Articles | Volume 25, issue 9
https://doi.org/10.5194/hess-25-5133-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-5133-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Low hydrological connectivity after summer drought inhibits DOC export in a forested headwater catchment
Katharina Blaurock
CORRESPONDING AUTHOR
Department of Hydrology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth 95447, Germany
Burkhard Beudert
Department of Nature Conservation and Research, Bavarian Forest
National Park, Grafenau 94481, Germany
Benjamin S. Gilfedder
Department of Hydrology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth 95447, Germany
Jan H. Fleckenstein
Department of Hydrogeology, Helmholtz Centre for Environmental
Research, Leipzig 04318, Germany
Hydrological Modeling Unit, Bayreuth Center of Ecology and
Environmental Research (BayCEER), University of Bayreuth, Bayreuth 95447, Germany
Stefan Peiffer
Department of Hydrology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth 95447, Germany
Luisa Hopp
Department of Hydrology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth 95447, Germany
Related authors
Katharina Blaurock, Burkhard Beudert, and Luisa Hopp
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-250, https://doi.org/10.5194/hess-2024-250, 2024
Preprint under review for HESS
Short summary
Short summary
The release of carbon from landscapes into streams is one important component within the global carbon cycle. We measured the concentrations of dissolved organic carbon (DOC), one of the forms in which carbon can be present, in the streams of three nested forested subcatchments over 12 months. The export of DOC is closely linked to water flow processes within the subcatchments, but the interplay of soils, vegetation, topography and microclimate results in distinct seasonal DOC release patterns.
Pia Ebeling, Andreas Musolff, Rohini Kumar, Andreas Hartmann, and Jan H. Fleckenstein
EGUsphere, https://doi.org/10.5194/egusphere-2024-2761, https://doi.org/10.5194/egusphere-2024-2761, 2024
Short summary
Short summary
Groundwater is a crucial resource at risk by droughts. To understand drought effects on groundwater in Germany, we grouped 6626 wells into six regional and two nationwide head patterns. Weather explained half of the head variations with varied response times. Shallow groundwater responds fast and is more vulnerable to short droughts (few months). Dampened deep heads buffer short droughts but suffer from long droughts and recoveries. Two nationwide trend patterns were linked to human water use.
Katharina Blaurock, Burkhard Beudert, and Luisa Hopp
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-250, https://doi.org/10.5194/hess-2024-250, 2024
Preprint under review for HESS
Short summary
Short summary
The release of carbon from landscapes into streams is one important component within the global carbon cycle. We measured the concentrations of dissolved organic carbon (DOC), one of the forms in which carbon can be present, in the streams of three nested forested subcatchments over 12 months. The export of DOC is closely linked to water flow processes within the subcatchments, but the interplay of soils, vegetation, topography and microclimate results in distinct seasonal DOC release patterns.
Arianna Borriero, Rohini Kumar, Tam V. Nguyen, Jan H. Fleckenstein, and Stefanie R. Lutz
Hydrol. Earth Syst. Sci., 27, 2989–3004, https://doi.org/10.5194/hess-27-2989-2023, https://doi.org/10.5194/hess-27-2989-2023, 2023
Short summary
Short summary
We analyzed the uncertainty of the water transit time distribution (TTD) arising from model input (interpolated tracer data) and structure (StorAge Selection, SAS, functions). We found that uncertainty was mainly associated with temporal interpolation, choice of SAS function, nonspatial interpolation, and low-flow conditions. It is important to characterize the specific uncertainty sources and their combined effects on TTD, as this has relevant implications for both water quantity and quality.
Andreas Hartmann, Jean-Lionel Payeur-Poirier, and Luisa Hopp
Hydrol. Earth Syst. Sci., 27, 1325–1341, https://doi.org/10.5194/hess-27-1325-2023, https://doi.org/10.5194/hess-27-1325-2023, 2023
Short summary
Short summary
We advance our understanding of including information derived from environmental tracers into hydrological modeling. We present a simple approach that integrates streamflow observations and tracer-derived streamflow contributions for model parameter estimation. We consider multiple observed streamflow components and their variation over time to quantify the impact of their inclusion for streamflow prediction at the catchment scale.
Michael Rode, Jörg Tittel, Frido Reinstorf, Michael Schubert, Kay Knöller, Benjamin Gilfedder, Florian Merensky-Pöhlein, and Andreas Musolff
Hydrol. Earth Syst. Sci., 27, 1261–1277, https://doi.org/10.5194/hess-27-1261-2023, https://doi.org/10.5194/hess-27-1261-2023, 2023
Short summary
Short summary
Agricultural catchments show elevated phosphorus (P) concentrations during summer low flow. In an agricultural stream, we found that phosphorus in groundwater was a major source of stream water phosphorus during low flow, and stream sediments derived from farmland are unlikely to have increased stream phosphorus concentrations during low water. We found no evidence that riparian wetlands contributed to soluble reactive (SR) P loads. Agricultural phosphorus was largely buffered in the soil zone.
Carolin Winter, Tam V. Nguyen, Andreas Musolff, Stefanie R. Lutz, Michael Rode, Rohini Kumar, and Jan H. Fleckenstein
Hydrol. Earth Syst. Sci., 27, 303–318, https://doi.org/10.5194/hess-27-303-2023, https://doi.org/10.5194/hess-27-303-2023, 2023
Short summary
Short summary
The increasing frequency of severe and prolonged droughts threatens our freshwater resources. While we understand drought impacts on water quantity, its effects on water quality remain largely unknown. Here, we studied the impact of the unprecedented 2018–2019 drought in Central Europe on nitrate export in a heterogeneous mesoscale catchment in Germany. We show that severe drought can reduce a catchment's capacity to retain nitrogen, intensifying the internal pollution and export of nitrate.
Thomas Hermans, Pascal Goderniaux, Damien Jougnot, Jan H. Fleckenstein, Philip Brunner, Frédéric Nguyen, Niklas Linde, Johan Alexander Huisman, Olivier Bour, Jorge Lopez Alvis, Richard Hoffmann, Andrea Palacios, Anne-Karin Cooke, Álvaro Pardo-Álvarez, Lara Blazevic, Behzad Pouladi, Peleg Haruzi, Alejandro Fernandez Visentini, Guilherme E. H. Nogueira, Joel Tirado-Conde, Majken C. Looms, Meruyert Kenshilikova, Philippe Davy, and Tanguy Le Borgne
Hydrol. Earth Syst. Sci., 27, 255–287, https://doi.org/10.5194/hess-27-255-2023, https://doi.org/10.5194/hess-27-255-2023, 2023
Short summary
Short summary
Although invisible, groundwater plays an essential role for society as a source of drinking water or for ecosystems but is also facing important challenges in terms of contamination. Characterizing groundwater reservoirs with their spatial heterogeneity and their temporal evolution is therefore crucial for their sustainable management. In this paper, we review some important challenges and recent innovations in imaging and modeling the 4D nature of the hydrogeological systems.
Pascal Wintjen, Frederik Schrader, Martijn Schaap, Burkhard Beudert, Richard Kranenburg, and Christian Brümmer
Biogeosciences, 19, 5287–5311, https://doi.org/10.5194/bg-19-5287-2022, https://doi.org/10.5194/bg-19-5287-2022, 2022
Short summary
Short summary
For the first time, we compared four methods for estimating the annual dry deposition of total reactive nitrogen into a low-polluted forest ecosystem. In our analysis, we used 2.5 years of flux measurements, an in situ modeling approach, a large-scale chemical transport model (CTM), and canopy budget models. Annual nitrogen dry deposition budgets ranged between 4.3 and 6.7 kg N ha−1 a−1, depending on the applied method.
Jie Yang, Qiaoyu Wang, Ingo Heidbüchel, Chunhui Lu, Yueqing Xie, Andreas Musolff, and Jan H. Fleckenstein
Hydrol. Earth Syst. Sci., 26, 5051–5068, https://doi.org/10.5194/hess-26-5051-2022, https://doi.org/10.5194/hess-26-5051-2022, 2022
Short summary
Short summary
We assessed the effect of catchment topographic slopes on the nitrate export dynamics in terms of the nitrogen mass fluxes and concentration level using a coupled surface–subsurface model. We found that flatter landscapes tend to retain more nitrogen mass in the soil and export less nitrogen mass to the stream, explained by the reduced leaching and increased potential of degradation in flat landscapes. We emphasized that stream water quality is potentially less vulnerable in flatter landscapes.
Guilherme E. H. Nogueira, Christian Schmidt, Daniel Partington, Philip Brunner, and Jan H. Fleckenstein
Hydrol. Earth Syst. Sci., 26, 1883–1905, https://doi.org/10.5194/hess-26-1883-2022, https://doi.org/10.5194/hess-26-1883-2022, 2022
Short summary
Short summary
In near-stream aquifers, mixing between stream water and ambient groundwater can lead to dilution and the removal of substances that can be harmful to the water ecosystem at high concentrations. We used a numerical model to track the spatiotemporal evolution of different water sources and their mixing around a stream, which are rather difficult in the field. Results show that mixing mainly develops as narrow spots, varying In time and space, and is affected by magnitudes of discharge events.
Christian Brümmer, Jeremy J. Rüffer, Jean-Pierre Delorme, Pascal Wintjen, Frederik Schrader, Burkhard Beudert, Martijn Schaap, and Christof Ammann
Earth Syst. Sci. Data, 14, 743–761, https://doi.org/10.5194/essd-14-743-2022, https://doi.org/10.5194/essd-14-743-2022, 2022
Short summary
Short summary
Field campaigns were carried out to investigate the biosphere–atmosphere exchange of selected reactive nitrogen compounds over different land surfaces using two different analytical devices for ammonia and total reactive nitrogen. The datasets improve our understanding of the temporal variability of surface–atmosphere exchange in different ecosystems, thereby providing validation opportunities for inferential models simulating the exchange of reactive nitrogen.
Pascal Wintjen, Frederik Schrader, Martijn Schaap, Burkhard Beudert, and Christian Brümmer
Biogeosciences, 19, 389–413, https://doi.org/10.5194/bg-19-389-2022, https://doi.org/10.5194/bg-19-389-2022, 2022
Short summary
Short summary
Fluxes of total reactive nitrogen (∑Nr) over a low polluted forest were analyzed with regard to their temporal dynamics. Mostly deposition was observed with median fluxes ranging from −15 to −5 ng N m−2 s−1, corresponding to a range of deposition velocities from 0.2 to 0.5 cm s−1. While seasonally changing contributions of NH3 and NOx to the ∑Nr signal were found, we estimate an annual total N deposition (dry+wet) of 12.2 and 10.9 kg N ha−1 a−1 in the 2 years of observation.
Joni Dehaspe, Fanny Sarrazin, Rohini Kumar, Jan H. Fleckenstein, and Andreas Musolff
Hydrol. Earth Syst. Sci., 25, 6437–6463, https://doi.org/10.5194/hess-25-6437-2021, https://doi.org/10.5194/hess-25-6437-2021, 2021
Short summary
Short summary
Increased nitrate concentrations in surface waters can compromise river ecosystem health. As riverine nitrate uptake is hard to measure, we explore how low-frequency nitrate concentration and discharge observations (that are widely available) can help to identify (in)efficient uptake in river networks. We find that channel geometry and water velocity rather than the biological uptake capacity dominate the nitrate-discharge pattern at the outlet. The former can be used to predict uptake.
Benedikt J. Werner, Oliver J. Lechtenfeld, Andreas Musolff, Gerrit H. de Rooij, Jie Yang, Ralf Gründling, Ulrike Werban, and Jan H. Fleckenstein
Hydrol. Earth Syst. Sci., 25, 6067–6086, https://doi.org/10.5194/hess-25-6067-2021, https://doi.org/10.5194/hess-25-6067-2021, 2021
Short summary
Short summary
Export of dissolved organic carbon (DOC) from riparian zones (RZs) is an important yet poorly understood component of the catchment carbon budget. This study chemically and spatially classifies DOC source zones within a RZ of a small catchment to assess DOC export patterns. Results highlight that DOC export from only a small fraction of the RZ with distinct DOC composition dominates overall DOC export. The application of a spatial, topographic proxy can be used to improve DOC export models.
Timea Katona, Benjamin Silas Gilfedder, Sven Frei, Matthias Bücker, and Adrian Flores-Orozco
Biogeosciences, 18, 4039–4058, https://doi.org/10.5194/bg-18-4039-2021, https://doi.org/10.5194/bg-18-4039-2021, 2021
Short summary
Short summary
We used electrical geophysical methods to map variations in the rates of microbial activity within a wetland. Our results show that the highest electrical conductive and capacitive properties relate to the highest concentrations of phosphates, carbon, and iron; thus, we can use them to characterize the geometry of the biogeochemically active areas or hotspots.
Ingo Heidbüchel, Jie Yang, Andreas Musolff, Peter Troch, Ty Ferré, and Jan H. Fleckenstein
Hydrol. Earth Syst. Sci., 24, 2895–2920, https://doi.org/10.5194/hess-24-2895-2020, https://doi.org/10.5194/hess-24-2895-2020, 2020
Short summary
Short summary
With the help of a 3-D computer model we examined how long the water of different rain events stays inside small catchments before it is discharged and how the nature of this discharge is controlled by different catchment and climate properties. We found that one can only predict the discharge dynamics when taking into account a combination of catchment and climate properties (i.e., there was not one single most important predictor). Our results can help to manage water pollution events.
Barbara Glaser, Marta Antonelli, Luisa Hopp, and Julian Klaus
Hydrol. Earth Syst. Sci., 24, 1393–1413, https://doi.org/10.5194/hess-24-1393-2020, https://doi.org/10.5194/hess-24-1393-2020, 2020
Short summary
Short summary
The inundation of flood-prone areas can have crucial impacts on runoff generation and water quality. We investigate the variation of flooding in space and time along a small stream with long-term observations and numerical simulations. We demonstrate that the main reason for the flooding is the exfiltration of groundwater into local topographic depressions. However, only interplay with further influencing factors can explain all of the variability of the observed flooding patterns and dynamics.
Adam S. Ward, Steven M. Wondzell, Noah M. Schmadel, Skuyler Herzog, Jay P. Zarnetske, Viktor Baranov, Phillip J. Blaen, Nicolai Brekenfeld, Rosalie Chu, Romain Derelle, Jennifer Drummond, Jan H. Fleckenstein, Vanessa Garayburu-Caruso, Emily Graham, David Hannah, Ciaran J. Harman, Jase Hixson, Julia L. A. Knapp, Stefan Krause, Marie J. Kurz, Jörg Lewandowski, Angang Li, Eugènia Martí, Melinda Miller, Alexander M. Milner, Kerry Neil, Luisa Orsini, Aaron I. Packman, Stephen Plont, Lupita Renteria, Kevin Roche, Todd Royer, Catalina Segura, James Stegen, Jason Toyoda, Jacqueline Hager, and Nathan I. Wisnoski
Hydrol. Earth Syst. Sci., 23, 5199–5225, https://doi.org/10.5194/hess-23-5199-2019, https://doi.org/10.5194/hess-23-5199-2019, 2019
Short summary
Short summary
The movement of water and solutes between streams and their shallow, connected subsurface is important to many ecosystem functions. These exchanges are widely expected to vary with stream flow across space and time, but these assumptions are seldom tested across basin scales. We completed more than 60 experiments across a 5th-order river basin to document these changes, finding patterns in space but not time. We conclude space-for-time and time-for-space substitutions are not good assumptions.
Benedikt J. Werner, Andreas Musolff, Oliver J. Lechtenfeld, Gerrit H. de Rooij, Marieke R. Oosterwoud, and Jan H. Fleckenstein
Biogeosciences, 16, 4497–4516, https://doi.org/10.5194/bg-16-4497-2019, https://doi.org/10.5194/bg-16-4497-2019, 2019
Short summary
Short summary
Increased dissolved organic carbon (DOC) concentration in streams can pose a threat to downstream water resources. Analyzing data from an in-stream probe we found that hydroclimatic and hydrological drivers can describe up to 72 % of the observed DOC concentration and composition variability. Variability was found to be highest during discharge events with warm and dry preconditions. The findings suggest an impact of climate change on DOC exports and thus also on downstream water quality.
Adam S. Ward, Jay P. Zarnetske, Viktor Baranov, Phillip J. Blaen, Nicolai Brekenfeld, Rosalie Chu, Romain Derelle, Jennifer Drummond, Jan H. Fleckenstein, Vanessa Garayburu-Caruso, Emily Graham, David Hannah, Ciaran J. Harman, Skuyler Herzog, Jase Hixson, Julia L. A. Knapp, Stefan Krause, Marie J. Kurz, Jörg Lewandowski, Angang Li, Eugènia Martí, Melinda Miller, Alexander M. Milner, Kerry Neil, Luisa Orsini, Aaron I. Packman, Stephen Plont, Lupita Renteria, Kevin Roche, Todd Royer, Noah M. Schmadel, Catalina Segura, James Stegen, Jason Toyoda, Jacqueline Hager, Nathan I. Wisnoski, and Steven M. Wondzell
Earth Syst. Sci. Data, 11, 1567–1581, https://doi.org/10.5194/essd-11-1567-2019, https://doi.org/10.5194/essd-11-1567-2019, 2019
Short summary
Short summary
Studies of river corridor exchange commonly focus on characterization of the physical, chemical, or biological system. As a result, complimentary systems and context are often lacking, which may limit interpretation. Here, we present a characterization of all three systems at 62 sites in a 5th-order river basin, including samples of surface water, hyporheic water, and sediment. These data will allow assessment of interacting processes in the river corridor.
Sophie Ehrhardt, Rohini Kumar, Jan H. Fleckenstein, Sabine Attinger, and Andreas Musolff
Hydrol. Earth Syst. Sci., 23, 3503–3524, https://doi.org/10.5194/hess-23-3503-2019, https://doi.org/10.5194/hess-23-3503-2019, 2019
Short summary
Short summary
This study shows quantitative and temporal offsets between nitrogen input and riverine output, using time series of three nested catchments in central Germany. The riverine concentrations show lagged reactions to the input, but at the same time exhibit strong inter-annual changes in the relationship between riverine discharge and concentration. The study found a strong retention of nitrogen that is dominantly assigned to a hydrological N legacy, which will affect future stream concentrations.
Daniele Penna, Luisa Hopp, Francesca Scandellari, Scott T. Allen, Paolo Benettin, Matthias Beyer, Josie Geris, Julian Klaus, John D. Marshall, Luitgard Schwendenmann, Till H. M. Volkmann, Jana von Freyberg, Anam Amin, Natalie Ceperley, Michael Engel, Jay Frentress, Yamuna Giambastiani, Jeff J. McDonnell, Giulia Zuecco, Pilar Llorens, Rolf T. W. Siegwolf, Todd E. Dawson, and James W. Kirchner
Biogeosciences, 15, 6399–6415, https://doi.org/10.5194/bg-15-6399-2018, https://doi.org/10.5194/bg-15-6399-2018, 2018
Short summary
Short summary
Understanding how water flows through ecosystems is needed to provide society and policymakers with the scientific background to manage water resources sustainably. Stable isotopes of hydrogen and oxygen in water are a powerful tool for tracking water fluxes, although the heterogeneity of natural systems and practical methodological issues still limit their full application. Here, we examine the challenges in this research field and highlight new perspectives based on interdisciplinary research.
Rémi Dupas, Andreas Musolff, James W. Jawitz, P. Suresh C. Rao, Christoph G. Jäger, Jan H. Fleckenstein, Michael Rode, and Dietrich Borchardt
Biogeosciences, 14, 4391–4407, https://doi.org/10.5194/bg-14-4391-2017, https://doi.org/10.5194/bg-14-4391-2017, 2017
Short summary
Short summary
Carbon and nutrient export regimes were analyzed from archetypal headwater catchments to
downstream reaches. In headwater catchments, land use and lithology determine
land-to-stream C, N and P transfer processes. The crucial role of riparian
zones in C, N and P coupling was investigated. In downstream reaches,
point-source contributions and in-stream processes alter C, N and P export
regimes.
W. He, C. Beyer, J. H. Fleckenstein, E. Jang, O. Kolditz, D. Naumov, and T. Kalbacher
Geosci. Model Dev., 8, 3333–3348, https://doi.org/10.5194/gmd-8-3333-2015, https://doi.org/10.5194/gmd-8-3333-2015, 2015
Short summary
Short summary
This technical paper presents a new tool to simulate reactive transport processes in subsurface systems and which couples the open-source software packages OpenGeoSys and IPhreeqc. A flexible parallelization scheme was developed and implemented to enable an optimized allocation of computer resources. The performance tests of the coupling interface and parallelization scheme illustrate the promising efficiency of this generally valid approach to simulate reactive transport problems.
A. P. Atkinson, I. Cartwright, B. S. Gilfedder, D. I. Cendón, N. P. Unland, and H. Hofmann
Hydrol. Earth Syst. Sci., 18, 4951–4964, https://doi.org/10.5194/hess-18-4951-2014, https://doi.org/10.5194/hess-18-4951-2014, 2014
Short summary
Short summary
This research article uses of radiogenic isotopes, stable isotopes and groundwater geochemistry to study groundwater age and recharge processes in the Gellibrand Valley, a relatively unstudied catchment and potential groundwater resource. The valley is found to contain both "old", regionally recharged groundwater (300-10,000 years) in the near-river environment, and modern groundwater (0-100 years old) further back on the floodplain. There is no recharge of the groundwater by high river flows.
C. L. Shope, G. R. Maharjan, J. Tenhunen, B. Seo, K. Kim, J. Riley, S. Arnhold, T. Koellner, Y. S. Ok, S. Peiffer, B. Kim, J.-H. Park, and B. Huwe
Hydrol. Earth Syst. Sci., 18, 539–557, https://doi.org/10.5194/hess-18-539-2014, https://doi.org/10.5194/hess-18-539-2014, 2014
B. J. Kopp, J. H. Fleckenstein, N. T. Roulet, E. Humphreys, J. Talbot, and C. Blodau
Hydrol. Earth Syst. Sci., 17, 3485–3498, https://doi.org/10.5194/hess-17-3485-2013, https://doi.org/10.5194/hess-17-3485-2013, 2013
A. M. J. Coenders-Gerrits, L. Hopp, H. H. G. Savenije, and L. Pfister
Hydrol. Earth Syst. Sci., 17, 1749–1763, https://doi.org/10.5194/hess-17-1749-2013, https://doi.org/10.5194/hess-17-1749-2013, 2013
C. E. Oldham, D. E. Farrow, and S. Peiffer
Hydrol. Earth Syst. Sci., 17, 1133–1148, https://doi.org/10.5194/hess-17-1133-2013, https://doi.org/10.5194/hess-17-1133-2013, 2013
S. Strohmeier, K.-H. Knorr, M. Reichert, S. Frei, J. H. Fleckenstein, S. Peiffer, and E. Matzner
Biogeosciences, 10, 905–916, https://doi.org/10.5194/bg-10-905-2013, https://doi.org/10.5194/bg-10-905-2013, 2013
Related subject area
Subject: Catchment hydrology | Techniques and Approaches: Theory development
Characterizing nonlinear, nonstationary, and heterogeneous hydrologic behavior using ensemble rainfall–runoff analysis (ERRA): proof of concept
Ratio limits of water storage and outflow in a rainfall–runoff process
Technical Note: The divide and measure nonconformity – how metrics can mislead when we evaluate on different data partitions
Bimodal hydrographs in a semi-humid forested watershed: characteristics and occurrence conditions
Flood drivers and trends: a case study of the Geul River catchment (the Netherlands) over the past half century
Power law between the apparent drainage density and the pruning area
Stream water sourcing from high-elevation snowpack inferred from stable isotopes of water: a novel application of d-excess values
Elasticity curves describe streamflow sensitivity to precipitation across the entire flow distribution
Seasonal and interannual dissolved organic carbon transport process dynamics in a subarctic headwater catchment revealed by high-resolution measurements
Links between seasonal suprapermafrost groundwater, the hydrothermal change of the active layer, and river runoff in alpine permafrost watersheds
System dynamics perspective: lack of long-term endogenous feedback accounts for failure of bucket models to replicate slow hydrological behaviors
Technical note: Isotopic fractionation of evaporating waters: effect of sub-daily atmospheric variations and eventual depletion of heavy isotopes
Increased nonstationarity of stormflow threshold behaviors in a forested watershed due to abrupt earthquake disturbance
HESS Opinions: Are soils overrated in hydrology?
Hydrologic implications of projected changes in rain-on-snow melt for Great Lakes Basin watersheds
A hydrological framework for persistent pools along non-perennial rivers
Evidence-based requirements for perceptualising intercatchment groundwater flow in hydrological models
Droughts can reduce the nitrogen retention capacity of catchments
Explaining changes in rainfall–runoff relationships during and after Australia's Millennium Drought: a community perspective
Three hypotheses on changing river flood hazards
A multivariate-driven approach for disentangling the reduction in near-natural Iberian water resources post-1980
Hydrology and riparian forests drive carbon and nitrogen supply and DOC : NO3− stoichiometry along a headwater Mediterranean stream
Event controls on intermittent streamflow in a temperate climate
Inclusion of flood diversion canal operation in the H08 hydrological model with a case study from the Chao Phraya River basin: model development and validation
Flood generation: process patterns from the raindrop to the ocean
Use of streamflow indices to identify the catchment drivers of hydrographs
Theoretical and empirical evidence against the Budyko catchment trajectory conjecture
Spatial distribution of groundwater recharge, based on regionalised soil moisture models in Wadi Natuf karst aquifers, Palestine
Barriers to mainstream adoption of catchment-wide natural flood management: a transdisciplinary problem-framing study of delivery practice
Rainbow color map distorts and misleads research in hydrology – guidance for better visualizations and science communication
Attribution of growing season evapotranspiration variability considering snowmelt and vegetation changes in the arid alpine basins
Event and seasonal hydrologic connectivity patterns in an agricultural headwater catchment
Exploring the role of hydrological pathways in modulating multi-annual climate teleconnection periodicities from UK rainfall to streamflow
Technical note: “Bit by bit”: a practical and general approach for evaluating model computational complexity vs. model performance
Hillslope and groundwater contributions to streamflow in a Rocky Mountain watershed underlain by glacial till and fractured sedimentary bedrock
A framework for seasonal variations of hydrological model parameters: impact on model results and response to dynamic catchment characteristics
Hydrology and beyond: the scientific work of August Colding revisited
The influence of a prolonged meteorological drought on catchment water storage capacity: a hydrological-model perspective
Hydrological and runoff formation processes based on isotope tracing during ablation period in the source regions of Yangtze River
Importance of snowmelt contribution to seasonal runoff and summer low flows in Czechia
Concentration–discharge relationships vary among hydrological events, reflecting differences in event characteristics
Recession analysis revisited: impacts of climate on parameter estimation
Understanding the effects of climate warming on streamflow and active groundwater storage in an alpine catchment: the upper Lhasa River
Technical note: An improved discharge sensitivity metric for young water fractions
Hydrological signatures describing the translation of climate seasonality into streamflow seasonality
Spatial and temporal variation in river corridor exchange across a 5th-order mountain stream network
Historic hydrological droughts 1891–2015: systematic characterisation for a diverse set of catchments across the UK
A topographic index explaining hydrological similarity by accounting for the joint controls of runoff formation
Trajectories of nitrate input and output in three nested catchments along a land use gradient
Contrasting rainfall-runoff characteristics of floods in desert and Mediterranean basins
James W. Kirchner
Hydrol. Earth Syst. Sci., 28, 4427–4454, https://doi.org/10.5194/hess-28-4427-2024, https://doi.org/10.5194/hess-28-4427-2024, 2024
Short summary
Short summary
Here, I present a new way to quantify how streamflow responds to rainfall across a range of timescales. This approach can estimate how different rainfall intensities affect streamflow. It can also quantify how runoff response to rainfall varies, depending on how wet the landscape already is before the rain falls. This may help us to understand processes and landscape properties that regulate streamflow and to assess the susceptibility of different landscapes to flooding.
Yulong Zhu, Yang Zhou, Xiaorong Xu, Changqing Meng, and Yuankun Wang
Hydrol. Earth Syst. Sci., 28, 4251–4261, https://doi.org/10.5194/hess-28-4251-2024, https://doi.org/10.5194/hess-28-4251-2024, 2024
Short summary
Short summary
A timely local flood forecast is an effective way to reduce casualties and economic losses. The current theoretical or numerical models play an important role in local flood forecasting. However, they still cannot bridge the contradiction between high calculation accuracy, high calculation efficiency, and simple operability. Therefore, this paper expects to propose a new flood forecasting model with higher computational efficiency and simpler operation.
Daniel Klotz, Martin Gauch, Frederik Kratzert, Grey Nearing, and Jakob Zscheischler
Hydrol. Earth Syst. Sci., 28, 3665–3673, https://doi.org/10.5194/hess-28-3665-2024, https://doi.org/10.5194/hess-28-3665-2024, 2024
Short summary
Short summary
The evaluation of model performance is essential for hydrological modeling. Using performance criteria requires a deep understanding of their properties. We focus on a counterintuitive aspect of the Nash–Sutcliffe efficiency (NSE) and show that if we divide the data into multiple parts, the overall performance can be higher than all the evaluations of the subsets. Although this follows from the definition of the NSE, the resulting behavior can have unintended consequences in practice.
Zhen Cui, Fuqiang Tian, Zilong Zhao, Zitong Xu, Yongjie Duan, Jie Wen, and Mohd Yawar Ali Khan
Hydrol. Earth Syst. Sci., 28, 3613–3632, https://doi.org/10.5194/hess-28-3613-2024, https://doi.org/10.5194/hess-28-3613-2024, 2024
Short summary
Short summary
We investigated the response characteristics and occurrence conditions of bimodal hydrographs using 10 years of hydrometric and isotope data in a semi-humid forested watershed in north China. Our findings indicate that bimodal hydrographs occur when the combined total of the event rainfall and antecedent soil moisture index exceeds 200 mm. Additionally, we determined that delayed stormflow is primarily contributed to by shallow groundwater.
Athanasios Tsiokanos, Martine Rutten, Ruud J. van der Ent, and Remko Uijlenhoet
Hydrol. Earth Syst. Sci., 28, 3327–3345, https://doi.org/10.5194/hess-28-3327-2024, https://doi.org/10.5194/hess-28-3327-2024, 2024
Short summary
Short summary
We focus on past high-flow events to find flood drivers in the Geul. We also explore flood drivers’ trends across various timescales and develop a new method to detect the main direction of a trend. Our results show that extreme 24 h precipitation alone is typically insufficient to cause floods. The combination of extreme rainfall and wet initial conditions determines the chance of flooding. Precipitation that leads to floods increases in winter, whereas no consistent trends are found in summer.
Soohyun Yang, Kwanghun Choi, and Kyungrock Paik
Hydrol. Earth Syst. Sci., 28, 3119–3132, https://doi.org/10.5194/hess-28-3119-2024, https://doi.org/10.5194/hess-28-3119-2024, 2024
Short summary
Short summary
In extracting a river network from a digital elevation model, an arbitrary pruning area should be specified. As this value grows, the apparent drainage density is reduced following a power function. This reflects the fractal topographic nature. We prove this relationship related to the known power law in the exceedance probability distribution of drainage area. The power-law exponent is expressed with fractal dimensions. Our findings are supported by analysis of 14 real river networks.
Matthias Sprenger, Rosemary W. H. Carroll, David Marchetti, Carleton Bern, Harsh Beria, Wendy Brown, Alexander Newman, Curtis Beutler, and Kenneth H. Williams
Hydrol. Earth Syst. Sci., 28, 1711–1723, https://doi.org/10.5194/hess-28-1711-2024, https://doi.org/10.5194/hess-28-1711-2024, 2024
Short summary
Short summary
Stable isotopes of water (described as d-excess) in mountain snowpack can be used to infer proportions of high-elevation snowmelt in stream water. In a Colorado River headwater catchment, nearly half of the water during peak streamflow is derived from melted snow at elevations greater than 3200 m. High-elevation snowpack contributions were higher for years with lower snowpack and warmer spring temperatures. Thus, we suggest that d-excess could serve to assess high-elevation snowpack changes.
Bailey J. Anderson, Manuela I. Brunner, Louise J. Slater, and Simon J. Dadson
Hydrol. Earth Syst. Sci., 28, 1567–1583, https://doi.org/10.5194/hess-28-1567-2024, https://doi.org/10.5194/hess-28-1567-2024, 2024
Short summary
Short summary
Elasticityrefers to how much the amount of water in a river changes with precipitation. We usually calculate this using average streamflow values; however, the amount of water within rivers is also dependent on stored water sources. Here, we look at how elasticity varies across the streamflow distribution and show that not only do low and high streamflows respond differently to precipitation change, but also these differences vary with water storage availability.
Danny Croghan, Pertti Ala-Aho, Jeffrey Welker, Kaisa-Riikka Mustonen, Kieran Khamis, David M. Hannah, Jussi Vuorenmaa, Bjørn Kløve, and Hannu Marttila
Hydrol. Earth Syst. Sci., 28, 1055–1070, https://doi.org/10.5194/hess-28-1055-2024, https://doi.org/10.5194/hess-28-1055-2024, 2024
Short summary
Short summary
The transport of dissolved organic carbon (DOC) from land into streams is changing due to climate change. We used a multi-year dataset of DOC and predictors of DOC in a subarctic stream to find out how transport of DOC varied between seasons and between years. We found that the way DOC is transported varied strongly seasonally, but year-to-year differences were less apparent. We conclude that the mechanisms of transport show a higher degree of interannual consistency than previously thought.
Jia Qin, Yongjian Ding, Faxiang Shi, Junhao Cui, Yaping Chang, Tianding Han, and Qiudong Zhao
Hydrol. Earth Syst. Sci., 28, 973–987, https://doi.org/10.5194/hess-28-973-2024, https://doi.org/10.5194/hess-28-973-2024, 2024
Short summary
Short summary
The linkage between the seasonal hydrothermal change of active layer, suprapermafrost groundwater, and surface runoff, which has been regarded as a “black box” in hydrological analyses and simulations, is a bottleneck problem in permafrost hydrological studies. Based on field observations, this study identifies seasonal variations and causes of suprapermafrost groundwater. The linkages and framework of watershed hydrology responding to the freeze–thaw of the active layer also are explored.
Xinyao Zhou, Zhuping Sheng, Kiril Manevski, Yanmin Yang, Shumin Han, Mathias Neumann Andersen, Qingzhou Zhang, Jinghong Liu, Huilong Li, and Yonghui Yang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-7, https://doi.org/10.5194/hess-2024-7, 2024
Revised manuscript accepted for HESS
Short summary
Short summary
Conventional bucket-type hydrological models have struggled to accurately replicate slow dynamics, making model modification a key concern in hydrological science. The system dynamics approach excels at explaining long-term behavioral pattern through the system's endogenous feedback structure. It was employed in a case study and successfully captured the slow hydrological behaviors. This highlights that the time-scale mismatch can be attributed to the failure of conventional hydrological models.
Francesc Gallart, Sebastián González-Fuentes, and Pilar Llorens
Hydrol. Earth Syst. Sci., 28, 229–239, https://doi.org/10.5194/hess-28-229-2024, https://doi.org/10.5194/hess-28-229-2024, 2024
Short summary
Short summary
Normally, lighter oxygen and hydrogen isotopes are preferably evaporated from a water body, which becomes enriched in heavy isotopes. However, we observed that, in a water body subject to prolonged evaporation, some periods of heavy isotope depletion instead of enrichment happened. Furthermore, the usual models that describe the isotopy of evaporating waters may be in error if the atmospheric conditions of temperature and relative humidity are time-averaged instead of evaporation flux-weighted.
Guotao Zhang, Peng Cui, Carlo Gualtieri, Nazir Ahmed Bazai, Xueqin Zhang, and Zhengtao Zhang
Hydrol. Earth Syst. Sci., 27, 3005–3020, https://doi.org/10.5194/hess-27-3005-2023, https://doi.org/10.5194/hess-27-3005-2023, 2023
Short summary
Short summary
This study used identified stormflow thresholds as a diagnostic tool to characterize abrupt variations in catchment emergent patterns pre- and post-earthquake. Earthquake-induced landslides with spatial heterogeneity and temporally undulating recovery increase the hydrologic nonstationary; thus, large post-earthquake floods are more likely to occur. This study contributes to mitigation and adaptive strategies for unpredictable hydrologic regimes triggered by abrupt natural disturbances.
Hongkai Gao, Fabrizio Fenicia, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 27, 2607–2620, https://doi.org/10.5194/hess-27-2607-2023, https://doi.org/10.5194/hess-27-2607-2023, 2023
Short summary
Short summary
It is a deeply rooted perception that soil is key in hydrology. In this paper, we argue that it is the ecosystem, not the soil, that is in control of hydrology. Firstly, in nature, the dominant flow mechanism is preferential, which is not particularly related to soil properties. Secondly, the ecosystem, not the soil, determines the land–surface water balance and hydrological processes. Moving from a soil- to ecosystem-centred perspective allows more realistic and simpler hydrological models.
Daniel T. Myers, Darren L. Ficklin, and Scott M. Robeson
Hydrol. Earth Syst. Sci., 27, 1755–1770, https://doi.org/10.5194/hess-27-1755-2023, https://doi.org/10.5194/hess-27-1755-2023, 2023
Short summary
Short summary
We projected climate change impacts to rain-on-snow (ROS) melt events in the Great Lakes Basin. Decreases in snowpack limit future ROS melt. Areas with mean winter/spring air temperatures near freezing are most sensitive to ROS changes. The projected proportion of total monthly snowmelt from ROS decreases. The timing for ROS melt is projected to be 2 weeks earlier by the mid-21st century and affects spring streamflow. This could affect freshwater resources management.
Sarah A. Bourke, Margaret Shanafield, Paul Hedley, Sarah Chapman, and Shawan Dogramaci
Hydrol. Earth Syst. Sci., 27, 809–836, https://doi.org/10.5194/hess-27-809-2023, https://doi.org/10.5194/hess-27-809-2023, 2023
Short summary
Short summary
Here we present a hydrological framework for understanding the mechanisms supporting the persistence of water in pools along non-perennial rivers. Pools may collect water after rainfall events, be supported by water stored within the river channel sediments, or receive inflows from regional groundwater. These hydraulic mechanisms can be identified using a range of diagnostic tools (critiqued herein). We then apply this framework in north-west Australia to demonstrate its value.
Louisa D. Oldham, Jim Freer, Gemma Coxon, Nicholas Howden, John P. Bloomfield, and Christopher Jackson
Hydrol. Earth Syst. Sci., 27, 761–781, https://doi.org/10.5194/hess-27-761-2023, https://doi.org/10.5194/hess-27-761-2023, 2023
Short summary
Short summary
Water can move between river catchments via the subsurface, termed intercatchment groundwater flow (IGF). We show how a perceptual model of IGF can be developed with relatively simple geological interpretation and data requirements. We find that IGF dynamics vary in space, correlated to the dominant underlying geology. We recommend that IGF
loss functionsmay be used in conceptual rainfall–runoff models but should be supported by perceptualisation of IGF processes and connectivities.
Carolin Winter, Tam V. Nguyen, Andreas Musolff, Stefanie R. Lutz, Michael Rode, Rohini Kumar, and Jan H. Fleckenstein
Hydrol. Earth Syst. Sci., 27, 303–318, https://doi.org/10.5194/hess-27-303-2023, https://doi.org/10.5194/hess-27-303-2023, 2023
Short summary
Short summary
The increasing frequency of severe and prolonged droughts threatens our freshwater resources. While we understand drought impacts on water quantity, its effects on water quality remain largely unknown. Here, we studied the impact of the unprecedented 2018–2019 drought in Central Europe on nitrate export in a heterogeneous mesoscale catchment in Germany. We show that severe drought can reduce a catchment's capacity to retain nitrogen, intensifying the internal pollution and export of nitrate.
Keirnan Fowler, Murray Peel, Margarita Saft, Tim J. Peterson, Andrew Western, Lawrence Band, Cuan Petheram, Sandra Dharmadi, Kim Seong Tan, Lu Zhang, Patrick Lane, Anthony Kiem, Lucy Marshall, Anne Griebel, Belinda E. Medlyn, Dongryeol Ryu, Giancarlo Bonotto, Conrad Wasko, Anna Ukkola, Clare Stephens, Andrew Frost, Hansini Gardiya Weligamage, Patricia Saco, Hongxing Zheng, Francis Chiew, Edoardo Daly, Glen Walker, R. Willem Vervoort, Justin Hughes, Luca Trotter, Brad Neal, Ian Cartwright, and Rory Nathan
Hydrol. Earth Syst. Sci., 26, 6073–6120, https://doi.org/10.5194/hess-26-6073-2022, https://doi.org/10.5194/hess-26-6073-2022, 2022
Short summary
Short summary
Recently, we have seen multi-year droughts tending to cause shifts in the relationship between rainfall and streamflow. In shifted catchments that have not recovered, an average rainfall year produces less streamflow today than it did pre-drought. We take a multi-disciplinary approach to understand why these shifts occur, focusing on Australia's over-10-year Millennium Drought. We evaluate multiple hypotheses against evidence, with particular focus on the key role of groundwater processes.
Günter Blöschl
Hydrol. Earth Syst. Sci., 26, 5015–5033, https://doi.org/10.5194/hess-26-5015-2022, https://doi.org/10.5194/hess-26-5015-2022, 2022
Short summary
Short summary
There is serious concern that river floods are increasing. Starting from explanations discussed in public, the article addresses three hypotheses: land-use change, hydraulic structures, and climate change increase floods. This review finds that all three changes have the potential to not only increase floods, but also to reduce them. It is crucial to consider all three factors of change in flood risk management and communicate them to the general public in a nuanced way.
Amar Halifa-Marín, Miguel A. Torres-Vázquez, Enrique Pravia-Sarabia, Marc Lemus-Canovas, Pedro Jiménez-Guerrero, and Juan Pedro Montávez
Hydrol. Earth Syst. Sci., 26, 4251–4263, https://doi.org/10.5194/hess-26-4251-2022, https://doi.org/10.5194/hess-26-4251-2022, 2022
Short summary
Short summary
Near-natural Iberian water resources have suddenly decreased since the 1980s. These declines have been promoted by the weakening (enhancement) of wintertime precipitation (the NAOi) in the most humid areas, whereas afforestation and drought intensification have played a crucial role in semi-arid areas. Future water management would benefit from greater knowledge of North Atlantic climate variability and reforestation/afforestation processes in semi-arid catchments.
José L. J. Ledesma, Anna Lupon, Eugènia Martí, and Susana Bernal
Hydrol. Earth Syst. Sci., 26, 4209–4232, https://doi.org/10.5194/hess-26-4209-2022, https://doi.org/10.5194/hess-26-4209-2022, 2022
Short summary
Short summary
We studied a small stream located in a Mediterranean forest. Our goal was to understand how stream flow and the presence of riparian forests, which grow in flat banks near the stream, influence the availability of food for aquatic microorganisms. High flows were associated with higher amounts of food because rainfall episodes transfer it from the surrounding sources, particularly riparian forests, to the stream. Understanding how ecosystems work is essential to better manage natural resources.
Nils Hinrich Kaplan, Theresa Blume, and Markus Weiler
Hydrol. Earth Syst. Sci., 26, 2671–2696, https://doi.org/10.5194/hess-26-2671-2022, https://doi.org/10.5194/hess-26-2671-2022, 2022
Short summary
Short summary
This study is analyses how characteristics of precipitation events and soil moisture and temperature dynamics during these events can be used to model the associated streamflow responses in intermittent streams. The models are used to identify differences between the dominant controls of streamflow intermittency in three distinct geologies of the Attert catchment, Luxembourg. Overall, soil moisture was found to be the most important control of intermittent streamflow in all geologies.
Saritha Padiyedath Gopalan, Adisorn Champathong, Thada Sukhapunnaphan, Shinichiro Nakamura, and Naota Hanasaki
Hydrol. Earth Syst. Sci., 26, 2541–2560, https://doi.org/10.5194/hess-26-2541-2022, https://doi.org/10.5194/hess-26-2541-2022, 2022
Short summary
Short summary
The modelling of diversion canals using hydrological models is important because they play crucial roles in water management. Therefore, we developed a simplified canal diversion scheme and implemented it into the H08 global hydrological model. The developed diversion scheme was validated in the Chao Phraya River basin, Thailand. Region-specific validation results revealed that the H08 model with the diversion scheme could effectively simulate the observed flood diversion pattern in the basin.
Günter Blöschl
Hydrol. Earth Syst. Sci., 26, 2469–2480, https://doi.org/10.5194/hess-26-2469-2022, https://doi.org/10.5194/hess-26-2469-2022, 2022
Short summary
Short summary
Sound understanding of how floods come about allows for the development of more reliable flood management tools that assist in mitigating their negative impacts. This article reviews river flood generation processes and flow paths across space scales, starting from water movement in the soil pores and moving up to hillslopes, catchments, regions and entire continents. To assist model development, there is a need to learn from observed patterns of flood generation processes at all spatial scales.
Jeenu Mathai and Pradeep P. Mujumdar
Hydrol. Earth Syst. Sci., 26, 2019–2033, https://doi.org/10.5194/hess-26-2019-2022, https://doi.org/10.5194/hess-26-2019-2022, 2022
Short summary
Short summary
With availability of large samples of data in catchments, it is necessary to develop indices that describe the streamflow processes. This paper describes new indices applicable for the rising and falling limbs of streamflow hydrographs. The indices provide insights into the drivers of the hydrographs. The novelty of the work is on differentiating hydrographs by their time irreversibility property and offering an alternative way to recognize primary drivers of streamflow hydrographs.
Nathan G. F. Reaver, David A. Kaplan, Harald Klammler, and James W. Jawitz
Hydrol. Earth Syst. Sci., 26, 1507–1525, https://doi.org/10.5194/hess-26-1507-2022, https://doi.org/10.5194/hess-26-1507-2022, 2022
Short summary
Short summary
The Budyko curve emerges globally from the behavior of multiple catchments. Single-parameter Budyko equations extrapolate the curve concept to individual catchments, interpreting curves and parameters as representing climatic and biophysical impacts on water availability, respectively. We tested these two key components theoretically and empirically, finding that catchments are not required to follow Budyko curves and usually do not, implying the parametric framework lacks predictive ability.
Clemens Messerschmid and Amjad Aliewi
Hydrol. Earth Syst. Sci., 26, 1043–1061, https://doi.org/10.5194/hess-26-1043-2022, https://doi.org/10.5194/hess-26-1043-2022, 2022
Short summary
Short summary
Temporal distribution of groundwater recharge has been widely studied; yet, much less attention has been paid to its spatial distribution. Based on a previous study of field-measured and modelled formation-specific recharge in the Mediterranean, this paper differentiates annual recharge coefficients in a novel approach and basin classification framework for physical features such as lithology, soil and LU/LC characteristics, applicable also in other previously ungauged basins around the world.
Thea Wingfield, Neil Macdonald, Kimberley Peters, and Jack Spees
Hydrol. Earth Syst. Sci., 25, 6239–6259, https://doi.org/10.5194/hess-25-6239-2021, https://doi.org/10.5194/hess-25-6239-2021, 2021
Short summary
Short summary
Human activities are causing greater and more frequent floods. Natural flood management (NFM) uses processes of the water cycle to slow the flow of rainwater, bringing together land and water management. Despite NFM's environmental and social benefits, it is yet to be widely adopted. Two environmental practitioner groups collaborated to produce a picture of the barriers to delivery, showing that there is a perceived lack of support from government and the public for NFM.
Michael Stoelzle and Lina Stein
Hydrol. Earth Syst. Sci., 25, 4549–4565, https://doi.org/10.5194/hess-25-4549-2021, https://doi.org/10.5194/hess-25-4549-2021, 2021
Short summary
Short summary
We found with a scientific paper survey (~ 1000 papers) that 45 % of the papers used rainbow color maps or red–green visualizations. Those rainbow visualizations, although attracting the media's attention, will not be accessible for up to 10 % of people due to color vision deficiency. The rainbow color map distorts and misleads scientific communication. The study gives guidance on how to avoid, improve and trust color and how the flaws of the rainbow color map should be communicated in science.
Tingting Ning, Zhi Li, Qi Feng, Zongxing Li, and Yanyan Qin
Hydrol. Earth Syst. Sci., 25, 3455–3469, https://doi.org/10.5194/hess-25-3455-2021, https://doi.org/10.5194/hess-25-3455-2021, 2021
Short summary
Short summary
Previous studies decomposed ET variance in precipitation, potential ET, and total water storage changes based on Budyko equations. However, the effects of snowmelt and vegetation changes have not been incorporated in snow-dependent basins. We thus extended this method in arid alpine basins of northwest China and found that ET variance is primarily controlled by rainfall, followed by coupled rainfall and vegetation. The out-of-phase seasonality between rainfall and snowmelt weaken ET variance.
Lovrenc Pavlin, Borbála Széles, Peter Strauss, Alfred Paul Blaschke, and Günter Blöschl
Hydrol. Earth Syst. Sci., 25, 2327–2352, https://doi.org/10.5194/hess-25-2327-2021, https://doi.org/10.5194/hess-25-2327-2021, 2021
Short summary
Short summary
We compared the dynamics of streamflow, groundwater and soil moisture to investigate how different parts of an agricultural catchment in Lower Austria are connected. Groundwater is best connected around the stream and worse uphill, where groundwater is deeper. Soil moisture connectivity increases with increasing catchment wetness but is not influenced by spatial position in the catchment. Groundwater is more connected to the stream on the seasonal scale compared to the event scale.
William Rust, Mark Cuthbert, John Bloomfield, Ron Corstanje, Nicholas Howden, and Ian Holman
Hydrol. Earth Syst. Sci., 25, 2223–2237, https://doi.org/10.5194/hess-25-2223-2021, https://doi.org/10.5194/hess-25-2223-2021, 2021
Short summary
Short summary
In this paper, we find evidence for the cyclical behaviour (on a 7-year basis) in UK streamflow records that match the main cycle of the North Atlantic Oscillation. Furthermore, we find that the strength of these 7-year cycles in streamflow is dependent on proportional contributions from groundwater and the response times of the underlying groundwater systems. This may allow for improvements to water management practices through better understanding of long-term streamflow behaviour.
Elnaz Azmi, Uwe Ehret, Steven V. Weijs, Benjamin L. Ruddell, and Rui A. P. Perdigão
Hydrol. Earth Syst. Sci., 25, 1103–1115, https://doi.org/10.5194/hess-25-1103-2021, https://doi.org/10.5194/hess-25-1103-2021, 2021
Short summary
Short summary
Computer models should be as simple as possible but not simpler. Simplicity refers to the length of the model and the effort it takes the model to generate its output. Here we present a practical technique for measuring the latter by the number of memory visits during model execution by
Strace, a troubleshooting and monitoring program. The advantage of this approach is that it can be applied to any computer-based model, which facilitates model intercomparison.
Sheena A. Spencer, Axel E. Anderson, Uldis Silins, and Adrian L. Collins
Hydrol. Earth Syst. Sci., 25, 237–255, https://doi.org/10.5194/hess-25-237-2021, https://doi.org/10.5194/hess-25-237-2021, 2021
Short summary
Short summary
We used unique chemical signatures of precipitation, hillslope soil water, and groundwater sources of streamflow to explore seasonal variation in runoff generation in a snow-dominated mountain watershed underlain by glacial till and permeable bedrock. Reacted hillslope water reached the stream first at the onset of snowmelt, followed by a dilution effect by snowmelt from May to June. Groundwater and riparian water were important sources later in the summer. Till created complex subsurface flow.
Tian Lan, Kairong Lin, Chong-Yu Xu, Zhiyong Liu, and Huayang Cai
Hydrol. Earth Syst. Sci., 24, 5859–5874, https://doi.org/10.5194/hess-24-5859-2020, https://doi.org/10.5194/hess-24-5859-2020, 2020
Dan Rosbjerg
Hydrol. Earth Syst. Sci., 24, 4575–4585, https://doi.org/10.5194/hess-24-4575-2020, https://doi.org/10.5194/hess-24-4575-2020, 2020
Short summary
Short summary
August Colding contributed the first law of thermodynamics, evaporation from water and grass, steady free surfaces in conduits, the cross-sectional velocity distribution in conduits, a complete theory for the Gulf Stream, air speed in cyclones, the piezometric surface in confined aquifers, the unconfined elliptic water table in soil between drain pipes, and the wind-induced set-up in the sea during storms.
Zhengke Pan, Pan Liu, Chong-Yu Xu, Lei Cheng, Jing Tian, Shujie Cheng, and Kang Xie
Hydrol. Earth Syst. Sci., 24, 4369–4387, https://doi.org/10.5194/hess-24-4369-2020, https://doi.org/10.5194/hess-24-4369-2020, 2020
Short summary
Short summary
This study aims to identify the response of catchment water storage capacity (CWSC) to meteorological drought by examining the changes of hydrological-model parameters after drought events. This study improves our understanding of possible changes in the CWSC induced by a prolonged meteorological drought, which will help improve our ability to simulate the hydrological system under climate change.
Zong-Jie Li, Zong-Xing Li, Ling-Ling Song, Juan Gui, Jian Xue, Bai Juan Zhang, and Wen De Gao
Hydrol. Earth Syst. Sci., 24, 4169–4187, https://doi.org/10.5194/hess-24-4169-2020, https://doi.org/10.5194/hess-24-4169-2020, 2020
Short summary
Short summary
This study mainly explores the hydraulic relations, recharge–drainage relations and their transformation paths, and the processes of each water body. It determines the composition of runoff, quantifies the contribution of each runoff component to different types of tributaries, and analyzes the hydrological effects of the temporal and spatial variation in runoff components. More importantly, we discuss the hydrological significance of permafrost and hydrological processes.
Michal Jenicek and Ondrej Ledvinka
Hydrol. Earth Syst. Sci., 24, 3475–3491, https://doi.org/10.5194/hess-24-3475-2020, https://doi.org/10.5194/hess-24-3475-2020, 2020
Short summary
Short summary
Changes in snow affect the runoff seasonality, including summer low flows. Here we analyse this effect in 59 mountain catchments in Czechia. We show that snow is more effective in generating runoff compared to rain. Snow-poor years generated lower groundwater recharge than snow-rich years, which resulted in higher deficit volumes in summer. The lower recharge and runoff in the case of a snowfall-to-rain transition due to air temperature increase might be critical for water supply in the future.
Julia L. A. Knapp, Jana von Freyberg, Bjørn Studer, Leonie Kiewiet, and James W. Kirchner
Hydrol. Earth Syst. Sci., 24, 2561–2576, https://doi.org/10.5194/hess-24-2561-2020, https://doi.org/10.5194/hess-24-2561-2020, 2020
Short summary
Short summary
Changes of stream water chemistry in response to discharge changes provide important insights into the storage and release of water from the catchment. Here we investigate the variability in concentration–discharge relationships among different solutes and hydrologic events and relate it to catchment conditions and dominant water sources.
Elizabeth R. Jachens, David E. Rupp, Clément Roques, and John S. Selker
Hydrol. Earth Syst. Sci., 24, 1159–1170, https://doi.org/10.5194/hess-24-1159-2020, https://doi.org/10.5194/hess-24-1159-2020, 2020
Short summary
Short summary
Recession analysis uses the receding streamflow following precipitation events to estimate watershed-average properties. Two methods for recession analysis use recession events individually or all events collectively. Using synthetic case studies, this paper shows that analyzing recessions collectively produces flawed interpretations. Moving forward, recession analysis using individual recessions should be used to describe the average and variability of watershed behavior.
Lu Lin, Man Gao, Jintao Liu, Jiarong Wang, Shuhong Wang, Xi Chen, and Hu Liu
Hydrol. Earth Syst. Sci., 24, 1145–1157, https://doi.org/10.5194/hess-24-1145-2020, https://doi.org/10.5194/hess-24-1145-2020, 2020
Short summary
Short summary
In this paper, recession flow analysis – assuming nonlinearized outflow from aquifers into streams – was used to quantify active groundwater storage in a headwater catchment with high glacierization and large-scale frozen ground on the Tibetan Plateau. Hence, this work provides a perspective to clarify the impact of glacial retreat and frozen ground degradation due to climate change on hydrological processes.
Francesc Gallart, Jana von Freyberg, María Valiente, James W. Kirchner, Pilar Llorens, and Jérôme Latron
Hydrol. Earth Syst. Sci., 24, 1101–1107, https://doi.org/10.5194/hess-24-1101-2020, https://doi.org/10.5194/hess-24-1101-2020, 2020
Short summary
Short summary
How catchments store and release rain or melting water is still not well known. Now, it is broadly accepted that most of the water in streams is older than several months, and a relevant part may be many years old. But the age of water depends on the stream regime, being usually younger during high flows. This paper tries to provide tools for better analysing how the age of waters varies with flow in a catchment and for comparing the behaviour of catchments diverging in climate, size and regime.
Sebastian J. Gnann, Nicholas J. K. Howden, and Ross A. Woods
Hydrol. Earth Syst. Sci., 24, 561–580, https://doi.org/10.5194/hess-24-561-2020, https://doi.org/10.5194/hess-24-561-2020, 2020
Short summary
Short summary
In many places, seasonal variability in precipitation and evapotranspiration (climate) leads to seasonal variability in river flow (streamflow). In this work, we explore how climate seasonality is transformed into streamflow seasonality and what controls this transformation (e.g. climate aridity and geology). The results might be used in grouping catchments, predicting the seasonal streamflow regime in ungauged catchments, and building hydrological simulation models.
Adam S. Ward, Steven M. Wondzell, Noah M. Schmadel, Skuyler Herzog, Jay P. Zarnetske, Viktor Baranov, Phillip J. Blaen, Nicolai Brekenfeld, Rosalie Chu, Romain Derelle, Jennifer Drummond, Jan H. Fleckenstein, Vanessa Garayburu-Caruso, Emily Graham, David Hannah, Ciaran J. Harman, Jase Hixson, Julia L. A. Knapp, Stefan Krause, Marie J. Kurz, Jörg Lewandowski, Angang Li, Eugènia Martí, Melinda Miller, Alexander M. Milner, Kerry Neil, Luisa Orsini, Aaron I. Packman, Stephen Plont, Lupita Renteria, Kevin Roche, Todd Royer, Catalina Segura, James Stegen, Jason Toyoda, Jacqueline Hager, and Nathan I. Wisnoski
Hydrol. Earth Syst. Sci., 23, 5199–5225, https://doi.org/10.5194/hess-23-5199-2019, https://doi.org/10.5194/hess-23-5199-2019, 2019
Short summary
Short summary
The movement of water and solutes between streams and their shallow, connected subsurface is important to many ecosystem functions. These exchanges are widely expected to vary with stream flow across space and time, but these assumptions are seldom tested across basin scales. We completed more than 60 experiments across a 5th-order river basin to document these changes, finding patterns in space but not time. We conclude space-for-time and time-for-space substitutions are not good assumptions.
Lucy J. Barker, Jamie Hannaford, Simon Parry, Katie A. Smith, Maliko Tanguy, and Christel Prudhomme
Hydrol. Earth Syst. Sci., 23, 4583–4602, https://doi.org/10.5194/hess-23-4583-2019, https://doi.org/10.5194/hess-23-4583-2019, 2019
Short summary
Short summary
It is important to understand historic droughts in order to plan and prepare for possible future events. In this study we use the standardised streamflow index for 1891–2015 to systematically identify, characterise and rank hydrological drought events for 108 near-natural UK catchments. Results show when and where the most severe events occurred and describe events of the early 20th century, providing catchment-scale detail important for both science and planning applications of the future.
Ralf Loritz, Axel Kleidon, Conrad Jackisch, Martijn Westhoff, Uwe Ehret, Hoshin Gupta, and Erwin Zehe
Hydrol. Earth Syst. Sci., 23, 3807–3821, https://doi.org/10.5194/hess-23-3807-2019, https://doi.org/10.5194/hess-23-3807-2019, 2019
Short summary
Short summary
In this study, we develop a topographic index explaining hydrological similarity within a energy-centered framework, with the observation that the majority of potential energy is dissipated when rainfall becomes runoff.
Sophie Ehrhardt, Rohini Kumar, Jan H. Fleckenstein, Sabine Attinger, and Andreas Musolff
Hydrol. Earth Syst. Sci., 23, 3503–3524, https://doi.org/10.5194/hess-23-3503-2019, https://doi.org/10.5194/hess-23-3503-2019, 2019
Short summary
Short summary
This study shows quantitative and temporal offsets between nitrogen input and riverine output, using time series of three nested catchments in central Germany. The riverine concentrations show lagged reactions to the input, but at the same time exhibit strong inter-annual changes in the relationship between riverine discharge and concentration. The study found a strong retention of nitrogen that is dominantly assigned to a hydrological N legacy, which will affect future stream concentrations.
Davide Zoccatelli, Francesco Marra, Moshe Armon, Yair Rinat, James A. Smith, and Efrat Morin
Hydrol. Earth Syst. Sci., 23, 2665–2678, https://doi.org/10.5194/hess-23-2665-2019, https://doi.org/10.5194/hess-23-2665-2019, 2019
Short summary
Short summary
This study presents a comparison of flood properties over multiple Mediterranean and desert catchments. While in Mediterranean areas floods are related to rainfall amount, in deserts we observed a strong connection with the characteristics of the more intense part of storms. Because of the different mechanisms involved, despite having significantly shorter and more localized storms, deserts are able to produce floods with a magnitude comparable to Mediterranean areas.
Cited articles
Ågren, A., Buffam, I., Berggren, M., Bishop, K., Jansson, M., and
Laudon, H.: Dissolved organic carbon characteristics in boreal streams in a
forest-wetland gradient during the transition between winter and summer, J.
Geophys. Res., 113, G03003, https://doi.org/10.1029/2007JG000674, 2008.
Aitkenhead-Peterson, J. A., Smart, R. P., Aitkenhead, M. J., Cresser, M. S.,
and McDowell, W. H.: Spatial and temporal variation of dissolved organic
carbon export from gauged and ungauged watersheds of Dee Valley, Scotland:
Effect of land cover and C:N, Water Resour. Res., 43, W05442,
https://doi.org/10.1029/2006WR004999, 2007.
Alarcon-Herrera, M. T., Bewtra, J. K., and Biswas, N.: Seasonal variations in humic substances and their reduction through water treatment processes, Can. J. Civ. Eng., 21, 173–179, https://doi.org/10.1139/l94-020, 1994.
Alvarez-Cobelas, M., Angeler, D. G., Sánchez-Carrillo, S., and
Almendros, G.: A worldwide view of organic carbon export from catchments,
Biogeochemistry, 107, 275–293, https://doi.org/10.1007/s10533-010-9553-z,
2012.
Andersson, S., Nilsson, S. I., and Saetre, P.: Leaching of dissolved organic
carbon (DOC) and dissolved organic nitrogen (DON) in mor humus as affected
by temperature and pH, Soil Biol. Biochem., 32, 1–10, 2000.
Bartsch, S., Peiffer, S., Shope, C. L., Arnhold, S., Jeong, J.-J., Park,
J.-H., Eum, J., Kim, B., and Fleckenstein, J. H.: Monsoonal-type climate or
land-use management: Understanding their role in the mobilization of nitrate
and DOC in a mountainous catchment, J. Hydrol., 507, 149–162,
https://doi.org/10.1016/j.jhydrol.2013.10.012, 2013.
Batjes, N. H.: Total carbon and nitrogen in the soils of the world, Eur. J.
Soil Sci., 65, 4–21, 2014.
Battin, T. J., Luyssaert, S., Kaplan, L. A., Aufdenkampe, A. K., Richter,
A., and Tranvik, L. J.: The boundless carbon cycle, Nat. Geosci., 2,
598–600, https://doi.org/10.1038/ngeo618, 2009.
Bavarian State Office for Environment: Aktuelle Messwerte
Rachel-Diensthütte/Markungsgraben,
available at: https://www.gkd.bayern.de/de/fluesse/abfluss/passau/rachel-diensthuette-17418004/messwerte,
last access: 1 December 2020.
Bernal, S., Lupon, A., Wollheim, W. M., Sabater, F., Poblador, S., and
Martí, E.: Supply, Demand, and In-Stream Retention of Dissolved Organic
Carbon and Nitrate During Storms in Mediterranean Forested Headwater
Streams, Front. Environ. Sci., 7, 60, https://doi.org/10.3389/fenvs.2019.00060,
2019.
Beudert, B., Spitzy, A., Klöcking, B., Zimmermann, L., Bässler, C.,
and Foullois, N.: DOC-Langzeitmonitoring im Einzugsgebiet der “Großen
Ohe”, Wasserhaushalt und Stoffbilanzen im naturnahen Einzugsgebiet Große
Ohe, National Park Administration Bavarian Forest, Grafenau, Germany, 2012.
Beudert, B., Bässler, C., Thorn, S., Noss, R., Schröder, B.,
Dieffenbach-Fries, H., Foullois, N., and Müller, J.: Bark Beetles
Increase Biodiversity While Maintaining Drinking Water Quality, Conserv.
Lett., 8, 272–281, https://doi.org/10.1111/conl.12153, 2015.
Birkel, C., Broder, T., and Biester, H.: Nonlinear and threshold-dominated
runoff generation controls DOC export in a small peat catchment, J.
Geophys. Res.-Biogeo., 122, 498–513,
https://doi.org/10.1002/2016JG003621, 2017.
Bishop, K., Seibert, J., Köhler, S., and Laudon, H.: Resolving the
Double Paradox of rapidly mobilized old water with highly variable responses
in runoff chemistry, Hydrol. Process., 18, 185–189,
https://doi.org/10.1002/hyp.5209, 2004.
Blaen, P. J., Khamis, K., Lloyd, C., Comer-Warner, S., Ciocca, F., Thomas,
R. M., MacKenzie, A. R., and Krause, S.: High-frequency monitoring of
catchment nutrient exports reveals highly variable storm event responses and
dynamic source zone activation, J. Geophys. Res.-Biogeo., 122,
2265–2281, https://doi.org/10.1002/2017JG003904, 2017.
Borken, W., Ahrens, B., Schulz, C., and Zimmermann, L.: Site-to-site
variability and temporal trends of DOC concentrations and fluxes in
temperate forest soils, Global Change Biol., 17, 2428–2443,
https://doi.org/10.1111/j.1365-2486.2011.02390.x, 2011.
Bowes, M. J., Smith, J. T., and Neal, C.: The value of high-resolution
nutrient monitoring: A case study of the River Frome, Dorset, UK, J.
Hydrol., 378, 82–96, https://doi.org/10.1016/j.jhydrol.2009.09.015, 2009.
Brown, V. A., McDonnell, J. J., Burns, D. A., and Kendall, C.: The role of
event water, a rapid shallow flow component, and catchment size in summer
stormflow, J. Hydrol., 217, 171–190,
https://doi.org/10.1016/S0022-1694(98)00247-9, 1999.
Buffam, I., Galloway, J. N., Blum, L. K., and McGlathery, K. J.: A
stormflow/baseflow comparison of dissolved organic matter concentrations and
bioavailability in an Appalachian stream, Biogeochemistry, 53, 269–306,
2001.
Butturini, A., Gallart, F., Latron, J., Vazquez, E., and Sabater, F.:
Cross-site Comparison of Variability of DOC and Nitrate c–q Hysteresis
during the Autumn–winter Period in Three Mediterranean Headwater Streams: A
Synthetic Approach, Biogeochemistry, 77, 327–349,
https://doi.org/10.1007/s10533-005-0711-7, 2006.
Cerro, I., Sanchez-Perez, J. M., Ruiz-Romera, E., and Antigüedad, I.:
Variability of particulate (SS, POC) and dissolved (DOC, NO ) matter during
storm events in the Alegria agricultural watershed, Hydrol. Process., 28,
2855–2867, https://doi.org/10.1002/hyp.9850, 2014.
Clark, J. M., Bottrell, S. H., Evans, C. D., Monteith, D. T., Bartlett, R.,
Rose, R., Newton, R. J., and Chapman, P. J.: The importance of the
relationship between scale and process in understanding long-term DOC
dynamics, Sci. Total Environ., 408, 2768–2775,
https://doi.org/10.1016/j.scitotenv.2010.02.046, 2010.
Correa, A., Breuer, L., Crespo, P., Célleri, R., Feyen, J., Birkel, C.,
Silva, C., and Windhorst, D.: Spatially distributed hydro-chemical data with
temporally high-resolution is needed to adequately assess the hydrological
functioning of headwater catchments, Sci. Total Environ.,
651, 1613–1626, https://doi.org/10.1016/j.scitotenv.2018.09.189, 2019.
Covino, T.: Hydrologic connectivity as a framework for understanding
biogeochemical flux through watersheds and along fluvial networks,
Geomorphology, 277, 133–144,
https://doi.org/10.1016/j.geomorph.2016.09.030, 2017.
Creed, I. F., Beall, F. D., Clair, T. A., Dillon, P. J., and Hesslein, R.
H.: Predicting export of dissolved organic carbon from forested catchments
in glaciated landscapes with shallow soils, Global Biogeochem. Cycles, 22,
GB4024, https://doi.org/10.1029/2008GB003294, 2008.
Dawson, J. J. C., Soulsby, C., Tetzlaff, D., Hrachowitz, M., Dunn, S. M.,
and Malcolm, I. A.: Influence of hydrology and seasonality on DOC exports
from three contrasting upland catchments, Biogeochemistry, 90, 93–113,
https://doi.org/10.1007/s10533-008-9234-3, 2008.
Detty, J. M. and McGuire, K. J.: Topographic controls on shallow groundwater
dynamics: implications of hydrologic connectivity between hillslopes and
riparian zones in a till mantled catchment, Hydrol. Process., 24,
2222–2236, https://doi.org/10.1002/hyp.7656, 2010.
Dixon, R. K., Brown, S., Houghton, R. A., Solomon, A. M., Trexler, M. C.,
and Wisniewski, J.: Carbon Pools and Flux of Global Forest Ecosystems,
Science, 263, 185–190, 1994.
Dörr, H. and Münnich, K. O.: Lead and Cesium Transport in European
Forest Soils, Water Air Soil Pollut., 57–58, 809–818, 1991.
Drake, T. W., Raymond, P. A., and Spencer, R. G. M.: Terrestrial carbon
inputs to inland waters: A current synthesis of estimates and uncertainty,
Limnol. Oceanogr., 3, 132–142, https://doi.org/10.1002/lol2.10055, 2018.
Easthouse, K. B., Mulder, J., Christophersen, N., and Seip, H. M.: Dissolved
organic carbon fractions in soil and stream water during variable
hydrological conditions at Birkenes, southern Norway, Water Resour. Res.,
28, 1585–1596, 1992.
Ejarque, E., Freixa, A., Vazquez, E., Guarch, A., Amalfitano, S., Fazi, S.,
Romaní, A. M., and Butturini, A.: Quality and reactivity of dissolved
organic matter in a Mediterranean river across hydrological and spatial
gradients, Sci. Total Environ., 599–600, 1802–1812,
https://doi.org/10.1016/j.scitotenv.2017.05.113, 2017.
Evans, C. D., Monteith, D. T., and Cooper, D. M.: Long-term increases in
surface water dissolved organic carbon: observations, possible causes and
environmental impacts, Environmental pollution (Barking, Essex 1987), 137,
55–71, https://doi.org/10.1016/j.envpol.2004.12.031, 2005.
Evans, C. D., Chapman, P. J., Clark, J. M., Montheith, D., and Cresser, M.
S.: Alternative explanations for rising dissolved organic carbon export from
organic soils, Global Change Biol., 12, 2044–2053,
https://doi.org/10.1111/j.1365-2486.2006.01241.x, 2006.
Fazekas, H. M., Wymore, A. S., and McDowell, W. H.: Dissolved Organic Carbon
and Nitrate Concentration-Discharge Behavior Across Scales: Land Use,
Excursions, and Misclassification, Water Resour. Res., 56, e2019WR027028,
https://doi.org/10.1029/2019WR027028, 2020.
Frei, S., Lischeid, G., and Fleckenstein, J. H.: Effects of micro-topography
on surface–subsurface exchange and runoff generation in a virtual riparian
wetland – A modeling study, Adv. Water Resour., 33, 1388–1401,
https://doi.org/10.1016/j.advwatres.2010.07.006, 2010.
Granados, V., Gutiérrez-Cánovas, C., Arias-Real, R., Obrador, B.,
Harjung, A., and Butturini, A.: The interruption of longitudinal
hydrological connectivity causes delayed responses in dissolved organic
matter, Sci. Total Environ., 713, 136619,
https://doi.org/10.1016/j.scitotenv.2020.136619, 2020.
Hagedorn, F., Schleppi, P., Waldner, P., and Flühler, H.: Export of
dissolved organic carbon and nitrogen from Gleysol dominated catchments –
the significance of water flow paths, Biogeochemistry, 50, 137–161, 2000.
Harrison, J. A., Caraco, N., and Seitzinger, S. P.: Global patterns and
sources of dissolved organic matter export to the coastal zone: Results from
a spatially explicit, global model, Global Biogeochem. Cycles, 19, GB4S04,
https://doi.org/10.1029/2005GB002480, 2005.
Hobbie, J. E. and Likens, G. E.: Output of Phosphorus, Dissolved Organic
Carbon, and Fine Particulate Carbon from Hubbard Brook Watersheds, Limnol.
Oceanogr., 18, 734–742, 1973.
Hongve, D., Riise, G., and Kristiansen, J. F.: Increased colour and organic
acid concentrations in Norwegian forest lakes and drinking water? a result
of increased precipitation?, Aquat. Sci.,
66, 231–238, https://doi.org/10.1007/s00027-004-0708-7, 2004.
Hood, E., Gooseff, M. N., and Johnson, S. L.: Changes in the character of
stream water dissolved organic carbon during flushing in three small
watersheds, Oregon, J. Geophys. Res., 111, 567,
https://doi.org/10.1029/2005JG000082, 2006.
Hope, D., Billet, M. F., and Cresser, M. S.: A Review of the Export of
Carbon in River Water: Fluxes and Processes, Environ. Pollut., 84,
301–324, 1994.
House, W. A. and Warwick, M. S.: Hysteresis of the solute
concentration/discharge relationship in rivers during storms, Water
Res., 32, 2279–2290, 1998.
Hruška, J., Krám, P., McDowell, W. H., and Oulehle, F.: Increased
Dissolved Organic Carbon (DOC) in Central European Streams is Driven by
Reductions in Ionic Strength Rather than Climate Change or Decreasing
Acidity, Environ. Sci. Technol., 43, 4320–4326,
https://doi.org/10.1021/es803645w, 2009.
Inamdar, S. P. and Mitchell, M. J.: Hydrologic and topographic controls on
storm-event exports of dissolved organic carbon (DOC) and nitrate across
catchment scales, Water Resour. Res., 42, 378,
https://doi.org/10.1029/2005WR004212, 2006.
Inamdar, S. P. and Mitchell, M. J.: Contributions of riparian and hillslope
waters to storm runoff across multiple catchments and storm events in a
glaciated forested watershed, J. Hydrol., 341, 116–130,
https://doi.org/10.1016/j.jhydrol.2007.05.007, 2007.
Jankowski, K. J. and Schindler, D. E.: Watershed geomorphology modifies the
sensitivity of aquatic ecosystem metabolism to temperature, Sci.
Rep.-UK, 9, 17619, https://doi.org/10.1038/s41598-019-53703-3, 2019.
Jeong, J.-J., Bartsch, S., Fleckenstein, J. H., Matzner, E., Tenhunen, J.
D., Lee, S. D., Park, S. K., and Park, J.-H.: Differential storm responses
of dissolved and particulate organic carbon in a mountainous headwater
stream, investigated by high-frequency, in situ optical measurements, J.
Geophys. Res., 117, G03013, https://doi.org/10.1029/2012JG001999, 2012.
Kawasaki, M., Ohte, N., and Katsuyama, M.: Biogeochemical and hydrological
controls on carbon export from a forested catchment in central Japan, Ecol.
Res., 20, 347–358, https://doi.org/10.1007/s11284-005-0050-0, 2005.
Kiewiet, L., van Meerveld, I., Stähli, M., and Seibert, J.: Do stream water solute concentrations reflect when connectivity occurs in a small, pre-Alpine headwater catchment?, Hydrol. Earth Syst. Sci., 24, 3381–3398, https://doi.org/10.5194/hess-24-3381-2020, 2020.
Kindler, R., Siemens, J., Kaiser, K., Walmsley David C., Bernhofer, C.,
Buchmann, N., Cellier, P., Eugster, W., Gleixner, G., Grünwald, T.,
Heim, A., Ibrom, A., Jones, S., Jones, M., Klumpp, K., Kutsch, W., Larsen,
K. S., Lehuger, S., Loubet, B., McKenzie, R., Moors, E., Osborne, B.,
Pilegard, K., Rebmann, C., Saunders, M., Schmidt, M., Schrumpf, M.,
Seyfferth, J., Skiba, U., Soussana, J.-F., Sutton, M., Tefs, C., Vowinckel,
B., Zeeman, M. J., and Kaupenjohann, M.: Dissolved carbon leaching from soil
is a crucial component of the net ecosystem carbon balance, Global Change
Biol., 17, 1167–1185, https://doi.org/10.1111/j.1365-2486.2010.02282.x,
2011.
Kirkby, M. J.: Tests of the random network model, and its application to
basin hydrology, Earth Surf. Process., 1, 197–212,
https://doi.org/10.1002/esp.3290010302, 1976.
Knorr, K.-H.: DOC-dynamics in a small headwater catchment as driven by redox fluctuations and hydrological flow paths – are DOC exports mediated by iron reduction/oxidation cycles?, Biogeosciences, 10, 891–904, https://doi.org/10.5194/bg-10-891-2013, 2013.
Kreps, H.: Praktische Arbeit in der Hydrographie, Central Hydrographical Bureau, Vienna, Austria, 1975.
Larson, J. H., Frost, P. C., Xenopoulos, M. A., Williams, C. J.,
Morales-Williams, A. M., Vallazza, J. M., Nelson, J. C., and Richardson, W.
B.: Relationships Between Land Cover and Dissolved Organic Matter Change
Along the River to Lake Transition, Ecosystems, 17, 1413–1425,
https://doi.org/10.1007/s10021-014-9804-2, 2014.
Laurenson, E. M.: A catchment storage model for runoff routing, J.
Hydrol., 2, 141–163, https://doi.org/10.1016/0022-1694(64)90025-3, 1964.
Ledesma, J. L. J., Köhler, S. J., and Futter, M. N.: Long-term dynamics of dissolved organic carbon: implications for drinking water supply, Sci. Total Environ., 432, 1–11, https://doi.org/10.1016/j.scitotenv.2012.05.071, 2012.
Ledesma, J. L. J., Grabs, T., Bishop, K. H., Schiff, S. L., and Köhler,
S. J.: Potential for long-term transfer of dissolved organic carbon from
riparian zones to streams in boreal catchments, Global Change Biol., 21,
2963–2979, https://doi.org/10.1111/gcb.12872, 2015.
Ledesma, J. L. J., Futter, M. N., Laudon, H., EVANS, C. D., and Köhler,
S. J.: Boreal forest riparian zones regulate stream sulfate and dissolved
organic carbon, Sci. Total Environ., 560–561, 110–122,
https://doi.org/10.1016/j.scitotenv.2016.03.230, 2016.
Ledesma, J. L. J., Kothawala, D. N., Bastviken, P., Maehder, S., Grabs, T.,
and Futter, M. N.: Stream Dissolved Organic Matter Composition Reflects the
Riparian Zone, Not Upslope Soils in Boreal Forest Headwaters, Water Resour.
Res., 54, 3896–3912, https://doi.org/10.1029/2017WR021793, 2018.
Li, M., Giorgio, P. A., Parkes, A. H., and Prairie, Y. T.: The relative
influence of topography and land cover on inorganic and organic carbon
exports from catchments in southern Quebec, Canada, J. Geophys. Res.-Biogeo., 120, 2562–2578, https://doi.org/10.1002/2015JG003073, 2015.
McDowell, W. H. and Fisher, S. G.: Autumnal Processing of Dissolved Organic
Matter in a Small Woodland Stream Ecosystem, Ecology, 57, 561–569, 1976.
McDowell, W. H. and Likens, G. E.: Origin, Composition, and Flux of
Dissolved Organic Carbon in the Hubbard Brook Valley, Ecol. Monogr.,
58, 177–195, https://doi.org/10.2307/2937024, 1988.
McGuire, K. J. and McDonnell, J. J.: Hydrological connectivity of hillslopes
and streams: Characteristic time scales and nonlinearities, Water Resour.
Res., 46, W10543, https://doi.org/10.1029/2010WR009341, 2010.
Mei, Y., Hornberger, G. M., Kaplan, L. A., Newbold, J. D., and Aufdenkampe,
A. K.: The delivery of dissolved organic carbon from a forested hillslope to
a headwater stream in southeastern Pennsylvania, USA, Water Resour. Res.,
50, 5774–5796, https://doi.org/10.1002/2014WR015635, 2014.
Meyer, J. L. and Tate, C. M.: The effects of watershed disturbance on
dissolved organic carbon dynamics of a stream, Ecology, 64, 33–44, 1983.
Monteith, D. T., Stoddard, J. L., EVANS, C. D., Wit, H. A. de, Forsius, M.,
Høgåsen, T., Wilander, A., Skjelkvåle, B. L., Jeffries, D. S.,
Vuorenmaa, J., Keller, B., Kopácek, J., and Vesely, J.: Dissolved
organic carbon trends resulting from changes in atmospheric deposition
chemistry, Nature, 450, 537–540, https://doi.org/10.1038/nature06316, 2007.
Moore, T. R., Paré, D., and Boutin, R.: Production of Dissolved Organic
Carbon in Canadian Forest Soils, Ecosystems, 11, 740–751,
https://doi.org/10.1007/s10021-008-9156-x, 2008.
Musolff, A., Selle, B., Büttner, O., Opitz, M., and Tittel, J.:
Unexpected release of phosphate and organic carbon to streams linked to
declining nitrogen depositions, Global Change Biol., 23, 1891–1901,
https://doi.org/10.1111/gcb.13498, 2016.
Musolff, A., Fleckenstein, J. H., Rao, P. S. C., and Jawitz, J. W.: Emergent
archetype patterns of coupled hydrologic and biogeochemical responses in
catchments, Geophys. Res. Lett., 44, 4143–4151,
https://doi.org/10.1002/2017GL072630, 2017.
Musolff, A., Fleckenstein, J. H., Opitz, M., Büttner, O., Kumar, R., and
Tittel, J.: Spatio-temporal controls of dissolved organic carbon stream
water concentrations, J. Hydrol., 566, 205–215,
https://doi.org/10.1016/j.jhydrol.2018.09.011, 2018.
Ogawa, A., Shibata, H., Suzuki, K., Mitchell, M. J., and Ikegami, Y.:
Relationship of topography to surface water chemistry with particular focus
on nitrogen and organic carbon solutes within a forested watershed in
Hokkaido, Japan, Hydrol. Process., 20, 251–265,
https://doi.org/10.1002/hyp.5901, 2006.
Pachauri, R. K. and Mayer, L. (Eds.): Climate change 2014: Synthesis report,
Intergovernmental Panel on Climate Change, Geneva, Switzerland, 151 pp.,
2014.
Pacific, V. J., Jencso, K. G., and McGlynn, B. L.: Variable flushing
mechanisms and landscape structure control stream DOC export during snowmelt
in a set of nested catchments, Biogeochemistry, 99, 193–211,
https://doi.org/10.1007/s10533-009-9401-1, 2010.
Penna, D., van Meerveld, H. J., Oliviero, O., Zuecco, G., Assendelft, R. S.,
Dalla Fontana, G., and Borga, M.: Seasonal changes in runoff generation in a
small forested mountain catchment, Hydrol. Process., 29, 2027–2042,
https://doi.org/10.1002/hyp.10347, 2015.
Ploum, S. W., Laudon, H., Peralta-Tapia, A., and Kuglerová, L.: Are dissolved organic carbon concentrations in riparian groundwater linked to hydrological pathways in the boreal forest?, Hydrol. Earth Syst. Sci., 24, 1709–1720, https://doi.org/10.5194/hess-24-1709-2020, 2020.
Ravichandran, M.: Interactions between mercury and dissolved organic
matter – a review, Chemosphere, 55, 319–331,
https://doi.org/10.1016/j.chemosphere.2003.11.011, 2004.
Raymond, P. A. and Saiers, J. E.: Event controlled DOC export from forested
watersheds, Biogeochemistry, 100, 197–209,
https://doi.org/10.1007/s10533-010-9416-7, 2010.
Raymond, P. A., Saiers, J. E., and Sobczak, W. V.: Hydrological and
biogeochemical controls on watershed dissolved organic matter transport:
pulse-shunt concept, Ecology, 97, 5–16, 2016.
Rinderer, M., van Meerveld, I., Stähli, M., and Seibert, J.: Is
groundwater response timing in a pre-alpine catchment controlled more by
topography or by rainfall?, Hydrol. Process., 30, 1036–1051,
https://doi.org/10.1002/hyp.10634, 2016.
Roulet, N. and Moore, T. R.: Browning the waters, Nature, 283–284, 2006.
Sadiq, R. and Rodriguez, M. J.: Disinfection by-prodcuts (DBPs) in drinking water and predictive models for their occurrence: a review, Sci. Total Environ., 321, 21–46, https://doi.org/10.1016.j.scitotenv.2003.05.001, 2004.
Schwarze, R. and Beudert, B.: Analyse der Hochwassergenese und des
Wasserhaushalts eines bewaldeten Einzugsgebietes unter dem Einfluss eines
massiven Borkenkäferbefalls, Hydrologie und Wasserbewirtschaftung, 53,
236–249, 2009.
Seybold, E., Gold, A. J., Inamdar, S. P., Adair, C., Bowden, W. B., Vaughan,
M. C. H., Pradhanang, S. M., Addy, K., Shanley, J. B., Vermilyea, A., Levia,
D. F., Wemple, B. C., and Schroth, A. W.: Influence of land use and
hydrologic variability on seasonal dissolved organic carbon and nitrate
export: insights from a multi-year regional analysis for the northeastern
USA, Biogeochemistry, 146, 31–49,
https://doi.org/10.1007/s10533-019-00609-x, 2019.
Strohmeier, S., Knorr, K.-H., Reichert, M., Frei, S., Fleckenstein, J. H., Peiffer, S., and Matzner, E.: Concentrations and fluxes of dissolved organic carbon in runoff from a forested catchment: insights from high frequency measurements, Biogeosciences, 10, 905–916, https://doi.org/10.5194/bg-10-905-2013, 2013.
Tetzlaff, D., Birkel, C., Dick, J., Geris, J., and Soulsby, C.: Storage
dynamics in hydropedological units control hillslope connectivity, runoff
generation, and the evolution of catchment transit time distributions, Water
Resour. Res., 50, 969–985, https://doi.org/10.1002/2013WR014147,
2014.
Thurman, E. M.: Organic Geochemistry of Natural Waters, Martinus Nijhoff/Dr
W. Junk Publishers, Dordrecht, the Netherlands, 1985.
Tunaley, C., Tetzlaff, D., Lessels, J., and Soulsby, C.: Linking
high-frequency DOC dynamics to the age of connected water sources, Water
Resour. Res., 52, 5232–5247, https://doi.org/10.1002/2015WR018419, 2016.
van Verseveld, W. J., McDonnell, J. J., and Lajtha, K.: The role of
hillslope hydrology in controlling nutrient loss, J. Hydrol., 367,
177–187, https://doi.org/10.1016/j.jhydrol.2008.11.002, 2009.
Vaughan, M. C. H., Bowden, W. B., Shanley, J. B., Vermilyea, A., Sleeper,
R., Gold, A. J., Pradhanang, S. M., Inamdar, S. P., Levia, D. F., Andres, A.
S., Birgand, F., and Schroth, A. W.: High-frequency dissolved organic carbon
and nitrate measurements reveal differences in storm hysteresis and loading
in relation to land cover and seasonality, Water Resour. Res., 53,
5345–5363, https://doi.org/10.1002/2017WR020491, 2017.
Weiler, M. and McDonnell, J. J.: Testing nutrient flushing hypotheses at the
hillslope scale: A virtual experiment approach, J. Hydrol., 319,
339–356, https://doi.org/10.1016/j.jhydrol.2005.06.040, 2006.
Wen, H., Perdrial, J., Abbott, B. W., Bernal, S., Dupas, R., Godsey, S. E., Harpold, A., Rizzo, D., Underwood, K., Adler, T., Sterle, G., and Li, L.: Temperature controls production but hydrology regulates export of dissolved organic carbon at the catchment scale, Hydrol. Earth Syst. Sci., 24, 945–966, https://doi.org/10.5194/hess-24-945-2020, 2020.
Werner, B. J., Musolff, A., Lechtenfeld, O. J., de Rooij, G. H., Oosterwoud, M. R., and Fleckenstein, J. H.: High-frequency measurements explain quantity and quality of dissolved organic carbon mobilization in a headwater catchment, Biogeosciences, 16, 4497–4516, https://doi.org/10.5194/bg-16-4497-2019, 2019.
Weyhenmeyer, G. A. and Karlsson, J.: Nonlinear response of dissolved organic
carbon concentrations in boreal lakes to increasing temperatures, Limnol.
Oceanogr., 54, 2513–2519,
https://doi.org/10.4319/lo.2009.54.6_part_2.2513, 2009.
Zarnetske, J. P., Bouda, M., Abbott, B. W., Saiers, J., and Raymond, P. A.:
Generality of Hydrologic Transport Limitation of Watershed Organic Carbon
Flux Across Ecoregions of the United States, Geophys. Res. Lett., 45,
11702–11711, https://doi.org/10.1029/2018GL080005, 2018.
Zimmer, M. A. and McGlynn, B. L.: Lateral, Vertical, and Longitudinal Source
Area Connectivity Drive Runoff and Carbon Export Across Watershed Scales,
Water Resour. Res., 54, 1576–1598, https://doi.org/10.1002/2017WR021718,
2018.
Zuecco, G., Penna, D., Borga, M., and van Meerveld, H. J.: A versatile index
to characterize hysteresis between hydrological variables at the runoff
event timescale, Hydrol. Process., 30, 1449–1466,
https://doi.org/10.1002/hyp.10681, 2016.
Short summary
Dissolved organic carbon (DOC) is an important part of the global carbon cycle with regards to carbon storage, greenhouse gas emissions and drinking water treatment. In this study, we compared DOC export of a small, forested catchment during precipitation events after dry and wet preconditions. We found that the DOC export from areas that are usually important for DOC export was inhibited after long drought periods.
Dissolved organic carbon (DOC) is an important part of the global carbon cycle with regards to...