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Abstract. Hydrological simulations are a main method of
quantifying the contribution rate (CR) of climate change
(CC) and human activities (HAs) to watershed streamflow
changes. However, the uncertainty of hydrological simula-
tions is rarely considered in current research. To fill this re-
search gap, based on the Soil and Water Assessment Tool
(SWAT) model, in this study, we propose a new framework
to quantify the CR of CC and HAs based on the posterior his-
togram distribution of hydrological simulations. In our new
quantitative framework, the uncertainty of hydrological sim-
ulations is first considered to quantify the impact of “equifi-
nality for different parameters”, which is common in hydro-
logical simulations. The Lancang River (LR) basin in China,
which has been greatly affected by HAs in the past 2 decades,
is then selected as the study area. The global gridded monthly
sectoral water use data set (GMSWU), coupled with the dead
capacity data of the large reservoirs within the LR basin and
the Budyko hypothesis framework, is used to compare the
calculation result of the novel framework. The results show
that (1) the annual streamflow at Yunjinghong station in the
Lancang River basin changed abruptly in 2005, which was
mainly due to the construction of the Xiaowan hydropower
station that started in October 2004. The annual streamflow
and annual mean temperature time series from 1961 to 2015
in the LR basin showed significant decreasing and increasing
trends at the α = 0.01 significance level, respectively. The an-
nual precipitation showed an insignificant decreasing trend.
(2) The results of quantitative analysis using the new frame-
work showed that the reason for the decrease in the stream-

flow at Yunjinghong station was 42.6 % due to CC, and the
remaining 57.4 % was due to HAs, such as the construction
of hydropower stations within the study area. (3) The com-
parison with the other two methods showed that the CR of
CC calculated by the Budyko framework and the GMSWU
data was 37.2 % and 42.5 %, respectively, and the errors of
the calculations of the new framework proposed in this study
were within 5 %. Therefore, the newly proposed framework,
which considers the uncertainty of hydrological simulations,
can accurately quantify the CR of CC and HAs to streamflow
changes. (4) The quantitative results calculated by using the
simulation results with the largest Nash–Sutcliffe efficiency
coefficient (NSE) indicated that CC was the dominant factor
in streamflow reduction, which was in opposition to the cal-
culation results of our new framework. In other words, our
novel framework could effectively solve the calculation er-
rors caused by the “equifinality for different parameters” of
hydrological simulations. (5) The results of this case study
also showed that the reduction in the streamflow in June
and November was mainly caused by decreased precipita-
tion and increased evapotranspiration, while the changes in
the streamflow in other months were mainly due to HAs such
as the regulation of the constructed reservoirs. In general, the
novel quantitative framework that considers the uncertainty
of hydrological simulations presented in this study has val-
idated an efficient alternative for quantifying the CR of CC
and HAs to streamflow changes.
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1 Introduction

The hydrological cycle of the watershed and water resource
systems is deeply influenced by climate change (CC) and hu-
man activities (HAs) (Bao et al., 2012; Chandesris et al.,
2019; Han et al., 2019; Teuling et al., 2019). CC mainly
refers to changes in precipitation and evapotranspiration that
are caused by rising temperatures and water vapor (Hegerl et
al., 2015), while the impact of HAs is mainly reflected in the
following aspects: reservoir construction changes the spatial
and temporal distribution of streamflow processes (Hennig et
al., 2013; Chandesris et al., 2019), land use changes change
the characteristics of the underlying surface of the watershed,
in turn affecting the streamflow of the watershed (Yang et
al., 2017), and population increase leads to an increase in the
amount of water used for domestic consumption (Teuling et
al., 2019). However, identifying which CC and HAs are the
main factors driving the changes in the water cycle of river
basins is of great significance for water resource managers to
formulate policies for sustainable water resource utilization
(Dey and Mishra, 2017; Liu et al., 2017). If CC is the domi-
nant driving factor, then hydrometeorologists need to assess
the future trends of meteorological factors, such as precipi-
tation and temperature, to change their water resource man-
agement strategies in a timely manner. Conversely, if HAs are
the dominant factor, water resource managers should evalu-
ate whether the impact of these HAs exceeds the local water
resource carrying capacity and then adjust their related poli-
cies (Fu et al., 2004).

Numerous published articles have focused on how to quan-
tify the CR of CC and HAs to the streamflow change in river
basins (Liu et al., 2019; Bao et al., 2012; Chandesris et al.,
2019; Han et al., 2019; Kong et al., 2016; Xie et al., 2019). In
general, the commonly used methods of attribution analysis
can be divided into the following three categories: (1) con-
ceptual methods, such as the Budyko framework (Li et al.,
2007; Liu et al., 2017), (2) hydrological simulation meth-
ods (Liu et al., 2019), and (3) analytical methods, such as
the climate elasticity method (Liang et al., 2013). What these
three methods have in common is that they all need to first
test the annual streamflow sequence through nonstationary
testing methods (such as the Mann–Kendall test) and then
divide the study period into the natural period (before the
break point) and the impacted period (after the break point).
The first type of method needs to first calculate the sensitivity
of the basin’s precipitation and potential evapotranspiration
to hydrological variables, and then the hydrological changes
caused by CC can be calculated combined with the hydrolog-
ical sensitivity parameters through the changes in precipita-
tion and potential evapotranspiration in the impacted period
and natural period so that the CR of HAs is obtained based
on the water balance equation (Li et al., 2007). The second
type of method simulates multiple scenarios by changing one
impact factor with other fixed factors to evaluate the CR of
the changed factor using lumped or distributed hydrologi-

cal models (Liu et al., 2019). The core of these methods is
the modeling of two situations where only one impact factor
state has been changed, and the difference between the two
simulation results is regarded as the influence of the changed
factor. The third type of method is mostly based on numer-
ical calculation, taking the climate elasticity method as an
example (Liang et al., 2013): this method introduces the con-
cept of climate elasticity to define the quantitative relation-
ship between changes in streamflow and climatic variables
(precipitation, evapotranspiration, etc.), and the CR of HAs
to streamflow changes can be obtained by subtracting the CR
of climate variables. Among the three types of methods, the
second types of methods are the most widely used because
it has the following advantages: (1) relatively small data re-
quirements (one only needs to input the meteorological and
hydrological data to the hydrological model), (2) relatively
simple theoretical assumptions, and (3) quantifying the CR
of CC and HAs to streamflow changes at the monthly scale.

Various related published articles are briefly reviewed as
follows. Bao et al. (2012) used the variable infiltration ca-
pacity (VIC) model to investigate the impacts of CC and
HAs on streamflow changes in the Haihe River basin, China,
and they concluded that HA accounted for more than 70 %
of the decrease in streamflow at Guantai station. Wang et
al. (2013) used a two-parameter hydrological model to quan-
tify the contribution of CC and HAs to streamflow changes in
three river basins (i.e., Zhanghe, Chaohe, and Hutuo River),
and they found that HAs were the dominant factor in stream-
flow changes. The above literature review shows that these
studies all used hydrological simulations with fixed param-
eter sets to quantify the impact of CC and HAs. As pointed
out by Abbaspour et al. (2004) and Zhao et al. (2018a), there
is a phenomenon of “equifinality for different parameters”
(Beven, 2006) in hydrological calibration and simulation,
which also means that we cannot ignore the uncertainty of
model parameters in the process of quantifying the CR of
CC and HAs to streamflow changes because two sets of pa-
rameters with the same performance (with the same Nash–
Sutcliffe efficiency coefficient) may lead to very different re-
sults; this will further influence the decision-making of water
resource managers in making effective and sustainable water
resource utilization policies. In the last few decades, great
progress has been made in evaluating the uncertainty of hy-
drological simulations (Abbaspour et al., 2004; Beven and
Binley, 1992; Yang et al., 2008; Zhao et al., 2018a; Farsi
and Mahjouri, 2019); however, in studies related to quanti-
fying the CR of CC and HAs for streamflow changes, few
studies have considered the uncertainty of hydrological sim-
ulations (Farsi and Mahjouri, 2019). According to our lit-
erature search, Farsi and Mahjouri (2019) first considered
the uncertainty of hydrological simulations in the process of
quantifying the CR of CC and HAs to streamflow changes,
but they only constructed the posterior distribution of the
CRs of CC and HAs; in their research, they did not specify
how to calculate the CRs of CC and HAs while considering
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the uncertainty of hydrological simulations. Therefore, to fill
this research gap, in this study we propose a new method
to quantify the contribution of CC and HAs to streamflow
changes considering the uncertainty of hydrological simu-
lations, which in summary is developed using the posterior
histogram distribution of hydrological simulations.

The Lancang River (LR) is located in Southwest China and
is the largest transboundary river in the Indo-China Penin-
sula; it is usually called the Mekong River (MR) after flowing
out of China (Grumbine and Xu, 2011). The abundant water
and ecological diversity of the Lancang–Mekong River basin
nurtures tens of millions of people in many countries along
the Lancang–Mekong River. The upstream flow of the river
provides guarantees for irrigation and fishery water use in
the countries along the MR during the dry season, and the
water conservancy facilities of the LR during the peak of the
flood period also provide important engineering guarantees
for downstream flood control (Piman et al., 2012, 2016). In
the past 3 decades, a series of hydropower stations have been
constructed in the LR basin to meet the flood control and
drought relief requirements of downstream countries and the
power needs of Southwest China. Therefore, it is particularly
important to quantify the CR of CC and HAs to streamflow
changes in the LR basin. However, so far, there are still few
corresponding studies. Han et al. (2019) chose the LR basin
as the study area and then divided the research period into
three periods, the natural period, transition period, and im-
pacted period, and combined them with the construction time
of six large hydropower stations in the LR area. Finally, they
found that the CR of HAs during the impact period exceeded
95 %, using the coupled routing and excess storage (CREST)
model, which was probably due to the construction of the
Nuozhadu hydropower station. However, there are still ar-
eas for improvement in their research: (1) the results of the
hydrological simulation were relatively poor (with monthly
NSE= 0.57 for the whole study period) and (2) the uncer-
tainty involved in hydrological simulations was not consid-
ered.

In this paper, the break point of the change in flow regimes
was identified using the Mann–Kendall break point test.
Then, the study period was divided into a natural period
(before the break point) and an impacted period (after the
break point). The Soil and Water Assessment Tool (SWAT)
model was used for monthly streamflow simulation at Yun-
jinghong station. Next, the monthly SWAT model was cal-
ibrated and validated using the sequential uncertainty fit-
ting procedure version 2 (SUFI-2) (Abbaspour et al., 2004).
Uncertainty analysis was also conducted with the SUFI-2
method, and then the posterior histogram frequency distri-
bution (HFD) of the CR of CC and HAs was obtained. Fi-
nally, the proposed quantification framework was compared
with two other methods: one was the Budyko framework, and
the other was to use the LR basin’s gridded monthly sectoral
water withdrawals in the period from 1971 to 2010 (Huang
et al., 2018) together with the dead reservoir storage capac-

ity data of the six constructed hydropower stations along the
mainstream of LR to separate the CR of HAs.

2 Study area and data sets

2.1 Study area

The Lancang River (LR) originates in the northeastern Tang-
gula Mountains, Qinghai Province, China, and flows through
China’s Qinghai Province, Tibet Autonomous Region and
Yunnan Province. It is the largest international river in South-
east Asia, and it is called the Mekong River after it flows
out of China. Its mainstream has a total length of ∼ 2161 km
and a total catchment area of ∼ 160 000 km2 (Han et al.,
2019; D. Li et al., 2017). The topography of the LR is char-
acterized by high northern and low southern portions; the
maximum elevation in the northern mountainous area can
reach ∼ 5871 m, while the lowest elevation in the down-
stream area is only ∼ 547 m (Fig. 1). This steep terrain dif-
ference also leads to the LR having a large potential for hy-
dropower resources. During the past few decades, Huaneng
Lancangjiang Hydropower Co., Ltd. constructed six large
hydropower stations (i.e., Gongguoqiao, Xiaowan, Manwan,
Dachaoshan, Nuozhadu, and Jinghong) on the mainstream of
the LR to meet the demands for power and irrigation water in
Southwest China (Fig. 1 and Table 1) (Han et al., 2019; Hen-
nig et al., 2013; Xue et al., 2011). At the same time, the con-
struction of these hydropower stations has greatly reduced
the risk of flooding in downstream countries and brought
great convenience to using water for downstream agricul-
tural irrigation. Detailed information on the six constructed
hydropower stations is outlined in Table 1. These data are
mainly collected from https://opendevelopmentmekong.net/
topics/hydropower/ (last access: 16 October 2022) as well as
from other published related literature (Han et al., 2019; Xue
et al., 2011; Hennig et al., 2013; Tilt and Gerkey, 2016).

The LR features an arid climate in the upper mountainous
areas, while the lower reaches are dominated by humid cli-
mates. The average annual precipitation of the whole basin
is ∼ 870 mm based on a 55-year record (from 1961 to 2015)
using the China Gauge-based Daily Precipitation Analysis
(CGDPA) (Xie et al., 2007; Tang et al., 2019). Due to the in-
fluence of the westerlies and the Indian Ocean monsoon, the
precipitation in the LR has obvious seasonal changes, and the
precipitation from June to September accounts for more than
70 % of the annual precipitation (Jacobs, 2002). Correspond-
ingly, the streamflow of the LR also shows seasonality, and
the floods are mostly concentrated from June to September.

2.2 Data sets

The China Gauge-based Daily Precipitation Analysis
(CGDPA) product was developed by the China Meteo-
rological Administration (CMA) using data from ∼ 2400
ground-based national weather stations across China (Tang
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Table 1. Basic information for the six large constructed dams on the mainstream of the LR basin.

Hydropower station Manwan Dachaoshan Jinghong Xiaowan Gongguoqiao Nuozhadu

Date of river closure Dec 1987 Nov 1997 Jan 2005 Oct 2004 Dec 2008 Nov 2007
Date of complete construction Jun 1995 Oct 2003 May 2009 Aug 2010 Mar 2012 Jun 2014
Drainage area (104 km2) 11.45 12.10 14.91 11.33 9.73 14.47
Dead reservoir storage (km3) 0.668 0.371 0.81 4.35 0.316 10.3
Total reservoir storage (km3) 0.92 0.94 1.40 15.3 0.365 22.7
Installed capacity (104 kw) 150 135 150 420 90 500

(Notation: dead storage capacity refers to the storage capacity below the dead water level of the reservoir, which does not participate into runoff regulation
during the normal operation of the reservoir.)

Figure 1. Locations of the Lancang River (LR) basin, Yunjinghong
hydrological station, constructed dams on the mainstream of the
LRB, and main rivers and elevations (m).

et al., 2018; Xie et al., 2007; Shen et al., 2014). It pro-
vides daily precipitation, maximum temperature, minimum
temperature, relative humidity, and wind speed data at a
0.25◦ spatial resolution from 1961 to 2015; this data set
can be publicly obtained by contacting its author via email
(sheny@cma.gov.cn). Previous studies have successfully ap-
plied this product to multiple research areas in China (Tang

et al., 2019, 2018; Han et al., 2019). The daily streamflow
data from Yunjinghong station for the time period from 1961
to 2015 were collected from the Information Center of the
Ministry of Water Resources and the local water resources
management department.

The digital elevation model (DEM) used in this study was
downloaded from NASA’s Shuttle Radar Topography Mis-
sion (SRTM) database at a spatial resolution of∼ 90 m (http:
//srtm.csi.cgiar.org/, last access: 16 October 2022), which
was used to generate the watershed boundary, slope, and
sub-watershed data in the SWAT model (Arnold et al.,
2012a). The Harmonized World Soil Database (version 1.2)
(HWSD v1.2) at a spatial resolution of ∼ 1 km was down-
loaded from the Food and Agriculture Organization of the
United Nations, and this data set contains two layers of
soil. The land use and cover data with a spatial resolution
of ∼ 1 km were collected from the Geospatial Data Cloud
(http://www.gscloud.cn/, last access: 16 October 2022). In
this study, to analyze the land use change in the LR during the
historical period, we collected five periods of land use data
in the 1980s, 1990s, 2000s, and 2010 to 2015, and this data
set was downloaded from the Geographic Information Mon-
itoring Cloud Platform (http://www.dsac.cn/, last access: 16
October 2022) with a spatial resolution of 30 m. It should be
pointed out that this study only used the land use information
in 2010 to construct the SWAT hydrological model and did
not consider the dynamic changes in land use information in
the hydrological simulation.

The global gridded monthly sectoral water use (GM-
SWU) data set for 1971–2010 was obtained from
https://doi.org/10.5281/zenodo.1209296. This data set was
developed by Huang et al. (2018), and it provides the global
domestic water use, irrigation water use, livestock water use,
manufacturing water use, and mining water use with a spa-
tial resolution of 0.5◦. This data set is used in this study
because it is difficult to collect water withdrawal data re-
lated to HAs in the LR basin, and this data set has been
successfully applied in this basin in other studies (Han et
al., 2019). We used this data set here to roughly separate
the effects of HAs in the LR. For more technical infor-
mation about this set of products, the readers can refer to

Hydrol. Earth Syst. Sci., 26, 5315–5339, 2022 https://doi.org/10.5194/hess-26-5315-2022

http://srtm.csi.cgiar.org/
http://srtm.csi.cgiar.org/
http://www.gscloud.cn/
http://www.dsac.cn/
https://doi.org/10.5281/zenodo.1209296


X. Tang et al.: Attribution of climate change and human activities to streamflow variations 5319

Huang et al. (2018) and Han et al. (2019). Furthermore, de-
tailed information on six large dams in the mainstream of the
LR was collected from Open Development Mekong (https:
//opendevelopmentmekong.net/topics/hydropower/, last ac-
cess: 16 October 2022) and Huaneng Lancang River Hy-
dropower Inc. It mainly includes the dates when the rivers
start to be closed, when these dams were fully put into use,
their dead storage capacity, their total storage capacity, and
other information.

3 Methodologies

3.1 The novel proposed framework

Hydrological simulation is one of the main methodologies
to quantify the CR of CC and HAs to streamflow variations;
however, in the past, related studies have rarely considered
the uncertainty involved in hydrological simulations (Farsi
and Mahjouri, 2019). In this section, we will introduce a new
quantitative framework to quantify the influence of the com-
mon phenomenon of “equifinality for different parameters”
in hydrological simulation on the quantitative results by con-
structing the posterior distribution of streamflow simulations
during the implementation process. The specific implemen-
tation flowchart is shown in Fig. 2. The detailed execution
steps are shown as follows.

– Step 1. Inspection of break points in the annual stream-
flow sequence; based on the result of the breakpoint test,
the entire time series is divided into a natural period (be-
fore the break point) and an impacted period (after the
break point).

– Step 2. Sensitivity analysis of the parameters in the hy-
drological model.

– Step 3. According to the results of the parameter sen-
sitivity analysis, selection of the more sensitive param-
eters and input of the hydrometeorological data of the
natural period (before the break point) to calibrate the
hydrological model with 1000 runs.

– Step 4. Selection of the parameter sets with Nash–
Sutcliffe efficiency (NSE) coefficients greater than 0.75
in 1000 simulations, input of the hydrometeorological
data of the impacted period, and further calculation of
the CR of CC and HAs to the streamflow change corre-
sponding to each simulation result.

– Step 5. Construction of the posterior histogram distri-
bution (PHD) of the CR of CC and HAs (with a 5 %
step), and then the histogram with the highest frequency
is treated as the uncertainty CR interval of CC and HAs
to the streamflow change.

– The arithmetic mean of the results in the interval is
treated as its true CR.

Figure 2. Flowchart of the newly proposed quantitative framework.

In step 4, to ensure the number of streamflow simulation
samples, we set the simulation results with NSE to greater
than 0.75 to at least 500 times. If the setting is not met, then
step 3 is repeated until the cumulative simulation times are
greater than 500 times.

3.2 Mann–Kendall test

In this step, the trends and break points of the hydrometeo-
rological data are detected using the nonparametric Mann–
Kendall monotonic trend test (Gilbert, 1987; Kendall, 1975;
Mann, 1945) and the Mann–Kendall break point test (Sney-
ers, 1991), respectively. The main consideration of using the
Mann–Kendall test is that this method assumes no particular
distribution for the tested time series (Song et al., 2019; Xu et
al., 2018). Significance levels of α = 0.01 and 0.05 are used
in this study.

3.2.1 Mann–Kendall monotonic trend test

The Mann–Kendall (MK) monotonic trend test was devel-
oped by Mann (1945), Kendall (1975), and Gilbert (1987),
which has been widely used to detect the presence of an up-
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ward or downward trend of the hydrometeorological time
series, and the advantage of this test is that the time series
does not need to follow a certain distribution (Hamed and
Ramachandra Rao, 1998). This method first tests whether to
reject the null hypothesis (H0: no monotonic trend) and ac-
cept the alternative hypothesis (Ha: with monotonic trend)
for a significance level of α. The defined statistic S can be
calculated by the following equation:

S =

n−1∑
k=1

n∑
j=k+1

sign
(
xj − xk,

)
, (1)

where xk is the data in the order over time, x1, x2, . . . , xn−1,
which means the time series obtained at times 1, 2, . . . , n−1,
respectively. xj is another time series over time xk+1, xk+2,
. . . , xn. n is the length of the data set record. Sign

(
xj − xk

)
is a sign function that takes on the values of 1, 0, or -1 based
on the sign of xj −xk , and its values can be calculated by the
following equation:

sign
(
xj − xk

)
=

 −1,xj − xk < 0,
0,xj − xk = 0,
1,xj − xk > 0.

(2)

After calculating the S sequence, the variance of S can be
computed as follows:

VAR(S)

=
1

18

[
n(n− 1)(2n+ 5)−

g∑
p−1

tp
(
tp − 1

)(
2tp + 5

)]
, (3)

where n is the length of the time series, g is the length of any
given tied group, and tp is the length of the data set series
in the pth group. Then, the defined test statistic ZMK can be
transformed from the statistical value S, and the equation is
as follows:

ZMK =


=

S−1
√

VAR(S)
if S > 0,

= 0 if S = 0,
=

S+1
√
VAR(S)

if S < 0.
(4)

At the given significance level α, if −Zα/2 ≤ ZMK ≤ Zα/2,
then the H0 (null hypothesis) is accepted, which means that
there is no significant trend in the time series. By contrast,
a positive ZMK indicates that the tested time series has an
upward trend, while a negative value indicates a downward
trend.

3.2.2 Mann–Kendall break point test

The break point of the hydrometeorological time series de-
notes a change from one stable state to another stable state
(Xu et al., 2018). It occurs when the climate system breaks
through a certain threshold. The Mann–Kendall break point
test has been widely used to test break points for hydrome-
teorological time series, signaling when abrupt changes start

(Sneyers, 1991). This test method is used to determine the
break point of the observed annual streamflow in this study.
The defined statistic UFk is obtained by the following formu-
las:

UFk =
Sk −E(Sk)
√

Var(Sk)
k = 1,2, . . .,n, (5)

Sk =

k∑
i=1

riri =

{
1 xi > xj ,

0 else, j = 1,2, . . ., i, (6)

where xi is the variable to be tested and n is the total number
of data points. The expectation E(Sk) and variance Var(Sk)
of the data series can be calculated as follows:

E(Sk)=
n(n− 1)

4
, (7)

Var(Sk)=
n(n− 1)(2n+ 5)

72
. (8)

UFk is a sequence of statistics calculated by arranging x1, x2,
. . ., xn in the order of time series x that obeys the standard
normal distribution. Then, treating the time series x in re-
verse order xn, xn−1, . . ., x1, the above process is repeated but
by using a reversed definition of UBk =−UFk,k = n,n−
1, . . .,1. Given the significance level α (0.01 in this study),
if UBk =−UFk,k = 1,2, . . .,n, no significant trend is de-
tected, where Uα/2 is the standard normal deviation. In con-
trast, this means that the tested sequence has a significant
upward or downward trend when |UFk|>Uα/2. Then, the
curves of UFk and UBk are plotted. If there is an intersec-
tion of the two curves and the trend of the data series is sta-
tistically significant, then this intersection is regarded as the
break point of the data series.

After identification of the break points in the annual
streamflow series, the study period is divided into a “natu-
ral period” (before the break point) and an “impacted pe-
riod” (after the break point) (Wang et al., 2015; Bao et al.,
2012). The “natural period” means that there is no signifi-
cant increase or decrease in streamflow during this period,
and it also means that relatively slow CC is the dominant
factor and that the impact of HAs is very small during this
period. Consequently, the impacted period indicates a sig-
nificant change in streamflow during this period, mostly due
to factors such as the construction of water conservancy en-
gineering facilities, increased water consumption for irriga-
tion, changes in land use, and increased water consumption
in cities and towns.

3.3 Soil and Water Assessment Tool (SWAT) model

The SWAT model is a semi-distributed, physical process-
based hydrological model developed by the Agricultural Re-
search Service of the United States Department of Agricul-
ture (USDA-ARS) (Arnold et al., 1998). The SWAT model
first divides the study area into several subbasins based on
DEM data, and then each subbasin is further divided into
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several HRUs (hydrologic response units) based on land use
and soil data sets. Then, streamflow generation at the sub-
basin scale is calculated following the principles of water
balance and energy balance after inputting the meteorolog-
ical data sets. Finally, the total flow of river basin exports
is calculated according to the Muskingum method (Tang et
al., 2019; Arnold et al., 2012b). We chose to use the SWAT
model in this study because numerous published studies have
proven that this model has excellent performance in hydro-
logical simulations across the world (Tang et al., 2019; Zhao
et al., 2018a, b; Lee et al., 2018).

The calibration of model parameters is executed using the
independent software SWAT-CUP, which was developed by
Abbaspour et al. (2007). This software is freely available and
provides five parameter calibration and uncertainty analysis
methods. In this study, the sequential uncertainty domain pa-
rameter fitting version 2 (SUFI-2) algorithm (Abbaspour et
al., 1997, 2004) was used to perform parameter calibration
and uncertainty analysis, because this method has proven to
have the advantages of shorter calculation time, ease of im-
plementation, and ability to set arbitrary objective functions
(Zhao et al., 2018a; Tuo et al., 2016; Wu and Chen, 2015).
The performance of the SWAT model was evaluated by the
Nash–Sutcliffe efficiency coefficient (NSE) (Nash and Sut-
cliffe, 1970) and relative error (RE):

NSE= 1−

∑N
i=1
(
Qobs,i −Qsim,i

)2∑N
i=1
(
Qobs,i −Qobs

)2 , (9)

RE=
Rsim−Robs

Robs
× 100%, (10)

where Qobs,i and Qsim,i are the observed and simulated
streamflow, respectively, Qobs is the mean value of the ob-
served streamflow, N is the total number of days or months
in the calibration period, and Rsim and Robs are the mean an-
nual simulated and observed streamflow, respectively.

3.4 Construction of the posterior histogram
distribution of the contribution rate

In this section, we introduce how to calculate the CR of CC
and HAs to streamflow variations and how to construct the
posterior histogram distribution (PHD) of the CR to consider
the uncertainty of hydrological simulations.

3.4.1 CR of CC and HAs

A schematic diagram of the attribution evaluation of stream-
flow changes is shown in Fig. 3. 1Q in the figure represents
the amount of change in the observed streamflow during the
impacted period based on the natural period, while1Qcc and
1Qha represent the amount of streamflow change caused by
CC and HAs, respectively. The total change in the annual
streamflow can be calculated using the following formula:

1Q=1Qcc+1Qha =Qoi−Qon, (11)

whereQoi andQon are the mean annual observed streamflow
(m3 s−1) in the impacted period and natural period, respec-
tively.

The hydrological and meteorological data in the natural
period are input into the SWAT model, and using the SUFI-2
method to calibrate the model, a set of parameters represents
the characteristics of the catchment under natural conditions
with less impact from HAs. Then, this set of parameters is
brought back into the SWAT model using the meteorological
data of the impacted period. Based on the above simulation
results, the CC induced in streamflow can be calculated as
follows:

1Qcc =Qsi−Qsn, (12)

where Qsi and Qsn represent the mean simulated annual
streamflow (m3 s−1) for the impacted period and natural pe-
riod, respectively. Thus, the streamflow change induced by
HAs can be calculated by the following equation:

1Qha =1Q− 1Qcc. (13)

After the calculation of1Qcc and1Qha, the CRs of CC and
HAs to streamflow changes, which are defined as CRcc and
CRha, respectively, can be estimated as

CRcc =
|1Qcc|

|1Q|
× 100%, (14)

CRha =
|1Qha|

|1Q|
× 100%. (15)

Equations (12) to (15) are also applicable to quantify the CR
of CC and HAs to streamflow changes on a monthly scale.

3.4.2 Construction of the PHD of the CR of CC and
HAs

Before the construction of the PHD of the CR of CC and
HAs, the sensitivity of the parameters of the SWAT model
is first conducted. Based on the related published literature
(Zhao et al., 2018a; Yang et al., 2008; Malagò et al., 2015)
and the authors’ experience, the Latin hypercube and global
sensitivity methods were used to perform the uncertainty
analysis (Abbaspour et al., 2007). The global sensitivity anal-
ysis method is the estimation of the average change in the
objective function caused by the change in each parameter,
and all parameters change during the whole process. A t test
was used to identify the relative sensitivity of each param-
eter. Considering the influence of the snowmelt streamflow
process upstream of the LR basin on the hydrological simu-
lation, 22 parameters were selected, and the details of these
selected parameters are shown in Table 2. According to the
suggestion of Abbaspour et al. (2004), 500 simulations were
set up to implement the sensitivity analysis. The t stat and
P values were used to measure which parameters were more
sensitive, where a larger absolute t-stat value and a smaller
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Figure 3. Schematic diagram of the contribution rate (CR) of climate change (CC) and human activities (HAs) to streamflow change using
SWAT modeling. (Notation: 1Q, 1Qcc, and 1Qha, respectively, represent the amount of streamflow change in the impacted period, the
amount of streamflow change caused by CC, and the amount of streamflow change caused by human activities.)

Table 2. Twenty-two selected SWAT model parameters in the sensitivity analysis at Yunjinghong station.

Parameter Description Parameter range

R_CN2 SCS runoff curve number for soil condition −0.2–0.2
R_SOL_AWC Available water capacity of each soil layer −0.2–0.1
A_GWQMN Threshold depth of water in the shallow aquifer required for return flow to occur 0–25
V_SNOCOVMX Minimum snow water content that corresponds to 100 % snow cover 0–500
V_SMFMN Minimum melt rate for snow during the year (occurs on the winter solstice) 0–20
V_CH_K2 Effective hydraulic conductivity in the main channel alluvium 0–500
V_GW_REVAP Groundwater “revap” coefficient 0.02–0.2
V_REVAPMN Threshold depth of water in the shallow aquifer for “revap” to occur 0–500
V_GW_DELAY Groundwater delay (days) 0–500
V_ALPHA_BF Baseflow alpha factor (days) 0–1
V_SOL_BD Moist bulk density 0.9–2.5
A_ESCO Soil evaporation compensation factor 0–0.2
V_OV_N Manning’s “n” value for overland flow −0.01–0.6
R_RCHRG_DP Deep aquifer percolation fraction 0–1
V_CH_N2 Manning’s “n” value for the main channel 0.018–0.15
R_SLSUBBSN Average slope length 0–0.2
V_SMTMP Snowmelt base temperature −5–5
V_TLAPS Temperature lapse rate −10–10
V_SMFMX Maximum melt rate for snow during the year 0–20
R_SOL_K Saturated hydraulic conductivity −0.8–0.8
V_SFTMP Snowfall temperature −5–5
V_ALPHA_BNK Baseflow alpha factor for bank storage 0–1

(Notation: R_, V_, and A_represent multiplying, replacing, and adding the corresponding parameter values, respectively, in the process of calibrating the
parameters.)

absolute P value represent a higher sensitivity of a given pa-
rameter.

Based on the sensitivity analysis results, nine parameters
with the highest sensitivity were selected to recalibrate the
model with 1000 simulations. According to the recommen-
dations in Tuo et al. (2016) and Moriasi et al. (2007), the per-
formance of the hydrological simulation can be divided into
four grades based on the NSE values: very good performance
(0.75≤NSE< 1), good performance (0.65≤NSE< 0.75),
satisfactory performance (0.5≤NSE< 0.65), and unsatisfac-

tory performance (NSE< 0.5). According to this evaluation
standard, we selected simulation results with NSE greater
than 0.75 out of 1000 simulation results to construct the pos-
terior histogram frequency distribution (PHD) of the CR of
CC and HAs to streamflow changes using the method intro-
duced in Sect. 3.4.1. Note that to reduce the random error
caused by the number of samples, we set the number of sim-
ulations with NSEs≥ 0.75 to be more than 500; that is, we
needed to repeatedly use Latin hypercube sampling and the
SUFI-2 algorithm until the number of simulation results that
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met the conditions was more than 500. Then, the CR of more
than 500 groups of CC and HAs to streamflow change was
calculated. Finally, the PHD of the CR of CC and HAs was
constructed in 5 % steps. At this stage, the histogram column
with the highest frequency in the PHD was selected as the
result of quantitative analysis, which considered the uncer-
tainty, and the arithmetic average of all results in the column
was used as the actual value of the CR of CC and HAs.

3.5 Comparison of the newly developed quantification
method with the other two methods

In order to evaluate the calculation accuracy of the novel
framework proposed in this study to quantify the CR of CC
and HAs to streamflow changes, the Budyko framework was
used first. This framework was developed by Budyko (1961)
and links climate variability to streamflow (Q) and actual
evapotranspiration (AE) through the assumption that the
long-term average annual catchment AE is determined by
the catchment average precipitation (P ) and the catchment
potential evapotranspiration (PET) (Liu and Liang, 2015).
Over the past few decades, the Budyko framework and its
variants have been widely used to conduct CC and HA attri-
bution analyses of streamflow changes (Liu et al., 2017; Han
et al., 2019; Xin et al., 2019). According to its theoretical
assumptions, the multiyear average water balance within the
catchment can be expressed as follows:

1S = P −AE−Q, (16)

where P ,Q, and AE represent the multiyear average precipi-
tation (mm), streamflow (mm), and actual evapotranspiration
(mm), respectively. 1S (mm) is the change in the amount of
water storage at the watershed scale, and it is reasonable to
assume that it is equal to 0 on the multiyear average scale.
According to Zhang et al. (2001), the AE can be calculated
by the following formula:

AE
P
=

1+ω(PET/P )

1+ω(PET/P )+ (PET/P )−1 , (17)

where ω is the plant-available water coefficient which is re-
lated to the vegetation type of the catchment. According to
the method for selecting the value of ω provided in Zhang’s
research (Zhang et al., 2001) and based on the multiyear aver-
age AE /P (0.55) and PET / P (0.96) values in the LR basin,
this study set the value of ω to 0.5.

The changes in the catchment streamflow due to CC,
which are mainly characterized by precipitation (P ) and ac-
tual evapotranspiration (AE), can be expressed as follows:

1Qcc = α1P +β1AE, (18)

where 1Qcc (mm) represents the streamflow changes in-
duced by CC, α and β represent the sensitivity of streamflow
to precipitation and actual evapotranspiration, respectively,
and1P and1AE are the changes in precipitation and actual

evapotranspiration in the impacted period compared with the
natural period, respectively. The sensitivity coefficients α and
β are defined as follows:

α =
1+ 2DI+ 3ωDI(

1+DI+ω(DI)2
)2 , (19)

β =−
1+ 2ωDI(

1+DI+ω(DI)2
)2 , (20)

where DI is the dryness index which is equal to PET/P .
Through the above formulas, we can separate the CR of

CC to streamflow variations and further compare it with the
calculation results of the new method proposed in this paper.

In addition to the Budyko framework, we also used the
GMSWU data introduced in Sect. 2.2 and the reservoir dead
storage capacity data to roughly separate the CR of HAs from
the streamflow changes in the LR basin. The GMSWU data
set provides five types of water withdrawals (i.e., irrigation,
livestock, domestic use, mining, and manufacturing) within
the period of 1970 to 2010 in the LR basin, and it was gener-
ated by downscaling country-scale estimates of different sec-
toral water withdrawals from the Food and Agriculture Or-
ganization (FAO) of the United Nations AQUASTAT, which
ensured its good accuracy (Huang et al., 2018). Here, AQUA-
STAT refers to the FAO’s Global Information System on Wa-
ter and Agriculture (http://www.fao.org/aquastat/en/, last ac-
cess: 16 October 2022). Catchment-scale annual water use
data were calculated by spatially averaging all grids within
the LR basin, and then streamflow changes caused by each
type of water use were obtained using the average annual
water use value during the impacted period minus that during
the natural period. As shown by Han et al. (2019) and Zhao
et al. (2012), during the past 2 decades, dam construction
has been the most significant HA affecting the streamflow
changes in the LR basin. Therefore, in this study, we con-
verted the dead storage capacity of six large reservoirs (Ta-
ble 1) into units of millimeters according to their watershed
control area because the impact of the reservoir on the out-
let flow of the watershed can be used as its minimum impact
value on the multiyear average scale. It should be pointed out
that here we use two seemingly simpler methods to verify the
computational results of the new framework proposed in this
study. However, this does not reduce the innovation of this
study, as the new framework has the following significant
advantages over the other two methods. (1) The new frame-
work can perform quantitative calculations on the annual and
monthly scales. (2) It has relatively fewer data requirements.
(3) It has a more explicit physical meaning.
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Figure 4. The Mann–Kendall break point testing statistics of the
annual streamflow for the LR basin from 1961 to 2015.

4 Results

4.1 Hydrological and meteorological trends in the LR
basin

4.1.1 Trends and break points of the streamflow

The results of the Mann–Kendall break point test for the
annual streamflow at Yunjinghong station within the period
from 1961 to 2015 are shown in Fig. 4. Since the intersec-
tion of the UF and UB curves in Fig. 4 is within the confi-
dence intervals (of 0.05 and 0.01), the break point of the an-
nual streamflow in the LR basin occurred in 2005. Combined
with the construction of reservoirs in the LR basin, the con-
struction of the Xiaowan hydropower station started in Oc-
tober 2004 (with total storage capacity= 15.3 km3). There-
fore, according to the principle of time division introduced
in Sect. 3.1, the study period can be divided into the natural
period (from 1961 to 2004) and the impacted period (from
2005 to 2015). UF curves of the MK break point test rep-
resent the trend of the time series. As shown in Fig. 4, the
observed annual streamflow at Yunjinghong station had an
increasing trend before 1967, after which the annual stream-
flow experienced a significant decreasing trend until 2015.

Figure 5 shows the MK monotonic trend testing statistics
of the annual and monthly streamflow for the LR basin from
1961 to 2015. A positive Z statistic represents an upward
trend in the time series, and vice versa. The annual average
streamflow in the LR basin showed a significant decreasing
trend and passed the 0.01 significance level. This decreasing
trend of the annual streamflow in the LR basin is consistent
with the conclusions of Han et al. (2019). For the monthly
streamflow, the streamflow from February to May showed an
increasing trend, among which March and May passed the
significance level of 0.05 (with the Z statistic greater than
1.96). The streamflow in the remaining months showed a de-
creasing trend. Except for June, the decreases in the other
months all passed the 0.05 significance level. The decrease
in the streamflow from August to October even passed the
0.01 significance test. Among them, the largest decrease was
in August (Z statistic=−4.23). This trend of changes in
streamflow during the year was mainly caused by the oper-

Figure 5. The Mann–Kendall monotonic trend test statistics of the
annual and monthly streamflow for the LR basin from 1961 to 2015.

Figure 6. Time series and the Mann–Kendall break point test statis-
tics of the annual precipitation (a) and mean temperature (b) in the
LR basin from 1961 to 2015.

ation of reservoirs within the basin, because reservoirs often
release flows during dry periods (from January to May) to al-
leviate possible droughts in the downstream areas, and they
store water during wet periods (from June to October) to re-
duce the flood control pressure in the downstream area below
the reservoir.

4.1.2 Trends and break points of the mean areal
precipitation and temperature

The time series and MK break point test results of the an-
nual areal precipitation and mean temperature for the LR
basin from 1961 to 2015 are presented in Fig. 6. In general,
changes in the annual precipitation were more complicated
than changes in the mean temperature in the LR basin. The
precipitation showed a fluctuating trend, while the mean tem-
perature almost showed a continuous rising trend throughout
the study period.

As shown by the time series of the annual precipitation
in the LR basin in Fig. 6a, there was a slightly decreas-
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ing trend in the LRB during the last 55 years, especially
in the past 10 years, but this trend was not significant ac-
cording to the result of the MK test at the α = 0.05 signifi-
cance level. The areal annual precipitation in 1985 reached
971 mm, which was the highest in the last 55 years. In 2009,
it was 769 mm, which was the lowest value from 1961 to
2015. The MK break point test results showed that there were
11 break points in the annual precipitation time series. Re-
garding the positive and negative changes in the UF value, the
annual precipitation showed a fluctuating trend from 1961
to 1966; then, until 1998, the annual precipitation showed a
small decreasing trend (except in 1991); from 1999 to 2006,
the annual precipitation experienced a small increase, and in
the last 9 years (2007–2015), the annual precipitation in the
study area showed a decreasing trend.

The time series of the annual mean temperature in the LR
basin presented in Fig. 6b shows that the annual mean tem-
perature in the study area changed relatively smoothly before
1998. After 1998, the temperature began to rise significantly
and exceeded the significance level of 0.01. The annual mean
temperature in 1963 reached 5.2◦, the coldest temperature in
the study period. The hottest year was 2009, during which the
mean temperature was 7.2◦. In terms of changes in the UF
value, the mean temperature showed a fluctuating trend from
1961 to 1968 and then continued to rise until it exceeded the
significance level of 0.05 in 1991 and exceeded the signifi-
cance level of 0.01 in 1998. The break point of the annual
mean temperature was detected in 1997.

The MK monotonic trend test statistics of the annual and
monthly precipitation and mean temperature for the LR basin
from 1961 to 2015 are presented in Fig. 7. The annual pre-
cipitation in the study area showed an insignificant decreas-
ing trend (Z statistic=−0.55), while the annual average
temperature showed a significant increasing trend (Z statis-
tic= 6.02) and exceeded the significance level of 0.01. The
monthly change in precipitation also showed a fluctuating
trend. The increasing trend of precipitation in April and the
decreasing trend of precipitation in June exceeded the signif-
icance level of 0.05, while the trends of precipitation in the
other months were not significant (|z statistic|< 1.96). The
trend of the monthly mean temperature was relatively simple.
Except for the increase in the mean temperature in Novem-
ber, which passed the significance level of 0.05, the increas-
ing trend of the mean temperature in all the other months
passed the significance level test of 0.01. This also means
that the climate in the study area has been gradually warm-
ing and drying during the past 55 years.

4.2 Results of the SWAT simulations

4.2.1 Sensitivity analysis of the SWAT model
parameters

As described in Sect. 3.4.2, the sensitivity of 22 selected pa-
rameters was evaluated using the SWAT-CUP software (Ab-

Figure 7. The Mann–Kendall monotonic trend test statistics of the
annual and monthly precipitation and mean temperature for the LR
basin from 1961 to 2015.

baspour et al., 2007; Abbaspour et al., 1997), and this soft-
ware integrates the global sensitivity analysis method and the
parameter optimization methods (such as SUFI-2). SWAT-
CUP can perform a combined optimization and uncertainty
analysis using a global search procedure and deal with a
large number of parameters through Latin hypercube sam-
pling. The sensitivity evaluation indexes, the t stat and P
value, of 22 parameters are shown in Table 3. Obviously,
the sensitivity ranks of the parameters calculated based on
SUFI-2 showed that ALPHA_BNK has the highest sensitiv-
ity, followed by CH_K2, SOL_BD, GW_REVAP, SFTMP,
CN2, SOL_K, SMTMP, and ALPHA_BF, whereas the other
14 parameters have less sensitivity for the streamflow simu-
lation. ALPHA_BNK mainly controls the baseflow process
within the watershed, and this parameter has also proven to
have high sensitivity in other relevant studies (Wu and Chen,
2015), especially in mountainous areas. CH_K2 and AL-
PHA_BF are mainly related to groundwater runoff, CN2 is
the SCS runoff curve number, and these parameters all have
higher sensitivity in many published articles on the SWAT
model parameter sensitivity (Zhao et al., 2018a; Wu and
Chen, 2015). Other parameters with high sensitivity, such as
SFTMP and SMTMP, which mainly control the snowmelt
process in the basin, also indicate that snowmelt runoff plays
an important role in the recharge of the LR basin (Gao et al.,
2019). Based on the above sensitivity analysis results, the top
nine parameters of the sensitivity ranking were selected for
further research.

4.2.2 Results of the SWAT simulations

As mentioned above, the nine parameters with the highest
sensitivity rankings that controlled different stages of the
basin’s streamflow production and flow concentration were
selected to recalibrate the model using the SUFI-2 method,
and the number of simulations was set to 2000. To reduce
the influence of the initial value of the model parameters
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Table 3. Basin-wide sensitivity ranking calculated from 22 selected parameters using SUFI-2.

Parameter t stat P value Parameter t stat P value

V_ALPHA_BNK 38.1 0 V_CH_N2 1.25 0.21
V_CH_K2 −10.5 0 V_TLAPS 1.19 0.23
V_SOL_BD 6.81 0 A_ESCO 1.12 0.24
V_GW_REVAP −5.0 0 V_SNOCOVMX −1.01 0.31
V_SFTMP −4.73 0 V_PLAPS −0.73 0.47
R_CN2 4.60 0 V_GW_DELAY −0.68 0.50
R_SOL_K 4.34 0 R_SLSUBBASN −0.65 0.52
V_SMTMP 3.41 0 V_OV_N 0.44 0.66
V_ALPHA_BF −2.70 0 V_SMFMX 0.36 0.72
R_SOL_AWC −2.46 0.01 A_GWQMN 0.15 0.88
R_RCHRG_DP −1.74 0.08 V_REVAPMN −0.07 0.94

(Notation: V_ represents replacing the default value with the given value, R_ represents the relative change
(%), and A_ represents adding the given value to the original parameter value.)

Table 4. Evaluation metrics, Nash–Sutcliffe efficiency, and relative
error of the SWAT model on a monthly scale.

Period NSE RE (%)

Calibration (1963–1990) 0.94 −10.62
Validation (1991–2004) 0.95 −8.65
Overall (1963–2004) 0.94 −9.97

on the simulation results, during the model parameter cali-
bration process, 1961 and 1962 were set as the warming-up
period. Table 4 shows the evaluation metrics of the simu-
lation using the SWAT model at a monthly scale with the
largest NS value. For the calibration period from 1963 to
1990, the NSE and RE were found to be equal to 0.94 %
and −10.62 %, respectively; for the validation period from
1991 to 2004, the model performance was slightly better
than that in the calibration period, and the NSE and RE
were 0.95 % and −8.65 %, respectively. For the whole pe-
riod from 1963 to 2004, the NSE (0.94) and RE (−9.97 %)
were also satisfactory. According to the requirements of the
Information Center of the Ministry of Water Resources, the
data provider, this study standardized the observed and sim-
ulated runoff curves of Yunjinghong station. Figure 8 shows
the normalized monthly observed and simulated streamflow
at Yunjinghong station from 1963 to 2004 and the histogram
of the mean monthly precipitation in the LR basin. As seen
from Fig. 8a and b, the SWAT model can simulate the flow
processes very well and almost perfectly matches the ob-
served streamflow curve. Note that the simulated streamflow
overestimated the floods in individual years (1973, 1985, and
1995 in Fig. 8b), which might be caused by the uncertainty
of the precipitation product (Han et al., 2019). In summary,
the SWAT model can better simulate the streamflow process
at Yunjinghong station on a monthly scale; therefore, this
model is considered suitable for the next part of the research.

According to the method described in Sect. 3.4.2, sim-
ulations with NSEs greater than 0.75 among the 1000
simulations were selected. Figure 9 shows the number
of simulations with 0.75≤NSE< 0.8, 0.8≤NSE< 0.85,
0.85≤NSE< 0.9, and 0.9≤NSE< 0.95 during the calibra-
tion period (1963–1990), the validation period (1991–2004)
and the whole period (1963–2004) on a monthly scale. In
summary, there were 575 simulations with NSEs greater than
0.75 out of 1000 simulation results during the calibration pe-
riod, the validation period, and the whole period. Clearly, the
NSEs of most simulation results were between 0.75 and 0.9,
with 533, 537, and 533 simulations in the calibration period,
the validation period, and the whole period, respectively, and
only a few simulation results had NSEs greater than 0.9. In
the different periods, the model performed well in the vali-
dation period compared with that in the calibration period,
which indicated that the model has good predictive ability in
the LR basin.

4.3 Quantification of CC and HAs for streamflow
change considering the uncertainties

4.3.1 Quantification of the impacts considering the
uncertainties at the annual scale

The 575 simulations with NSEs greater than 0.75 were se-
lected to construct the posterior histogram frequency dis-
tribution (PHD) of the CR of CC and HAs to streamflow
changes in the LR basin. Figure 10 shows the number of sim-
ulations of the CC CR in 5 % intervals and their correspond-
ing NS box plots. In total, 167 out of 575 simulations calcu-
lated that the CR of CC in the LR basin to runoff reduction
was 40 %–45 %, and the average NSE was 0.84. Then, 131
and 92 of the simulation results had calculated climate CRs
of 35 %–40 % and 45 %–50 %, respectively. The CR of CC in
other intervals had relatively few simulations. The NSE value
of the CR between 70 % and 75 % was largest (NSE= 0.86),
but it had only one simulation. Therefore, when using hy-
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Figure 8. Normalized monthly observed and simulated streamflow at Yunjinghong station for the calibration (from 1963 to 1990) and
validation (from 1991 to 2004) periods. The blue histogram shows the monthly precipitation in the LR basin. The normalized streamflow
was calculated from the observed and simulated streamflow divided by their average values.

Figure 9. Number of simulations with NSEs greater than 0.75 dur-
ing the calibration (1963–1990), validation (1991–2004), and whole
periods (1963–2004).

drological simulations to quantify the CR of CC and HAs to
the streamflow change in the watershed, not only the mer-
its of the model performance, but also the uncertainty of the
model simulation should be considered. In general, accord-
ing to the results calculated by the new quantitative frame-
work proposed in this paper, streamflow changes in the LR
basin duo to CC accounted for 40 %–45 % (with an aver-

age CR of 42.6 %), and the corresponding HAs accounted
for 55 %–60 % (with an average CR of 57.4 %).

Table 5 shows the average values of the main hydrologi-
cal and meteorological elements and their changes during the
natural period and the impacted period. During the impacted
period, compared with the natural period, the multiyear aver-
age streamflow decreased by 396 m3 s−1 (86.5 mm) and the
precipitation decreased by 25 mm; as basin-wide tempera-
tures increased, the mean potential evapotranspiration and
temperature in the basin increased by 6.4 mm and 0.9 ◦C. In
terms of relative changes, the streamflow decreased by 22 %,
but precipitation and potential evapotranspiration changed by
−2.9 % and 6.4 %, respectively, which may indicate that the
streamflow reduction in the LR basin was mainly caused by
HAs.

4.3.2 Quantification of the impacts considering the
uncertainties on a monthly scale

The monthly CR of CC and HAs to the changing stream-
flow at Yunjinghong station was also analyzed using the new
framework proposed in this study, and the results are shown
in Fig. 11. In general, only June and November had a large
CR of CC, which reached 95 %–99.9 % and 70 %–75 %, re-
spectively, while the CR of CC in the other 10 months was
relatively small. The trends of the streamflow and the pre-
cipitation and mean temperature in the study area shown in
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Figure 10. Histogram of the number of simulations of the CR (with 5 % steps) of climate change to streamflow reduction in the LR basin at
the annual scale and corresponding Nash–Sutcliffe efficiency box plots.

Table 5. Hydrological and meteorological elements in the natural (1963–2004) and impacted periods (2005–2015) of the LR basin and their
changes during the two periods.

Hydrometeorological Streamflow Streamflow Precipitation Potential Temperature
element (m3 s−1) (mm) (mm) evapotranspiration (mm) (◦C)

Natural period 1801.5 398.6 863.8 832.5 5.8
Impacted period 1405.5 312.1 838.8 885.8 6.7
Amount of change −396 −86.5 −25 53.3 0.9
Relative change (%) −22.0 −22.0 −2.9 6.4 15.9

Figs. 5 and 7 indicate that the streamflow in June and Novem-
ber showed a decreasing trend (Fig. 5), while the precipita-
tion in June decreased significantly (passing the significance
level of 0.05), and the temperature increased significantly
(passing the significance level of 0.05) (Fig. 7). This signif-
icant decrease in precipitation and the significant increase in
temperature were the main reasons for the decrease in the
streamflow in June; that is, the decrease in the streamflow in
June was mainly caused by CC. The main factors that led to
the decrease in the streamflow in November were also the de-
crease in precipitation and the significant increase in temper-
ature (Fig. 7). From the results of each month, the CR of CC
in March and April was the smallest, reaching 10 %–15 %,
followed by July (15 %–20 %), May, August, and September
(20 %–25 %), October (25 %–30 %), January and February
(30 %–35 %), and December (45 %–50 %).

The mean CR of CC and HAs at the monthly scale, which
was calculated by averaging the CRs of all simulation re-
sults within the highest frequency, is displayed in Fig. 12a,
and the monthly precipitation, potential evapotranspiration,
and runoff depth during the natural period and the impacted
period are shown in Fig. 12b. Overall, the monthly CR was
consistent with the annual results, and the CR in a total of
10 months was mainly due to HAs that led to a decrease in
the streamflow in the LR basin. It is worth noting that the
CR of CC in June reached 96 %. Figure 12b shows that the
precipitation in June during the impacted period was sig-
nificantly reduced compared with the natural period (with
a 20.2 mm decrease). At the same time, the increase in po-

tential evapotranspiration in June was also relatively obvi-
ous (with a 9.2 mm increase). Figure 12b clearly shows that
the streamflow in the LR basin during the impacted period
was significantly reduced compared with the natural period
in June to October, and the precipitation had little change,
except in June. Therefore, we can conclude that the main
reason for the decrease in the streamflow in the LR basin
was HAs, as shown in Fig. 12a. In this study area, the main
cause of the streamflow changes was mainly due to the con-
struction of reservoirs (such as Manwan and Xiaowan), and
at the same time, the water storage of these water conser-
vancy facilities during the flood period also provided engi-
neering support for protecting the safety of downstream life
and property. Conversely, during the dry season (from Jan-
uary to May), the streamflow in the impacted period showed
an increasing trend compared with the natural period, and the
increase in runoff during these 5 months was mainly due to
HAs (Fig. 12a), which might have been caused by the release
of water from the reservoirs during the dry season. For ex-
ample, in 2016, due to the influence of El Niño, the countries
along the lower Mekong River all suffered severe drought.
The Chinese government immediately asked the Jinghong
Reservoir to release water urgently, which effectively helped
downstream countries mitigate a series of possible effects
caused by drought and water shortages (D. Li et al., 2017).
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Figure 11. Histogram of the number of simulations of the CR (with a 5 % step) of climate change to streamflow reduction in the LR basin
on a monthly scale.

Figure 12. CR of CC and human activities to the changing monthly streamflow at Yunjinghong station (a), monthly precipitation, potential
evapotranspiration, and runoff depth during the natural period and the impacted period in the LR basin (b). (Notation: HA: “human activities”,
CC: “climate change”, PET: “potential evapotranspiration”, NP: “natural period”, and IP: “impacted period”.)
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4.4 Comparison with the other two methods

In this subsection, the new proposed framework that con-
siders the uncertainty of hydrological simulations was com-
pared with the Budyko framework, five sections of wa-
ter withdrawal data from the LR basin, and the equivalent
streamflow depth converted from the dead storage capacity
of six large hydropower stations.

Table 6 shows the CR of CC and HAs to annual stream-
flow changes at Yunjinghong station, which was calculated
from the Budyko framework. The actual evapotranspiration
was calculated from the annual precipitation minus the an-
nual streamflow depth. As shown in Table 6, compared with
the natural period, the precipitation and streamflow depth in
the impacted period showed a decreasing trend.

The precipitation decreased by 25 mm, and the streamflow
depth decreased by 86.5 mm. In contrast, the actual evap-
otranspiration showed an increasing trend, which may be
related to the continuous increase in temperature in recent
decades. The CR of CC and HAs to streamflow changes ac-
counted for 37.2 % and 62.8 %, respectively, which was basi-
cally consistent with the results calculated by the new frame-
work proposed in this study (the difference was 5.4 %).

Figure 13 shows the annual water withdrawals (i.e., do-
mestic, irrigation, livestock, manufacturing, and mining) in
the LR basin during the period from 1970 to 2010 and
changes in the installed capacity and dead reservoir stor-
age from 1992 to 2015. In addition to the amount of water
use for irrigation, the other four types of water use with-
drawals all showed an increasing trend from 1970 to 2010,
with domestic water consumption increasing the most (lin-
ear slope= 0.043). The comparison between the impacted
period and the natural period showed that the other four types
of water consumption, except for domestic water use, all had
a larger increase in the natural period than during the im-
pacted period. To meet the power generation needs of South-
west China and the flood control and drought resistance re-
quirements of downstream countries, the total dead storage
capacity and total installed capacity of the reservoirs from
1992 to 2015 all showed a significant increase, especially af-
ter the construction of Nuozhadu hydropower station in 2012,
shown in Fig. 1.

According to the method introduced in Sect. 3.5, the
changes in the streamflow caused by HAs in the LR basin
were separated, which mainly included the five sections of
water consumption changes and the same amount of water
depth as the total dead storage capacity of the reservoir. Fig-
ure 14 shows the CR of the five types of water withdrawals by
HAs and the construction of the reservoirs to the streamflow
changes in the LR basin during the impacted period (from
2005 to 2015) compared with the natural period (from 1961
to 2004). Overall, the CR of HAs to streamflow changes was
59.91 %, while that of CC was 40.09 %. This result was also
consistent with the results calculated in Sect. 4.3.1. Among
them, the streamflow depth caused by the construction of the

reservoir was reduced by −50.17 mm, which was also the
factor that had the greatest impact on streamflow compared
with other HAs, and its CR reached 58.0 %, while the CR
of the other five types of water withdrawal was relatively
small. The CRs of domestic, irrigation, livestock, manufac-
turing, and mining water withdrawals were 1.32 %,−0.35 %,
0.12 %, 0.79 %, and 0.03 %, respectively, a total of 1.91 %. In
other words, the decrease in the streamflow in the LR basin
was mainly due to the impact of HAs, and most of it was
caused by the construction of the reservoirs.

5 Discussion

5.1 How does parameter uncertainty affect the
quantitative results?

In this paper, we proposed a novel framework to quantify
the CR of CC and HAs to streamflow changes considering
the uncertainty of hydrological simulations. This is because
the phenomenon of “equifinality for different parameters” in
hydrological simulations greatly affects the quantification re-
sults. To preliminarily investigate the impact of model simu-
lation uncertainty of the quantitative results, we selected the
two simulation results with the largest NSEs in this study
for analysis. The evaluation metrics and CR of CC and HAs
are shown in Table 7, which shows that both simulations can
simulate the monthly streamflow at Yunjinghong station in
the LR basin accurately, and the two simulations have al-
most the same evaluation performance. However, the attribu-
tion analysis obtained from the two hydrological simulations
showed completely different results. In the first simulation
result, according to the method introduced in Sect. 3.4.1, the
streamflow changes in the LR basin were mainly caused by
CC, but in the second hydrological simulation, the opposite
conclusion was drawn; that is, HAs dominated. These were
almost the same hydrological simulation results but with op-
posite conclusions from the attribution analysis; this was one
of the reasons why we must consider the uncertainty of the
model parameters in the attribution analysis of CC and HAs
using hydrological simulations. The results of Sect. 4.3.1
and related published studies (Han et al., 2019) in the LR
basin show that the streamflow changes in the LR basin were
mainly caused by HAs.

Table 8 shows the values of nine highly sensitive parame-
ters of the two simulation results and the streamflow values
simulated by the two simulations in the natural period and the
impacted period. Table 8 and the calculation methods intro-
duced in Sect. 3.4.1 show that the watershed streamflow re-
duction caused by CC calculated by the first and second sim-
ulation results was −217.1 and −170.6 m3 s−1, respectively,
which was the reason why they had opposing calculated at-
tribution results. From the perspective of specific parameter
values, the most sensitive parameter is ALPHA_BNK, which
was the base flow alpha factor for bank storage (days) char-
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Table 6. CR of climate change (CC) and human activities (HAs) calculated by the Budyko framework.

Time period Precipitation Streamflow Actual CC HA
(mm) (mm) evapotranspiration (mm) (%) (%)

Natural period 863.8 398.6 463.7 37.2 62.8
Impacted period 838.8 312.1 526.6

Figure 13. Annual water withdrawals of the LR basin during the period from 1970 to 2010. The linear trend lines are indicated by blue
(1970–2004), green (2005–2010), and red (1970–2010), and in the last panel, the total dead storage capacity and installed capacity of the LR
from 1992 to 2012 are shown.

acterized by the bank storage recession curve. The difference
between the two calibration results was not large, and this
parameter was mainly controlled by the baseflow process,
having little effect on the average annual streamflow, while
the difference in CH_K2 in the two calibration results was
larger, at 303.87 and 106.12. This parameter represented the
effective hydraulic conductivity of the main channel alluvial
layer, which meant that the larger the CH_K2 value is, the
more likely the water in the main channel is lost to ground-
water; accordingly, the streamflow production at the outlet of
the watershed would decrease (Arnold et al., 2012b; Xu et al.,
2016; Zhao et al., 2018a). This might also be one of the rea-
sons why the first simulated streamflow (1617 m3 s−1) was

slightly smaller than the second one (1667.9 m3 s−1). The
SFTMP parameter, which was the temperature when pre-
cipitation was converted into snowfall, returned values for
the first simulation and the second simulation as 2.69 and
−0.11 ◦C, respectively; this meant that, in the first simula-
tion, more liquid precipitation was converted into a solid state
and less streamflow was formed, which also led to a smaller
simulated streamflow in the first simulation. The SMTMP
parameter, which was the snowmelt base temperature, was
−4.13 ◦C in the first simulation result and 3.73 ◦C in the sec-
ond simulation result. From basic physical knowledge, the
SMTMP parameter in the second calibration result was more
reasonable. Compared with other research results with sim-
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Table 7. Results of the CR of climate change and human activities for runoff changes with almost equal model performance (monthly) using
the SWAT model.

Simulation result Calibration Validation Overall Contribution
rate (%)

NSE RE (%) NSE RE (%) NSE RE (%) CC HA

1st simulation 0.94 −10.6 0.95 −8.6 0.94 −9.97 54.5 45.5
2nd simulation 0.94 −7.7 0.95 −8.7 0.94 −8.1 42.1 57.9

(Notation: CC and HA represent the climate change and human activities, respectively; NSE and RE represent the
Nash–Sutcliffe efficiency coefficient and the relative error, respectively.)

Figure 14. CR of domestic, irrigation, livestock, manufacturing,
and mining water withdrawals and reservoir construction and CC to
the streamflow changes at Yunjinghong station from 1961 to 2015.

ilar terrain features in this study area, Debele et al. (2010)
constructed the SWAT model in the high-altitude area of the
source of the Yellow River, China, and the SMTMP value ob-
tained was 4 ◦C. The difference between the two simulations
was not large for the set of the other parameters (SOL_BD,
GW_REVAP, CN2, and SOL_K) or the parameter that con-
trolled the baseflow (ALPHA_BF), with little effect on the
average streamflow of the basin. Based on the above, the sec-
ond simulation results were consistent with the calculation
results of the new framework proposed in this study. There-
fore, when we choose a hydrological simulation to analyze
the attribution of CC and HAs to streamflow variations, we
should clearly also consider the actual physical meaning and
the uncertainties of the model parameters.

In this study, 575 parameter combinations with good sim-
ulation results (NSE greater than 0.75) were selected, with a
step size of 5 %: it is proposed to reduce the influence of hy-
drological modeling uncertainty in the quantitative results by
constructing the posterior histogram distribution of the CR
of CC and HAs to watershed streamflow change. However,
it is undeniable that there are still unreasonable parameter
combinations in the simulation results with high probabil-
ity (167 times). For the LR basin, it is almost impossible to
obtain the measured values of all nine parameters with high
sensitivity (Table 3). Therefore, in order to further explore
the possible influence of unreasonable parameter values on

Table 8. Values of nine sensitivity parameters with similar simula-
tion results and their simulated streamflow in the natural and im-
pacted periods.

Simulation no. 1st 2nd
simulation simulation

V__ALPHA_BNK 0.84 0.68
V__CH_K2 303.87 106.12
V__SOL_BD 1.51 1.93
V__GW_REVAP 0.03 0.003
V__SFTMP 2.69 −0.11
R__CN2 −0.06 −0.12
R__SOL_K 0.32 0.31
V__SMTMP −4.13 3.73
V__ALPHA_BF 0.11 0.77
Simulated streamflow in the NP (m3 s−1) 1617.6 1667.9
Simulated streamflow in the IP (m3 s−1) 1400.5 1497.3

(Notation: NP: “natural period”, IP= : “impacted period”, and R_, V_, and A_represent
multiplying, replacing, and adding the corresponding parameter values, respectively, in the
process of calibrating the parameters.)

the quantitative results, we selected two parameters related to
snowmelt streamflow (SMTMP and SFTMP) to exclude un-
reasonable parameter combinations. According to the param-
eter value ranges recommended by Abbaspour et al. (2007)
and other related references (Arnold et al., 2012a; Yang et
al., 2017), in this study, the reasonable value range of these
two parameters is set to −5 to 5◦. After excluding parameter
combinations outside this value range, we obtained 55 sim-
ulation results with relatively reasonable parameter values,
and the quantization results obtained from this calculation are
shown in Fig. 15. It can be seen from Fig. 15 that, after ex-
cluding unreasonable parameter combinations, the calculated
CR of CC in the LR basin to the reduction of streamflow is
45 %–50 % (with an average CR of 47.1 %), and this result
is consistent with the results presented in Fig. 10 which were
derived from the novel framework proposed in our study. At
the same time, it is also proved that, although the calculation
framework proposed in this study may contain unreasonable
parameter combinations in obtaining the simulation results
with the highest frequency, the calculation results are still
highly accurate. In addition, for the research area where the
measured values of related parameters can be obtained, the
rationality and authenticity of the parameter values should
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Figure 15. Histogram of the number of simulations of the CR (with
5 % steps) of climate change to streamflow reduction in the LR
basin at the annual scale and corresponding Nash–Sutcliffe effi-
ciency box plots after excluding the parameter combinations.

Table 9. Areas (km2) of land use types in the LR basin in 1980,
1990, 2000, 2010, and 2015.

Land use type 1980 1990 2000 2010 2015

Farmland 10061 9969 10146 10016 9932
Forest 51679 51713 51615 51746 51543
Grassland 63454 63484 63389 63362 63266
Water 1281 789 828 828 1148
City 114 154 152 178 237
Unused land 7578 8058 8037 8036 8041
Permanent glacier 1087 309 371 371 365

(Nation: permanent glacier in Table 5 is a second-level type which belongs to “Water”.)

be fully considered while selecting the parameter combina-
tion with a higher NSE.

5.2 Land use/land cover change in the LR basin from
1980 to 2015

In Sect. 4.4, the water withdrawals of domestic, irrigation,
mining, livestock, and manufacturing, and in addition, dead
storage capacity of constructed reservoirs as well as the im-
pact of HAs, were separated. Then, the impacts of HAs on
streamflow changes were separated. However, HAs also in-
fluenced the land use change on rainfall-runoff characteris-
tics. Figure 16 shows the land use in the LR basin in 2015.
Grassland was the largest land use in the upper LR basin,
while the lower reaches were dominated by forest. Due to
the high-altitude terrain in the upper reaches, unused land
and glaciers were mainly distributed in this area. Table 9
shows the areas of land use types in the LR basin in 1980,
1990, 2000, 2010, and 2015. In general, the water area of
the LR basin showed a significant reduction from 1980 to
1990, which was possibly due to the decrease in the area of
glaciers due to the increase in temperature from 1980 to 1990
(Fig. 6). In contrast, the water area increased by nearly 38 %
from 2010 to 2015, which was mainly due to the construc-
tion of Nuozhadu hydropower station (with a total storage
capacity of 22.7 km3) within the basin.

The area of farmland in the LR basin showed a decreas-
ing trend during 2000–2010 and 2010–2015, which is also

Figure 16. Land use classification in the LR basin in 2015.

the main reason for the reduction in the irrigation water
consumption in the basin, which is consistent with the re-
sults shown in Fig. 13. The areas of the cities all showed an
increasing trend in the three periods of 1980–2000, 2000–
2010, and 2010–2015 (by 33.3 %, 17.1 %, and 33.1 %, re-
spectively), while the other three types of land use/land cover
(i.e., forest, grassland, and unused land) did not change sig-
nificantly in the three periods. In summary, no significant
changes were found from 1980 to 2015 in the forest and
grassland of the LR basin (accounting for 38.4 % and 47.2 %
of the total area, respectively). Although the city area has
undergone significant changes, it accounts for a very small
total area of the basin (0.17 %). The change in the water area
was mainly due to the construction of the reservoirs, so the
method used in Sect. 4.3 to separate the contribution of HAs
to the reduction in the streamflow in the LR basin used is
reasonable.

5.3 Comparison with results of other published studies

As analyzed above, there was no particularly significant
change in the precipitation and potential evapotranspiration
from 1961 to 2015 in the LR basin. HAs mainly included the
construction of reservoirs, resulting in changes in the stream-
flow. Attribution analysis results showed that the CR of HAs
was 57.6 %, and the corresponding CC was 42.4 %. This re-
sult was basically consistent with Han et al. (2019), but the
CR of HAs was smaller than that of calculation results. This
may be due to the following reasons.

1. The streamflow data of different time spans were used to
obtain different break points. They used streamflow data
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from 1980 to 2014 to obtain the break point in 2008, and
this study used data from 1961 to 2015 to identify the
break point in 2005.

2. Different hydrological models were used. They used
the coupled routing and excess storage (CREST) model
with an NSE of 0.57, while the SWAT model used in
this study had an NSE of 0.94.

3. Longer series of streamflow data and simulation data
were used.

As indicated by D. Li et al. (2017) and Han et al. (2019),
as the streamflow data series became longer in the impacted
period, the impact of reservoir scheduling on the streamflow
changes on an average scale for many years gradually de-
creased. D. Li et al. (2017) selected Chiang Saen station,
which was the nearest station to Yunjinghong station down-
stream of the LR basin, for their research, and then they di-
vided the streamflow series into three stages, the pre-impact
period (1960–1991), the transition period (1992–2009), and
the post-impact period (2010–2014). They concluded that the
construction of the reservoirs in the LR basin led to a de-
crease in the streamflow process during the flood period and
an increase in the dry period, which was consistent with the
results of our study (Sect. 4.3.2). Their results also showed
that HAs contributed 61.88 % to the streamflow reduction at
Chiang Saen station, which was also close to the results of
our study (57.4 %).

5.4 Applicability and uncertainty of the proposed
framework

A new quantitative framework for calculating the CR of CC
and HAs to watershed streamflow variations was proposed
in this study, and it was successfully applied to the LR basin
with relatively accurate results. From our perspective, this
method can effectively quantify the influence of the “equifi-
nality for different parameters” that may exist in the use of
hydrological simulation methods to quantify the CR of CC
and HAs. At the same time, we also believe that this frame-
work can be applied to other watersheds based on the fol-
lowing aspects. First, in Sect. 4.4, the Budyko framework
and sectional water withdrawal data within the basin were
used to compare with the new framework. Second, the results
of the comparison with published research on the LR basin
(Han et al., 2019) also proved that the framework has good
accuracy and applicability. Third, in the process of compar-
ing with the new framework, we fully considered the impact
of various HAs within the study area, including five types
of water withdrawals (i.e., irrigation, livestock, living, min-
ing, and manufacturing) and the impact of reservoir storage
and the land use/land cover change. Of course, due to the
highly nonlinear relationship between the parameters of the
hydrological model, we suggest that readers ensure that the
selected simulation results with NSEs greater than 0.75 are

large enough when applying the novel framework in other re-
search areas (this study had 500 simulations). It is undeniable
that this method still has certain uncertainties and limitations
when it is applied to other watersheds. First, if there are mul-
tiple break points in the annual streamflow sequence, then,
when selecting the unique break point, it is necessary to con-
sider the abrupt change points of the time series of other me-
teorological elements (precipitation, temperature, etc.) in the
basin. At the same time, the impact of strong human activi-
ties (reservoir construction, large-scale water transfer project
construction, etc.) on the abrupt change of streamflow in the
basin should also be considered (Dey and Mishra, 2017). Fi-
nally, a unique break point is selected to divide the research
time series into a natural period and an impacted period, and
then the quantitative framework proposed in this study can
be applied. Second, because the SWAT model has good ap-
plicability at the Yunjinghong station in the LR basin, it can
meet the 500 best simulation requirements set by the frame-
work proposed in this study, but the hydrological model may
have different applicability in different research areas. There-
fore, the application of this framework in other research ar-
eas may have limitations, which needs to be further verified.
Third, because this study uses the parameter combinations
obtained by the natural period to input the meteorological el-
ement data of the impacted period for calculation, this may
also bring uncertainty to the calculation results, which is usu-
ally called “transferability” (Fu et al., 2018).

Although the new quantitative framework proposed in this
study considers the uncertainties in hydrological simulations,
the framework is still based on traditional hydrological sim-
ulation methods to separate the CR of CC into streamflow
change and then to deduce the CR of HAs. Therefore, in-
evitably, there are still uncertainties in the calculation pro-
cess. For example, the construction of large-scale reservoirs
and changes in land use/land cover (urbanization, etc.) are
important factors that alter the climatic state of a local re-
gion, specifically in that they change the temporal and spa-
tial distribution characteristics of local regional hydromete-
orological elements (Y. Li et al., 2017; Degu et al., 2011).
This change in meteorological elements was regarded as part
of the impact of CC in this study; however, it was also caused
by both HAs (reservoir construction) and CC. On the other
hand, there are uncertainties in the division of the natural pe-
riod and the impacted period in this study, which assumed
that the impact of HAs on streamflow changes in the natural
period was negligible; however, there were almost no periods
within a watershed that were completely unaffected by HAs,
and the impact of HAs on streamflow variations in the natural
period was ignored in these studies. In this study, there was
also a strong disturbance of HAs during the natural period
(i.e., reservoir construction: Manwan and Dachaoshan) (Ta-
ble 1). In addition, our study selected the NSE as the objec-
tive function to calibrate the SWAT model, which may also
bring uncertainties in the quantitative results. As indicated
by Gupta et al. (2009) and Gupta and Kling (2011), using
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the NSE as an objective function to calibrate a hydrologi-
cal model may tend to underestimate the peak streamflow.
Although the CR in our study was calculated by the aver-
age streamflow over multiple years, it still brought a given
amount of uncertainty to the quantitative results. Therefore,
follow-up research should strengthen the optimization of the
objective function and benefit from field investigation of the
actual meaning of the parameters. Since the impacts of CC
and HAs on the hydrological processes of the watershed are
complicated and interconnected, it is still a challenge to com-
pletely separate the impacts of CC and HAs on streamflow
variations (Xin et al., 2019). Further consideration should be
given to quantifying the impact of specific HAs, such as land
use change and water withdrawal, and then to separating the
impact of CC and HAs on streamflow changes as completely
as possible.

6 Conclusions

In this study, we proposed a new framework that considered
the uncertainties of model simulations to quantify the CR of
CC and HAs to streamflow changes. This framework was de-
veloped based on the posterior histogram frequency distribu-
tion (PHD) of the CR of CC and HAs. Then, we selected the
LR basin for the case study. Over the past 3 decades, after
the construction of the Manwan Reservoir in 1987, six large
reservoirs were constructed within the basin before 2014.
The streamflow process in the watershed also has signifi-
cant changes on multiyear average and monthly scales. The
Mann–Kendall monotonic trend test and the Mann–Kendall
break point test were used to test the trend and identify the
break point of the annual streamflow data at Yunjinghong
station within the period of 1961 to 2015. Then, the avail-
able period was divided into the natural period (before the
break point) and the impacted period (after the break point).
Afterwards, the SWAT model and the SUFI-2 method were
used to construct the posterior histogram distribution (PHD)
of the CR of CC and HAs. Finally, the Budyko framework
and the basin-wide gridded monthly sectoral water use (GM-
SWU) data set were used to compare with the newly pro-
posed framework. The main conclusions of this study are as
follows.

1. The new proposed framework can be used to quantify
the CR of CC and HAs in the LR basin which can fully
solve the local optimal solution for hydrological simula-
tion parameters in current related studies. The results of
comparison using the Budyko framework and Gridded
Monthly Sectoral Water Use (GMSWU) data set also
showed that the new framework has high accuracy (the
error range is within 6 %).

2. The break point of the streamflow sequence dur-
ing 1961–2015 at Yunjinghong station was identi-
fied in 2005. The streamflow significantly decreased

(∼−22 %) after 2005 compared with that of the nat-
ural period (1961–2004), which was mainly due to the
construction of the Xiaowan Reservoir in October 2004.
Significantly reduced streamflow in the flood period and
significantly increased streamflow during the dry pe-
riod also occurred, which was mainly due to the capac-
ity adjustment of the constructed reservoirs. The trend
test results also showed that from 1961 to 2015, the an-
nual streamflow in the LR basin showed a significant
decreasing trend at the α = 0.01 significance level, pre-
cipitation showed a nonsignificant decreasing trend, and
mean temperature showed a significant increasing trend
at the α = 0.01 significance level.

3. The quantification results calculated using the new pro-
posed framework showed that, on an annual scale, com-
pared with the natural period of 1961–2004, the CR of
CC and HAs (CR of CC and HAs) were 40 %–45 %
(with an average CR of 42.6 %) and 55 %–60 % (with an
average CR of 57.4 %), respectively. The CR of CC and
HAs derived from the Budyko framework were 37.2 %
and 62.8 %, respectively, and the error between the two
calculation results was 5.4 %. The CR of HAs calcu-
lated using the GMSWU data and the reservoirs dead
capacities was 58.0 %, which also proved that the new
proposed framework in this study can be used in the LR
basin.

4. Quantitative analysis results on a monthly scale in the
LR basin showed that, except for June and November,
streamflow changes in other months were caused by
HAs. Further analysis showed that the streamflow in
June during the impacted period decreased by 6.9 mm
compared with that in the natural period, while the
precipitation and potential evapotranspiration decreased
and increased by 20.2 and 8.83 mm, respectively; the
streamflow decreased by 5.34 mm in November, while
the corresponding precipitation and potential evapotran-
spiration changed by −7.43 and 5.52 mm, respectively.

In summary, this study provides a new calculation frame-
work that considers the uncertainty of hydrological simu-
lations to quantify the CR of CC and HAs to streamflow
changes. The results of this case study also provide a ref-
erence for understanding the dominant factors of streamflow
changes in the LR basin and improving water resource man-
agement measures for the transboundary Lancang–Mekong
River basin. Of course, this new proposed framework also
needs to be applied and verified in more research areas. In
addition, this framework only considers the dual impacts of
CC and HAs. However, in practical applications, water re-
source decision-makers are more willing to understand the
specific impacts of HAs such as irrigation water and land
use changes. Therefore, in future research, efforts should be
made to expand the framework to quantify the CRs of indi-
vidual items of CC and HAs.
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Appendix A: Abbreviations

AE Actual evaporation
CC Climate change
CGDPA China gauge-based daily precipitation analysis
CMA China Meteorological Administration
CR Contribution rate
CREST Coupled routing and excess storage
DEM Digital elevation model
GMSWU Global gridded Monthly Sectoral Water Use data set
HA Human activity
HRU Hydrologic response unit
HWSD V1.2 Harmonized World Soil Database Version 1.2
LR Lancang River
NSE Nash–Sutcliffe efficiency coefficient
PET Potential evapotranspiration
PHD Posterior histogram distribution
RE Relative error
SRTM Shuttle Radar Topography Mission
SUFI-2 Sequential Uncertainty Fitting Procedure version 2
SWAT Soil and Water Assessment Tool
USDA US Department of Agriculture Research Service

Code and data availability. The observed precipitation, tempera-
ture, wind speed, and relative humidity data sets can be obtained
by contacting the author via email (sheny@cma.gov.cn, Shen et al.,
2014).
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