Articles | Volume 25, issue 11
https://doi.org/10.5194/hess-25-5905-2021
https://doi.org/10.5194/hess-25-5905-2021
Research article
 | Highlight paper
 | 
11 Nov 2021
Research article | Highlight paper |  | 11 Nov 2021

Feedback mechanisms between precipitation and dissolution reactions across randomly heterogeneous conductivity fields

Yaniv Edery, Martin Stolar, Giovanni Porta, and Alberto Guadagnini

Related authors

Shannon Entropy of Transport Self-Organization Due to Dissolution/Precipitation Reaction at Varying Peclet Number in an Initially Homogeneous Porous Media
Evgeny Shavelzon and Yaniv Edery
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-84,https://doi.org/10.5194/hess-2023-84, 2023
Revised manuscript accepted for HESS
Short summary
Preferential pathways for fluid and solutes in heterogeneous groundwater systems: self-organization, entropy, work
Erwin Zehe, Ralf Loritz, Yaniv Edery, and Brian Berkowitz
Hydrol. Earth Syst. Sci., 25, 5337–5353, https://doi.org/10.5194/hess-25-5337-2021,https://doi.org/10.5194/hess-25-5337-2021, 2021
Short summary

Related subject area

Subject: Groundwater hydrology | Techniques and Approaches: Modelling approaches
Current and future roles of meltwater–groundwater dynamics in a proglacial Alpine outwash plain
Tom Müller, Matteo Roncoroni, Davide Mancini, Stuart N. Lane, and Bettina Schaefli
Hydrol. Earth Syst. Sci., 28, 735–759, https://doi.org/10.5194/hess-28-735-2024,https://doi.org/10.5194/hess-28-735-2024, 2024
Short summary
On the challenges of global entity-aware deep learning models for groundwater level prediction
Benedikt Heudorfer, Tanja Liesch, and Stefan Broda
Hydrol. Earth Syst. Sci., 28, 525–543, https://doi.org/10.5194/hess-28-525-2024,https://doi.org/10.5194/hess-28-525-2024, 2024
Short summary
Incorporating interpretation uncertainties from deterministic 3D hydrostratigraphic models in groundwater models
Trine Enemark, Rasmus Bødker Madsen, Torben O. Sonnenborg, Lærke Therese Andersen, Peter B. E. Sandersen, Jacob Kidmose, Ingelise Møller, Thomas Mejer Hansen, Karsten Høgh Jensen, and Anne-Sophie Høyer
Hydrol. Earth Syst. Sci., 28, 505–523, https://doi.org/10.5194/hess-28-505-2024,https://doi.org/10.5194/hess-28-505-2024, 2024
Short summary
Adjoint subordination to calculate backward travel time probability of pollutants in water with various velocity resolutions
Yong Zhang, Graham E. Fogg, HongGuang Sun, Donald M. Reeves, Roseanna M. Neupauer, and Wei Wei
Hydrol. Earth Syst. Sci., 28, 179–203, https://doi.org/10.5194/hess-28-179-2024,https://doi.org/10.5194/hess-28-179-2024, 2024
Short summary
On the optimal level of complexity for the representation of groundwater-dependent wetland systems in land surface models
Mennatullah T. Elrashidy, Andrew M. Ireson, and Saman Razavi
Hydrol. Earth Syst. Sci., 27, 4595–4608, https://doi.org/10.5194/hess-27-4595-2023,https://doi.org/10.5194/hess-27-4595-2023, 2023
Short summary

Cited articles

Ababou, R., McLaughlin, D., Gelhar, L. W., and Tompson, A. F. B.: Numerical simulation of three-dimensional saturated flow in randomly heterogeneous porous media, Transport Porous Med., 4, 549–565, https://doi.org/10.1007/BF00223627, 1989. 
Aquino, T. and Bolster, D.: Localized point mixing rate potential in heterogeneous velocity fields, Transport Porous Med., 119, 391–402, https://doi.org/10.1007/s11242-017-0887-z, 2017. 
Atchley, A. L., Navarre-Sitchler, A. K., and Maxwell, R. M.: The effects of physical and geochemical heterogeneities on hydro-geochemical transport and effective reaction rates, J. Contam. Hydrol., 165, 53–64, https://doi.org/10.1016/j.jconhyd.2014.07.008, 2014. 
Berkowitz, B., Cortis, A., Dentz, M., and Scher, H.: Modeling non-Fickian transport in geological formations as a continuous time random walk, Rev. Geophys., 44, RG2003, https://doi.org/10.1029/2005RG000178, 2006. 
Berkowitz, B., Dror, I., Hansen, S. K., and Scher, H.: Measurements and models of reactive transport in geological media, Rev. Geophys., 54, 930–986, https://doi.org/10.1002/2016RG000524, 2016. 
Download
Short summary
The interplay between dissolution, precipitation and transport is widely encountered in porous media, from CO2 storage to cave formation in carbonate rocks. We show that dissolution occurs along preferential flow paths with high hydraulic conductivity, while precipitation occurs at locations close to yet separated from these flow paths, thus further funneling the flow and changing the probability density function of the transport, as measured on the altered conductivity field at various times.