Articles | Volume 25, issue 9
Hydrol. Earth Syst. Sci., 25, 5153–5174, 2021
https://doi.org/10.5194/hess-25-5153-2021

Special issue: Understanding compound weather and climate events and related...

Hydrol. Earth Syst. Sci., 25, 5153–5174, 2021
https://doi.org/10.5194/hess-25-5153-2021
Research article
23 Sep 2021
Research article | 23 Sep 2021

A novel method to identify sub-seasonal clustering episodes of extreme precipitation events and their contributions to large accumulation periods

Jérôme Kopp et al.

Related authors

On the links between sub-seasonal clustering of extreme precipitation and high discharge in Switzerland and Europe
Alexandre Tuel, Bettina Schaefli, Jakob Zscheischler, and Olivia Martius
Hydrol. Earth Syst. Sci., 26, 2649–2669, https://doi.org/10.5194/hess-26-2649-2022,https://doi.org/10.5194/hess-26-2649-2022, 2022
Short summary
Assessing the performance of various fire weather indices for wildfire occurrence in Northern Switzerland
Daniel Steinfeld, Adrian Peter, Olivia Martius, and Stefan Brönnimann
EGUsphere, https://doi.org/10.5194/egusphere-2022-92,https://doi.org/10.5194/egusphere-2022-92, 2022
Short summary
Atmospheric blocking and weather extremes over the Euro-Atlantic sector – a review
Lisa-Ann Kautz, Olivia Martius, Stephan Pfahl, Joaquim G. Pinto, Alexandre M. Ramos, Pedro M. Sousa, and Tim Woollings
Weather Clim. Dynam., 3, 305–336, https://doi.org/10.5194/wcd-3-305-2022,https://doi.org/10.5194/wcd-3-305-2022, 2022
Short summary
Recurrent Rossby waves during Southeast Australian heatwaves and links to quasi-resonant amplification and atmospheric blocks
S. Mubashshir Ali, Matthias Röthlisberger, Tess Parker, Kai Kornhuber, and Olivia Martius
Weather Clim. Dynam. Discuss., https://doi.org/10.5194/wcd-2022-1,https://doi.org/10.5194/wcd-2022-1, 2022
Revised manuscript under review for WCD
Short summary
Multi-day hail clusters and isolated hail days in Switzerland – large-scale flow conditions and precursors
Hélène Barras, Olivia Martius, Luca Nisi, Katharina Schroeer, Alessandro Hering, and Urs Germann
Weather Clim. Dynam., 2, 1167–1185, https://doi.org/10.5194/wcd-2-1167-2021,https://doi.org/10.5194/wcd-2-1167-2021, 2021
Short summary

Related subject area

Subject: Global hydrology | Techniques and Approaches: Modelling approaches
Soil moisture estimation in South Asia via assimilation of SMAP retrievals
Jawairia A. Ahmad, Barton A. Forman, and Sujay V. Kumar
Hydrol. Earth Syst. Sci., 26, 2221–2243, https://doi.org/10.5194/hess-26-2221-2022,https://doi.org/10.5194/hess-26-2221-2022, 2022
Short summary
Toward hyper-resolution global hydrological models including human activities: application to Kyushu island, Japan
Naota Hanasaki, Hikari Matsuda, Masashi Fujiwara, Yukiko Hirabayashi, Shinta Seto, Shinjiro Kanae, and Taikan Oki
Hydrol. Earth Syst. Sci., 26, 1953–1975, https://doi.org/10.5194/hess-26-1953-2022,https://doi.org/10.5194/hess-26-1953-2022, 2022
Short summary
Towards hybrid modeling of the global hydrological cycle
Basil Kraft, Martin Jung, Marco Körner, Sujan Koirala, and Markus Reichstein
Hydrol. Earth Syst. Sci., 26, 1579–1614, https://doi.org/10.5194/hess-26-1579-2022,https://doi.org/10.5194/hess-26-1579-2022, 2022
Short summary
The importance of vegetation in understanding terrestrial water storage variations
Tina Trautmann, Sujan Koirala, Nuno Carvalhais, Andreas Güntner, and Martin Jung
Hydrol. Earth Syst. Sci., 26, 1089–1109, https://doi.org/10.5194/hess-26-1089-2022,https://doi.org/10.5194/hess-26-1089-2022, 2022
Short summary
Large-scale sensitivities of groundwater and surface water to groundwater withdrawal
Marc F. P. Bierkens, Edwin H. Sutanudjaja, and Niko Wanders
Hydrol. Earth Syst. Sci., 25, 5859–5878, https://doi.org/10.5194/hess-25-5859-2021,https://doi.org/10.5194/hess-25-5859-2021, 2021
Short summary

Cited articles

Barton, Y., Giannakaki, P., von Waldow, H., Chevalier, C., Pfahl, S., and Martius, O.: Clustering of regional-scale extreme precipitation events in southern Switzerland, Mon. Weather Rev., 144, 347–369, https://doi.org/10.1175/MWR-D-15-0205.1, 2016. a, b, c, d, e
Bevacqua, E., Zappa, G., and Shepherd, T. G.: Shorter cyclone clusters modulate changes in European wintertime precipitation extremes, Environ. Res. Lett., 15, 124005, https://doi.org/10.1088/1748-9326/abbde7, 2020. a, b
Coles, S.: An Introduction to Statistical Modeling of Extreme Values, vol. 208, Springer, London, 2001. a, b
Cox, D. R. and Isham, V.: Point processes, vol. 12, Chapman & Hall, New York, 1980. a, b, c
Dacre, H. F. and Pinto, J. G.: Serial clustering of extratropical cyclones: a review of where, when and why it occurs, npj Climate and Atmospheric Science, 3, 1–10, https://doi.org/10.1038/s41612-020-00152-9, 2020. a, b
Download
Short summary
Episodes of extreme rainfall events happening in close temporal succession can lead to floods with dramatic impacts. We developed a novel method to individually identify those episodes and deduced the regions where they occur frequently and where their impact is substantial. Those regions are the east and northeast of the Asian continent, central Canada and the south of California, Afghanistan, Pakistan, the southwest of the Iberian Peninsula, and north of Argentina and south of Bolivia.