, A. B., Liddicoat, S., Lock, A. P., Maidens, A. V., Manners, J. C., Milton, S. F., Rae, J. G. L., Ridley, J. K., Sellar, A., Senior, C. A., Totterdell, I. J., Verhoef, A., Vidale, P. L., and Wiltshire, A.: The HadGEM2 family of Met Office Unified Model climate configurations, Geosci. Model Dev., 4, 723–757, https://doi.org/10.5194/gmd-4-723-2011, 2011.
Thompson, R. M. and Lake, P. S.: Reconciling theory and practise: the role
of stream ecology, River Res. Appl., 26, 5–14, 2010.
Tickner, D., Opperman, J. J., Abell, R., Acreman, M., Arthington, A. H., Bunn, S. E., Cooke, S. J., Dalton, J., Darwall, W., and Edwards, G.: Bending
the curve of global freshwater biodiversity loss: an emergency recovery plan, BioScience, 70), 330–342, 2020.
Tonkin, J. D., Olden, J. D., Merritt, D. M., Reynolds, L. V., Rogosch, J. S., and Lytle, D. A.: Designing flow regimes to support entire river ecosystems, Front. Ecol. Environ., 19, 326–333, 2021.
Tyson, P., Odada, E., Schulze, R., and Vogel, C.: Regional-global change
linkages: Southern Africa, in: Global-regional linkages in the earth system,
Springer, 3–73, https://doi.org/10.1007/978-3-642-56228-0_2, 2002.
Villéger, S., Blanchet, S., Beauchard, O., Oberdorff, T., and Brosse,
S.: Homogenization patterns of the world's freshwater fish faunas, P. Natl. Acad. Sci. USA, 108, 18003–18008, 2011.
Virkki, V., Alanärä, E., Porkka, M., Ahopelto, L., Gleeson, T., Mohan, C., Wang-Erlandsson, L., Flörke, M., Gerten, D., Gosling, S. N., Hanasaki, N., Müller Schmied, H., Wanders, N., and Kummu, M.: Globally widespread and increasing violations of environmental flow envelopes, Hydrol. Earth Syst. Sci., 26, 3315–3336, https://doi.org/10.5194/hess-26-3315-2022, 2022.
Vitousek, P. M., Mooney, H. A., Lubchenco, J., and Melillo, J. M.: Human
domination of Earth's ecosystems, Science, 277, 494–499, 1997.
Vitule, J. R. S., Freire, C. A., and Simberloff, D.: Introduction of non-native freshwater fish can certainly be bad, Fish Fisheries, 10, 98–108, 2009.
Vörösmarty, C. J., R. Wasson, and J. E. Richey, Modeling the transport and
transformation of terrestrial materials to freshwater and coastal ecosystems, Int. Geosphere Biosphere Program Rep. 39, 84 pp., International Geosphere Biosphere Program Secretariat, Stockholm, https://library.wur.nl/WebQuery/titel/942163 (last access: 8 March 2021), 1997.
Vörösmarty, C. J., Green, P., Salisbury, J., and Lammers, R. B.: Global water resources: vulnerability from climate change and population growth, Science, 289, 284–288, 2000.
Vörösmarty, C. J., McIntyre, P. B., Gessner, M. O., Dudgeon, D.,
Prusevich, A., Green, P., Glidden, S., Bunn, S. E., Sullivan, C. A., and
Liermann, C. R.: Global threats to human water security and river biodiversity, Nature, 467, 555–561, 2010.
Warszawski, L., Frieler, K., Huber, V., Piontek, F., Serdeczny, O., and Schewe, J.: The inter-sectoral impact model intercomparison project (ISI–MIP): project framework, P. Natl. Acad. Sci. USA, 111, 3228–3232, 2014.
Watanabe, M., Suzuki, T., O'ishi, R., Komuro, Y., Watanabe, S., Emori, S.,
Takemura, T., Chikira, M., Ogura, T., and Sekiguchi, M.: Improved climate
simulation by MIROC5: mean states, variability, and climate sensitivity, J. Climate, 23, 6312–6335, 2010.
Wilting, H. C., Schipper, A. M., Bakkenes, M., Meijer, J. R., and Huijbregts, M. A.: Quantifying biodiversity losses due to human consumption: a global-scale footprint analysis, Environ. Sci. Technol., 51, 3298–3306, 2017.
Xenopoulos, M. A., Lodge, D. M., Alcamo, J., Märker, M., Schulze, K., and Van Vuuren, D. P.: Scenarios of freshwater fish extinctions from climate change and water withdrawal, Global Change Biol., 11, 1557–1564, 2005.
Yoshikawa, S., Yanagawa, A., Iwasaki, Y., Sui, P., Koirala, S., Hirano, K., Khajuria, A., Mahendran, R., Hirabayashi, Y., Yoshimura, C., and Kanae, S.: Illustrating a new global-scale approach to estimating potential reduction in fish species richness due to flow alteration, Hydrol. Earth Syst. Sci., 18, 621–630, https://doi.org/10.5194/hess-18-621-2014, 2014.
Zaherpour, J., Gosling, S. N., Mount, N., Schmied, H. M., Veldkamp, T. I.,
Dankers, R., Eisner, S., Gerten, D., Gudmundsson, L., and Haddeland, I.:
Worldwide evaluation of mean and extreme runoff from six global-scale hydrological models that account for human impacts, Environ. Res. Lett., 13, 065015, https://doi.org/10.1088/1748-9326/aac547, 2018.
Short summary
The relationship between environmental flow violations and freshwater biodiversity at a large scale is not well explored. This study intended to carry out an exploratory evaluation of this relationship at a large scale. While our results suggest that streamflow and EF may not be the only determinants of freshwater biodiversity at large scales, they do not preclude the existence of relationships at smaller scales or with more holistic EF methods or with other biodiversity data or metrics.
The relationship between environmental flow violations and freshwater biodiversity at a large...