Articles | Volume 26, issue 20
https://doi.org/10.5194/hess-26-5315-2022
https://doi.org/10.5194/hess-26-5315-2022
Research article
 | 
26 Oct 2022
Research article |  | 26 Oct 2022

Attribution of climate change and human activities to streamflow variations with a posterior distribution of hydrological simulations

Xiongpeng Tang, Guobin Fu, Silong Zhang, Chao Gao, Guoqing Wang, Zhenxin Bao, Yanli Liu, Cuishan Liu, and Junliang Jin

Related authors

Impact of changes in climate and CO2 on the carbon storage potential of vegetation under limited water availability using SEIB-DGVM version 3.02
Shanlin Tong, Weiguang Wang, Jie Chen, Chong-Yu Xu, Hisashi Sato, and Guoqing Wang
Geosci. Model Dev., 15, 7075–7098, https://doi.org/10.5194/gmd-15-7075-2022,https://doi.org/10.5194/gmd-15-7075-2022, 2022
Short summary
Global soil moisture storage capacity at 0.5° resolution for geoscientific modelling
Kang Xie, Pan Liu, Qian Xia, Xiao Li, Weibo Liu, Xiaojing Zhang, Lei Cheng, Guoqing Wang, and Jianyun Zhang
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2022-217,https://doi.org/10.5194/essd-2022-217, 2022
Revised manuscript not accepted
Short summary
Analysis of Event-based Hydrological Processes at the Hydrohill Catchment Using Hydrochemical and Isotopic Methods
Na Yang, Jianyun Zhang, Jiufu Liu, Guodong Liu, Aimin Liao, and Guoqing Wang
Proc. IAHS, 383, 99–110, https://doi.org/10.5194/piahs-383-99-2020,https://doi.org/10.5194/piahs-383-99-2020, 2020
Ensemble flood simulation for the typical catchment in humid climatic zone by using multiple hydrological models
Jie Wang, Jianyun Zhang, Guoqing Wang, Xiaomeng Song, Xiaoying Yang, and Yueyang Wang
Proc. IAHS, 383, 213–222, https://doi.org/10.5194/piahs-383-213-2020,https://doi.org/10.5194/piahs-383-213-2020, 2020
Bias in dynamically downscaled rainfall characteristics for hydroclimatic projections
Nicholas J. Potter, Francis H. S. Chiew, Stephen P. Charles, Guobin Fu, Hongxing Zheng, and Lu Zhang
Hydrol. Earth Syst. Sci., 24, 2963–2979, https://doi.org/10.5194/hess-24-2963-2020,https://doi.org/10.5194/hess-24-2963-2020, 2020
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Machine-learning- and deep-learning-based streamflow prediction in a hilly catchment for future scenarios using CMIP6 GCM data
Dharmaveer Singh, Manu Vardhan, Rakesh Sahu, Debrupa Chatterjee, Pankaj Chauhan, and Shiyin Liu
Hydrol. Earth Syst. Sci., 27, 1047–1075, https://doi.org/10.5194/hess-27-1047-2023,https://doi.org/10.5194/hess-27-1047-2023, 2023
Short summary
River hydraulic modeling with ICESat-2 land and water surface elevation
Monica Coppo Frias, Suxia Liu, Xingguo Mo, Karina Nielsen, Heidi Ranndal, Liguang Jiang, Jun Ma, and Peter Bauer-Gottwein
Hydrol. Earth Syst. Sci., 27, 1011–1032, https://doi.org/10.5194/hess-27-1011-2023,https://doi.org/10.5194/hess-27-1011-2023, 2023
Short summary
Hydrological modeling using the Soil and Water Assessment Tool in urban and peri-urban environments: the case of Kifisos experimental subbasin (Athens, Greece)
Evgenia Koltsida, Nikos Mamassis, and Andreas Kallioras
Hydrol. Earth Syst. Sci., 27, 917–931, https://doi.org/10.5194/hess-27-917-2023,https://doi.org/10.5194/hess-27-917-2023, 2023
Short summary
Technical note: How physically based is hydrograph separation by recursive digital filtering?
Klaus Eckhardt
Hydrol. Earth Syst. Sci., 27, 495–499, https://doi.org/10.5194/hess-27-495-2023,https://doi.org/10.5194/hess-27-495-2023, 2023
Short summary
A comprehensive open-source course for teaching applied hydrological modelling in Central Asia
Beatrice Sabine Marti, Aidar Zhumabaev, and Tobias Siegfried
Hydrol. Earth Syst. Sci., 27, 319–330, https://doi.org/10.5194/hess-27-319-2023,https://doi.org/10.5194/hess-27-319-2023, 2023
Short summary

Cited articles

Abbaspour, K. C., Genuchten, M. T. V., Schulin, R., and Schläppi, E.: A sequential uncertainty domain inverse procedure for estimating subsurface flow and transport parameters, Water Resour. Res., 33, 1879–1892, https://doi.org/10.1029/97WR01230, 1997. 
Abbaspour, K. C., Johnson, C. A., and Genuchten, M. T. V.: Estimating Uncertain Flow and Transport Parameters Using a Sequential Uncertainty Fitting Procedure, Vadose Zone J., 3, 1340–1352, https://doi.org/10.2113/3.4.1340, 2004. 
Abbaspour, K. C., Yang, J., Maximov, I., Siber, R., Bogner, K., Mieleitner, J., Zobrist, J., and Srinivasan, R.: Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT, J. Hydrol., 333, 413–430, https://doi.org/10.1016/j.jhydrol.2006.09.014, 2007. 
Arnold, J. G., Srinivasan, R., Muttiah, R. S., and Williams, J. R.: Large area hydrologic modeling and assessment part I: model development, JAWRA J. Am. Water Resour. As., 34, 73–89, https://doi.org/10.1111/j.1752-1688.1998.tb05961.x, 1998. 
Arnold, J. G., Kiniry, J. R., Srinivasan, R., Williams, J. R., Haney, E. B., and Neitsch, S. L.: Soil & Water Assessment Tool: Input/Output Documentation. Version 2012, Texas Water Resources Institute, College Station, 1–650, https://swat.tamu.edu/docs/ (last access: 16 October 2022), 2012a. 
Download
Short summary
In this study, we proposed a new framework that considered the uncertainties of model simulations in quantifying the contribution rate of climate change and human activities to streamflow changes. Then, the Lancang River basin was selected for the case study. The results of quantitative analysis using the new framework showed that the reason for the decrease in the streamflow at Yunjinghong station was mainly human activities.