Articles | Volume 25, issue 6
https://doi.org/10.5194/hess-25-3555-2021
https://doi.org/10.5194/hess-25-3555-2021
Research article
 | 
23 Jun 2021
Research article |  | 23 Jun 2021

Using Long Short-Term Memory networks to connect water table depth anomalies to precipitation anomalies over Europe

Yueling Ma, Carsten Montzka, Bagher Bayat, and Stefan Kollet

Related authors

Continental-scale evaluation of a fully distributed coupled land surface and groundwater model, ParFlow-CLM (v3.6.0), over Europe
Bibi S. Naz, Wendy Sharples, Yueling Ma, Klaus Goergen, and Stefan Kollet
Geosci. Model Dev., 16, 1617–1639, https://doi.org/10.5194/gmd-16-1617-2023,https://doi.org/10.5194/gmd-16-1617-2023, 2023
Short summary

Related subject area

Subject: Groundwater hydrology | Techniques and Approaches: Modelling approaches
Data-driven modelling of hydraulic-head time series: results and lessons learned from the 2022 Groundwater Time Series Modelling Challenge
Raoul A. Collenteur, Ezra Haaf, Mark Bakker, Tanja Liesch, Andreas Wunsch, Jenny Soonthornrangsan, Jeremy White, Nick Martin, Rui Hugman, Ed de Sousa, Didier Vanden Berghe, Xinyang Fan, Tim J. Peterson, Jānis Bikše, Antoine Di Ciacca, Xinyue Wang, Yang Zheng, Maximilian Nölscher, Julian Koch, Raphael Schneider, Nikolas Benavides Höglund, Sivarama Krishna Reddy Chidepudi, Abel Henriot, Nicolas Massei, Abderrahim Jardani, Max Gustav Rudolph, Amir Rouhani, J. Jaime Gómez-Hernández, Seifeddine Jomaa, Anna Pölz, Tim Franken, Morteza Behbooei, Jimmy Lin, and Rojin Meysami
Hydrol. Earth Syst. Sci., 28, 5193–5208, https://doi.org/10.5194/hess-28-5193-2024,https://doi.org/10.5194/hess-28-5193-2024, 2024
Short summary
The impact of future changes in climate variables and groundwater abstraction on basin-scale groundwater availability
Steven Reinaldo Rusli, Victor F. Bense, Syed M. T. Mustafa, and Albrecht H. Weerts
Hydrol. Earth Syst. Sci., 28, 5107–5131, https://doi.org/10.5194/hess-28-5107-2024,https://doi.org/10.5194/hess-28-5107-2024, 2024
Short summary
Assessing groundwater level modelling using a 1-D convolutional neural network (CNN): linking model performances to geospatial and time series features
Mariana Gomez, Maximilian Nölscher, Andreas Hartmann, and Stefan Broda
Hydrol. Earth Syst. Sci., 28, 4407–4425, https://doi.org/10.5194/hess-28-4407-2024,https://doi.org/10.5194/hess-28-4407-2024, 2024
Short summary
Short high-accuracy tritium data time series for assessing groundwater mean transit times in the vadose and saturated zones of the Luxembourg Sandstone aquifer
Laurent Gourdol, Michael K. Stewart, Uwe Morgenstern, and Laurent Pfister
Hydrol. Earth Syst. Sci., 28, 3519–3547, https://doi.org/10.5194/hess-28-3519-2024,https://doi.org/10.5194/hess-28-3519-2024, 2024
Short summary
High-resolution long-term average groundwater recharge in Africa estimated using random forest regression and residual interpolation
Anna Pazola, Mohammad Shamsudduha, Jon French, Alan M. MacDonald, Tamiru Abiye, Ibrahim Baba Goni, and Richard G. Taylor
Hydrol. Earth Syst. Sci., 28, 2949–2967, https://doi.org/10.5194/hess-28-2949-2024,https://doi.org/10.5194/hess-28-2949-2024, 2024
Short summary

Cited articles

Adamowski, J. and Chan, H. F.: A wavelet neural network conjunction model for groundwater level forecasting, J. Hydrol., 407, 28–40, https://doi.org/10.1016/j.jhydrol.2011.06.013, 2011. 
Adamowski, J. F.: River flow forecasting using wavelet and cross-wavelet transform models, Hydrol. Process., 22, 4877–4891, https://doi.org/10.1002/hyp.7107, 2008. 
Andersen, O. B., Seneviratne, S. I., Hinderer, J., and Viterbo, P.: GRACE-derived terrestrial water storage depletion associated with the 2003 European heat wave, Geophys. Res. Lett., 32, 1–4, https://doi.org/10.1029/2005GL023574, 2005. 
Banerjee, S. and Mitra, M.: Application of cross wavelet transform for ECG pattern analysis and classification, IEEE Trans. Instrum. Meas., 63, 326–333, https://doi.org/10.1109/TIM.2013.2279001, 2014. 
Bloomfield, J., Brauns, B., Hannah, D. M., Jackson, C., Marchant, B., and Van Loon, A. F.: The Groundwater Drought Initiative (GDI): analysing and understanding groundwater drought across Europe, EGU General Assembly, 8–13 April 2018, Vienna, Austria, EGU2018-4540, 2018. 
Download
Short summary
This study utilized spatiotemporally continuous precipitation anomaly (pra) and water table depth anomaly (wtda) data from integrated hydrologic simulation results over Europe in combination with Long Short-Term Memory (LSTM) networks to capture the time-varying and time-lagged relationship between pra and wtda in order to obtain reliable models to estimate wtda at the individual pixel level.