Using Long Short-Term Memory networks to connect water table depth anomalies to precipitation anomalies over Europe

Yueling Ma1,2, Carsten Montzka1, Bagher Bayat1, and Stefan Kollet1,2

1Institute of Bio and Geosciences, Agrosphere (IBG-3), Forschungszentrum Jülich, 52428 Jülich, Germany
2Center for High-Performance Scientific Computing in Terrestrial Systems, Geoverbund ABC/J, 52428 Jülich, Germany

Correspondence: Yueling Ma (y.ma@fz-juelich.de)

Received: 24 July 2020 – Discussion started: 24 August 2020
Revised: 21 May 2021 – Accepted: 22 May 2021 – Published: 23 June 2021

Abstract. Many European countries rely on groundwater for public and industrial water supply. Due to a scarcity of near-real-time water table depth (wtd) observations, establishing a spatially consistent groundwater monitoring system at the continental scale is a challenge. Hence, it is necessary to develop alternative methods for estimating wtd anomalies (wtd\textsubscript{a}) using other hydrometeorological observations routinely available near real time. In this work, we explore the potential of Long Short-Term Memory (LSTM) networks for producing monthly wtd\textsubscript{a} using monthly precipitation anomalies (pr\textsubscript{a}) as input. LSTM networks are a special category of artificial neural networks that are useful for detecting a long-term dependency within sequences, in our case time series, which is expected in the relationship between pr\textsubscript{a} and wtd\textsubscript{a}. In the proposed methodology, spatiotemporally continuous data were obtained from daily terrestrial simulations of the Terrestrial Systems Modeling Platform (TSMP) over Europe (hereafter termed the TSMP-G2A data set), with a spatial resolution of 0.11°, ranging from the years 1996 to 2016. The data were separated into a training set (1996–2012), a validation set (2013–2014), and a test set (2015–2016) to establish local networks at selected pixels across Europe. The modeled wtd\textsubscript{a} maps from LSTM networks agreed well with TSMP-G2A wtd\textsubscript{a} maps on spatially distributed dry and wet events, with 2003 and 2015 constituting drought years over Europe. Moreover, we categorized the test performances of the networks based on intervals of yearly averaged wtd, evapotranspiration (ET), soil moisture (θ), snow water equivalent (S\textsubscript{w}), soil type (S\textsubscript{t}), and dominant plant functional type (PFT). Superior test performance was found at the pixels with wtd < 3 m, ET > 200 mm, θ > 0.15 m3 m-3, and S\textsubscript{w} < 10 mm, revealing a significant impact of the local factors on the ability of the networks to process information. Furthermore, results of the cross-wavelet transform (XWT) showed a change in the temporal pattern between TSMP-G2A pr\textsubscript{a} and wtd\textsubscript{a} at some selected pixels, which can be a reason for undesired network behavior. Our results demonstrate that LSTM networks are useful for producing high-quality wtd\textsubscript{a} based on other hydrometeorological data measured and predicted at large scales, such as pr\textsubscript{a}. This contribution may facilitate the establishment of an effective groundwater monitoring system over Europe that is relevant to water management.

1 Introduction

Groundwater is an essential natural resource, accounting for about 30 % of the fresh water on Earth (Perlman, 2013), and sustains various domestic, agricultural, industrial, and environmental uses due to its widespread availability and limited vulnerability to pollution (Naghibi et al., 2016; Tian et al., 2016). According to the report of the European Environment Agency (EEA) in 1999, groundwater comprises over 50 % of the public water supply in most European countries (EEA, 1999). Groundwater systems are dynamic and adapt continuously to natural and anthropogenic stresses (Kenda et al., 2018). However, they have been affected in recent years as a consequence of frequent extreme weather conditions, e.g., severe droughts and human overexploitation. Thus, effective and efficient groundwater management, especially under drought conditions, is required at the European scale to maintain environmental and socioeconomic sustainability.
Drought is characterized as the costliest natural hazard worldwide, resulting in significant societal, economic, and ecological impacts (Wilhite, 2000). The report of the EEA in 2016 demonstrated that drought had become a recurrent feature of the European climate; more droughts have occurred in some European countries than in the past, and their severity has also increased (EEA, 2016). Recent severe heat wave events in Europe occurred in 2003, 2015, and 2018, which led to several drought events covering most of the European continent (Norris, 2018). Groundwater drought is a specific type of drought, impacting several important drought-sensitive sectors, such as drinking water supply and irrigation (Van Loon et al., 2017). Hence, groundwater monitoring is ultimately indispensable over the European continent.

Effective groundwater monitoring requires accurate information on groundwater dynamics in space and time. One crucial variable for characterizing groundwater dynamics is the water table depth anomaly (wtd), reflecting anomalies in groundwater storage (Zhao et al., 2020), which is a key variable in groundwater drought analysis. The wtd is the deviation of the wtd value from the climatological average for a specified time period normalized by the climatological standard deviation and can serve as a measure of groundwater drought. Commonly, wtd observations are measured in situ in observation wells. However, to date, it is still a challenge to obtain near-real-time spatially continuous wtd observations over Europe (Van Loon et al., 2017; Bloomfield et al., 2018), and available data sets often suffer from uncertainties originating from unknown well bore and well installation specifics. Therefore, an alternative (indirect) method is needed to produce reliable, area-wide wtd information over Europe.

Indirect methods rely on measurements of one (or more) hydrometeorological variable related to wtd via physical processes in the water cycle, such as infiltration and percolation. The precipitation anomaly (pr) is the most common variable used to model wtd, for which the calculation method is the same as wtd but based on precipitation (P). P is connected with groundwater via the process of percolation through soil layers. Thus, depending on evapotranspiration (ET) and the thickness of the vadose zone, a lag exists in the response of wtd to P. A considerable number of studies linked the accumulation of pr over extended timescales (e.g., 6 or 12 months) to wtd, often applying the Standardized Precipitation Index (SPI) and the Standardized Precipitation Evapotranspiration Index (SPEI) to represent wtd (e.g., SPI: McKee et al., 1993; Thomas et al., 2015; SPEI: Vicente-Serrano et al., 2010; Van Loon et al., 2017). In these studies, equal weighting was assigned to the meteorological input in the derivation of the drought indices.

As an alternative, artificial neural networks (ANNs) are able to account for non-uniformly weighted, temporally lagged contributions of pr to wtd, potentially providing more robust prediction models. ANNs are one of the most widely used machine learning methods that have been inspired by biological neural systems, with many interconnected information processing units (i.e., neurons; Haykin, 2009; Ma et al., 2019). ANNs adapt learnable parameters (i.e., weights and biases) in the links between neurons to achieve an appropriate input–output mapping based on observed data; this is also for complex nonlinear relationships. ANNs are not easily affected by input noise and are able to readjust their parameters when new information is included. More importantly, compared to physically based models, they necessitate little background knowledge, reducing the requirements for human involvement and expertise, thus enabling rapid hypothesis testing (Govindaraju, 2000; Shen, 2018; Sun and Scanlon, 2019).

Feedforward neural networks (FFNNs, also termed multilayer perceptrons in some of the literature) and their variants are commonly used ANNs for groundwater level modeling in previous studies (e.g., Yang et al., 1997; Nayak et al., 2006; Adamowski and Chan, 2011; Yoon et al., 2011; Mohanty et al., 2015; Gong et al., 2016; Sun et al., 2016). One major drawback of FFNNs is that they cannot preserve previous information, resulting in inefficiencies in handling sequential data (J. Zhang et al., 2018; Supreetha et al., 2020). To leverage the performance of FFNNs, the delay time in the network response needs to be estimated in advance.

Recurrent neural networks (RNNs) are a special type of ANN mainly designed for sequential data analysis. Through loops in their hidden layers, the information generated in the past flows back to neurons as the input of new computing processes (Karim and Rivera, 1992). Due to the ability to store information traveling through, RNNs can avoid the aforementioned preprocessing step of FFNNs and can, thereby, solve sequential data problems more efficiently. However, standard RNNs suffer from the exploding and vanishing gradient issues and often fail to exploit long-term dependencies between sequences, which is expected in the response of wtd to pr. These issues can be overcome by a variant of standard RNNs named Long Short-Term Memory (LSTM) networks (Supreetha et al., 2020). Although RNNs have been employed extensively in other science fields, particularly in natural language processing (D. Zhang et al., 2018), their application in hydrology is still in its infancy and has only recently received increasing attention (e.g., Kratzert et al., 2018; Shen, 2018; J. Zhang et al., 2018; Le et al., 2019; Sahoo et al., 2019). Thus, limited studies have been conducted to estimate groundwater fluctuations using RNNs, especially with LSTM networks.

The consistency of the temporal pattern between input and target variables is a prerequisite for the good performance of ANNs, including LSTM networks. Cross-wavelet transform (XWT) is a useful tool for visualizing the pattern changes between input and target variables, aiming to extract similarities of two time series in time and frequency. The technique has been applied for time–frequency analysis.
in many publications (e.g., Adamowski, 2008; Prokoph and El Bilali, 2008; Banerjee and Mitra, 2014).

In this study, we utilized spatiotemporally continuous pr\(_a\) and wtd\(_a\) from integrated hydrologic simulation results of the Terrestrial Systems Modeling Platform (TSMP) over Europe (hereafter termed the TSMP-G2A data set and introduced in Sect. 2.4) in combination with LSTM networks to capture the time-varying and time-lagged relationship between pr\(_a\) and wtd\(_a\) in order to obtain reliable prediction models at the individual pixel level. The impact of local factors on the network behavior was also investigated, and the local factors studied were yearly averaged wtd\(_a\), ET, soil moisture (\(\theta\)), snow water equivalent (\(S_e\)), and soil type (\(S_t\)) and dominant plant functional type (PFT). In addition, we implemented XWT on both TSMP-G2A pr\(_a\) and wtd\(_a\) series for time–frequency analysis to gain insight into the internal characteristics of the obtained networks.

This paper is organized as follows: in Sect. 2 (Methodology), we first present a conceptual model of groundwater balance to theoretically derive the relationship between pr\(_a\) and wtd\(_a\) and then briefly introduce the architecture of the proposed LSTM networks and continuous and cross-wavelet transform. This is then followed by detailed information on our study area and data set, as well as a generic workflow to construct local LSTM networks at selected pixels over Europe. Section 3 (Results and discussion) shows reproduced wtd\(_a\) maps for groundwater drought analysis, discusses the impact of local factors on the network behaviors, and investigates the network performances at the local scale, before completing the paper with Sect. 4 (Summary and conclusions).

2 Methodology

LSTM networks were applied to estimate monthly wtd\(_a\) over the European continent, using monthly pr\(_a\) as input. We constructed the networks at the individual pixels and analyzed temporal patterns between TSMP-G2A pr\(_a\) and wtd\(_a\) using XWT. In this section, we briefly recall the conceptual model of groundwater balance, introduce the principle of LSTM networks and the application of XWT, and describe the study area and data set before presenting a universal workflow to establish the proposed LSTM networks locally at selected pixels.

2.1 Conceptual model of groundwater balance

The subsurface water balance can be described by a control volume that contains the vadose zone and an unconfined aquifer that is closed at the bottom (Fig. 1). Note that areas with surface water are not taken into account in this study, and the impact of anthropogenic activities such as groundwater abstraction is neglected. Flows in and out of the control volume are \(P\) and ET across the land surface and lateral flows in the subsurface. These flows are balanced by changes in the water stored in the vadose zone and the unconfined aquifer.

The groundwater balance equation for the conceptual model is given in Eq. (1) as follows:

\[
d\left(\frac{d(S_{vz})}{dt}\right) + \frac{d(S_{ua})}{dt} = P - ET + Q_{g}
\]

(1)

Rearranging Eq. (1), will result in Eq. (2), as follows:

\[
d\left(\frac{d(S_{ua})}{dt}\right) = P - ET + Q_{g} - d(\frac{d(S_{vz})}{dt})
\]

(2)

where \(P\) is precipitation (millimeters per month), ET is actual evapotranspiration (millimeters per month), and \(Q_{g}\) is the lateral groundwater flow (millimeters per month). \(S_{vz}\) and \(S_{ua}\) are the water storages in the vadose zone (millimeters) and the unconfined aquifer (millimeters), respectively, and \(t\) is time (months).

The term on the left-hand side and the first term on the right-hand side in Eq. (2) indicate an explicit relationship between the fluctuation of \(S_{ua}\) and \(P\), providing the theoretical basis of this study. In the case of large continental watersheds (i.e., \(Q_{g} = 0\)), the difference between \(P\) and ET is equal to the total variations in \(S_{vz}\) and \(S_{ua}\). Note that we explicitly separated the water storage term of the vadose zone from the unconfined aquifer to highlight the transient impact of unsaturated storage on the relationship between \(d(S_{ua})/dt\) and \((P-ET)\).

2.2 Long Short-Term Memory networks

In this study, we employed LSTM networks with the same architecture of hidden neurons as in Gers et al. (2000), as shown in Fig. 2. As a category of RNNs, LSTM networks have loops in their hidden layers that facilitate hidden neurons to weigh not only new inputs but also earlier outputs internally for predictions. Hence, similar to other RNNs, they are considered to have memory. Compared with standard
RNNs, LSTM networks add a constant error carousel (CEC) and three gates that are the input, forget, and output gates in their hidden neurons (see Fig. 2) in order to overcome the exploding and vanishing gradient issues. For a detailed description of the functions of these components, the reader is referred to Hochreiter and Schmidhuber (1997) and Gers et al. (2000). Benefiting from the interaction of these components, LSTM networks show great promise for studying long-term relationships between time series. They have the ability to capture dependencies over 1000 time steps, outperforming standard RNNs whose upper boundary of reliable performance is only 10 time steps (Hochreiter and Schmidhuber, 1997; Kratzert et al., 2018). The response of wtd to pr is expected to exhibit a long time lag, especially in case of deep aquifers, and thus, LSTM networks are an appropriate type of network to use here. In addition, compared with traditional physically based models, the proposed LSTM networks require less computational time and background knowledge to perform the simulations. Moreover, when the proposed LSTM networks are available, we only need the pr data to estimate wtd, which are available from bias-corrected operational forecasts and reanalysis data sets.

The procedure for processing inputs in hidden neurons of LSTM networks is as follows (Olah, 2015; Ma et al., 2019): (1) filter the information used for prediction from new inputs based on the result of the input gate, (2) filter the information to be remembered from the old CEC state according to the output of the forget gate, (3) update the CEC state using the results from the previous two steps, and (4) compute outputs of hidden neurons from the new CEC state and the results given by the output gate.

Figure 2 illustrates a one hidden layer LSTM network containing only one hidden neuron; the pseudocode is presented in Appendix A to detail how data are transferred in the given LSTM network. Owing to the limited data available at each pixel (i.e., a total of 252 time steps), we built small LSTM networks at the local scale with one input layer, one hidden layer, and one output layer. The network receives monthly pr from the input layer, processes it on the hidden layer, and finally generates monthly wtd from the output layer. The numbers of input and output neurons are determined by how many input and output variables are used in the derivation of the network. In the constructed LSTM networks, only one neuron is located on either the input or output layer, as the number of input or output variables is one. Thus, the complexity of the network only depends on the number of hidden neurons and, therefore, can vary by changing the number of hidden neurons. The architecture of a network plays an important role in its behavior when processing new data, and it can be a double-edged sword to apply a network with considerable hidden neurons. On the one hand, the bigger we allow a network to grow, the better it can learn from a given data set. On the other hand, a complex network easily captures unwanted patterns when it learns too much from the given data set, eliminating its ability to deal with previously unobserved information (Dawson and Wilby, 2001; Müller and Guido, 2017). This phenomenon is termed overfitting. Hence, it is crucial to identify the optimal number of hidden neurons and specify the appropriate structure of the network, which is the focus of the hyperparameter tuning described in Sect. 2.5.

2.3 Continuous and cross-wavelet transform

Continuous wavelet transform (CWT) is a type of wavelet transform useful for feature extraction (Grinsted et al., 2004). Given a mother wavelet \(\psi_0(\eta) \), with \(\eta \) being a dimensionless time parameter, the CWT of a time series \(x_{n0} \) is formulated as the convolution of \(x_{n0} \) and a scaled and translated form of \(\psi_0(\eta) \) as follows (Torrence and Compo, 1998):

\[
W(s, n) = \sum_{n_0=0}^{N-1} x_{n_0} \psi^* \left[(n_0 - n) \delta t / s \right],
\]

where the asterisk (*) signifies the complex conjugate, \(\delta t \) is the time step of \(x_{n0} \), \(N \) is the total number of \(\delta t \) in \(x_{n0} \), \(s \) is
the wavelet scale, and \(n \) is the localized time index along which \(\psi_0(n) \) is translated. Here, the wavelet power is defined as \(|W(s, n)|^2 \).

The mother wavelet must be zero mean and localized in the time and frequency domains (Torrence and Compo, 1998).

In this study, we applied the Morlet wavelet as the mother wavelet, defined as follows:

\[
\psi_0(\eta) = \pi^{-1/4} e^{i \omega_0 \eta} e^{-\eta^2/2},
\]

where \(\omega_0 \) is the dimensionless frequency, which is set as 6 here to acquire a good balance between time and frequency localization (Grinsted et al., 2004).

XWT is a method for locating common high power in the wavelet transforms of two time series. The XWT of two time series, \(x_{n_0} \) and \(y_{n_0} \), can be computed using the following (Grinsted et al., 2004):

\[
W_{xy}(s, n) = W_x(s, n)W_y(s, n),
\]

where \(W_x(s, n) \) and \(W_y(s, n) \) are the CWT of the time series \(x_{n_0} \) and \(y_{n_0} \), respectively. The cross-wavelet power is calculated as \(|W_{xy}(s, n)| \). However, directly using the cross-wavelet power gives biased results of the XWT analysis, so we applied \(|W_{xy}(s, n)|/s \) proposed by Veleda et al. (2012) for correction. For detailed descriptions about CWT and XWT, the reader is referred to Torrence and Compo (1998), Grinsted et al. (2004), Prokopf and El Bilali (2008), and Veleda et al. (2012).

In this study, XWT is used as an independent and additional analysis tool to visualize the pattern in the \(\text{pr}_a - \text{wtd}_a \) relationship at the individual pixel level in time and frequency. In the XWT analyses, we focus on common, localized high-power frequency modes of \(\psi_0(\eta) \) in \(\text{pr}_a \) and \(\text{wtd}_a \) time series and the dynamics of the modes over time. Using the XWT analysis, we expect to clarify whether a changing pattern exists in the \(\text{pr}_a - \text{wtd}_a \) relationship during the study period and if it affects the network behavior. Moreover, by linking the results of the XWT analysis with the network outputs, we explore the impact of the amount and range of the frequency modes on the LSTM network performance in order to obtain insight into the internal operations of LSTM networks.

2.4 Study area and data set

We constructed the LSTM networks at individual pixels over eight hydrometeorologically different regions within Europe (Fig. 3), which are known as the PRUDENCE (Prediction of Regional scenarios and Uncertainties for Defining European Climate change risks and Effects) regions (Christensen and Christensen, 2007). Table 1 lists the region names and abbreviations, coordinates, and climatologic information. The climatology is represented by regional averages and standard deviations of yearly averaged data derived from the TSMP-G2A data set (Furusu-Percot et al., 2019) from the years 1996 to 2016, except for \(S_w \) for which data are only available from the years 2003 to 2010. The TSMP-G2A data set consists of daily averaged simulation results from TSMP over Europe, using the grid definition from the COordinated Regional Dowscaling Experiment (CORDEX) framework with a spatial resolution of 0.1° (12.5 km; EUR-11). TSMP is a fully coupled atmosphere–land–surface–subsurface modeling system, giving a physically consistent representation of the terrestrial water and energy cycle from the groundwater via the land surface to the top of the atmosphere, which is unique (Keune et al., 2016; Furusho-Percot et al., 2019). The current version (version 1.1) of TSMP consists of the numerical weather prediction model of COnsortium for Small-scale MOdeling (COSMO), version 5.01, the National Center for Atmospheric Research (NCAR) Community Land Model (CLM), version 3.5, and the 3D surface–subsurface hydrologic model ParFlow, version 3.2, which are externally coupled by the Ocean Atmosphere Sea Ice Soil Model Coupling Toolkit (OASIS3–MCT) coupler (Gasper et al., 2014; Shrestha et al., 2014). TSMP has been successfully applied in many studies to simulate the terrestrial hydrological processes (e.g., Shrestha et al., 2014; Kurtz et al., 2016; Sulis et al., 2018; Keune et al., 2019).

Furusu-Percot et al. (2019) showed good agreement of the hydrometeorological variability between TSMP-G2A and observed data at the regional scale in the PRUDENCE regions. They compared anomalies of temperature, \(P \), and total column water storage from the TSMP-G2A data set with commonly used reference observational datasets (i.e., the 0.25° gridded European Climate Assessment and Dataset, ECA & D E-OBS v19, and observations from the Gravity Recovery and Climate Experiment, GRACE), resulting in Pearson correlation coefficients (\(R \)) ranging from 0.73 to 0.94 for temperature anomalies and from 0.62 to 0.88 for \(\text{pr}_a \). Similar results were obtained by Hartick et al. (2021), who compared anomalies of total column water storage from the TSMP-G2A data set with the novel GRACE-REC data set and obtained \(R \) from 0.69 to 0.89 in the different PRUDENCE regions. For details of the TSMP-G2A data set, the reader is referred to Furusho-Percot et al. (2019).

As shown by the averages in Table 1, \(P \) is heterogeneously distributed over the PRUDENCE regions, with the highest rainfall in AL (1494 mm) and the lowest in EA (776 mm). Most regional average \(\text{wtd} \)’s range from 2 to 5 m, other than IB and MD (having a larger average \(\text{wtd} > 6 \) m). Within this range, AL has a relatively high average \(\text{wtd} (4.14 \text{ m}) \) due to its strong relief. Higher ET is naturally observed in more arid regions, e.g., the highest regional average ET (518 mm) is recorded in MD. No significant difference is observed in regional average \(\theta \) over PRUDENCE regions, and the minimal regional average \(\theta \) is observed in IB (0.29 m3 m$^{-3}$) and MD (0.30 m3 m$^{-3}$). For \(S_w \), large values (> 60 mm) are simulated in SC and AL, while values below 10 mm are recorded in the other regions.

We utilized the TSMP-G2A data set to compute \(\text{pr}_a \) and \(\text{wtd}_a \) (Eqs. 6 and 7) at the individual pixel level over Eu-
Averages of pr over the training process.

The technique of adjusting network parameters is called an update. At each time step, one new input enters a network, together with information stored in the network’s memory (i.e., useful messages from inputs in the past) to generate outputs. Therefore, LSTM networks have the ability to handle the lagged response of wtd to pr.

Monthly anomaly time series at individual pixels were divided into three parts for network training (January 1996–December 2012), validation (January 2013–December 2014), and testing (January 2015–December 2016) containing about 80 %, 10 %, and 10 % of the total data, respectively. In training, the network is fitted to a given training set by adjusting its weights and biases. The technique of adjusting network parameters is called an optimizer that minimizes a cost function at a certain learning rate (Govindaraju, 2000). This study utilized a supervised learning method to connect water table depth anomalies.

Table 1. Overview of the PRUDENCE regions, including region names and abbreviations, coordinates, and climatologic information extracted from the TSMP-G2A data set (expressed as average ± standard deviation).

<table>
<thead>
<tr>
<th>Area</th>
<th>Coordinate (long_west, long_east, lat_south, lat_north)</th>
<th>Regional precipitation, P (mm)</th>
<th>Regional water table depth, wtd (m)</th>
<th>Regional evapotranspiration, ET (mm)</th>
<th>Regional soil moisture, θ (m3 m−3)</th>
<th>Regional snow water equivalent, Sw (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scandinavia (SC)</td>
<td>(5, 30, 55, 70)</td>
<td>1005 ± 451</td>
<td>2.43 ± 5.83</td>
<td>283 ± 129</td>
<td>0.32 ± 0.11</td>
<td>79.80 ± 109.17</td>
</tr>
<tr>
<td>British Isles (BI)</td>
<td>(−10, 2, 50, 59)</td>
<td>1119 ± 308</td>
<td>2.29 ± 6.11</td>
<td>395 ± 130</td>
<td>0.36 ± 0.10</td>
<td>0.82 ± 2.19</td>
</tr>
<tr>
<td>Mid-Europe (ME)</td>
<td>(2, 16, 48, 55)</td>
<td>885 ± 192</td>
<td>2.77 ± 6.87</td>
<td>444 ± 141</td>
<td>0.35 ± 0.10</td>
<td>2.44 ± 5.49</td>
</tr>
<tr>
<td>Eastern Europe (EA)</td>
<td>(16, 30, 44, 55)</td>
<td>776 ± 185</td>
<td>3.08 ± 7.37</td>
<td>470 ± 164</td>
<td>0.33 ± 0.10</td>
<td>9.50 ± 13.07</td>
</tr>
<tr>
<td>France (FR)</td>
<td>(−5, 5, 44, 50)</td>
<td>897 ± 169</td>
<td>2.95 ± 7.04</td>
<td>485 ± 164</td>
<td>0.35 ± 0.10</td>
<td>0.31 ± 1.12</td>
</tr>
<tr>
<td>Alps (AL)</td>
<td>(5, 15, 44, 48)</td>
<td>1494 ± 638</td>
<td>4.14 ± 9.16</td>
<td>499 ± 185</td>
<td>0.35 ± 0.10</td>
<td>65.57 ± 127.23</td>
</tr>
<tr>
<td>Iberian Peninsula (IB)</td>
<td>(−10, 3, 36, 44)</td>
<td>841 ± 371</td>
<td>6.62 ± 10.61</td>
<td>495 ± 233</td>
<td>0.29 ± 0.11</td>
<td>3.38 ± 28.18</td>
</tr>
<tr>
<td>Mediterranean (MD)</td>
<td>(3, 25, 36, 44)</td>
<td>894 ± 338</td>
<td>6.48 ± 10.76</td>
<td>518 ± 229</td>
<td>0.30 ± 0.10</td>
<td>3.59 ± 15.22</td>
</tr>
</tbody>
</table>

Figure 3. TSMP-G2A wtd (meters) climatology over the European continent for the time period from 1996 to 2016. Areas bounded by the thick black lines show the PRUDENCE regions (i.e., SC – Scandinavia; BI – British Isles; ME – mid-Europe; EA – Eastern Europe; FR – France; AL – Alps; IB – Iberian Peninsula; MD – Mediterranean).

The wtda is a measure of groundwater drought. Here we define wtda ≥ 2 corresponding to extreme drought, 1.5 ≤ wtda < 2 corresponding to severe drought, 1 ≤ wtda < 1.5 corresponding to moderate drought, 0 ≤ wtda < 1 corresponding to minor drought, and wtda < 0 corresponding to no drought, following McKee et al. (1993).

To identify the effect of local factors on the network behaviors, we categorized the network performances based on different intervals of yearly averaged wtd ET, θ, Sw, and S1 and dominant PFT. The data of θ were calculated based on the information at a depth from 0 to 5 cm below the land surface. It is important to note that the data used in this study cover the years 1996 to 2016 (except for Sw data, which are only available from 2003 to 2010) to ensure that spinup effects do not impact the analyses (Furusho-Percot et al., 2019).

2.5 Experiment design

LSTM networks are employed here to detect connections between pr and wtd from the pan-European simulation results and utilize pr as input to predict wtd. At each time step, one new input enters a network, together with information stored in the network’s memory (i.e., useful messages from inputs in the past) to generate outputs. Therefore, LSTM networks have the ability to handle the lagged response of wtd to pr.
training algorithm with a supplementary teacher signal (i.e., TSMP-G2A monthly wtd\(_a\)) to guide the training process, which is widely adopted in hydroscience in case of, e.g., stream stage modeling (Sung et al., 2017), stream discharge modeling (Zhang et al., 2015), and groundwater level modeling (Adamowski and Chan, 2011). One common challenge in the training process is overfitting. Validation is a process to address overfitting by comparing the network output with the teacher signal to obtain a validation loss (Govindaraju, 2000; Liong et al., 2000). Provided that the network has gained sufficient knowledge from the training set, training ceases when the number of epochs (i.e., an iteration when the whole training set travels through the network forward and backward once) is \(\geq 50 \), and the validation loss starts increasing. The strategy to stop training based on validation losses is termed early stopping.

Moreover, the validation losses were applied to tune hyperparameters of the LSTM networks whose architecture was introduced in Sect. 2.2. To simplify the procedure of hyperparameter tuning, we only focused on the optimization of the number of hidden neurons in this study and set other hyperparameters to be constant (Table 2). The networks with hidden neurons from 1 to 100 were trained at individual pixels, and the best three of them were selected for testing based on the validation losses.

Finally, during testing, the optimally trained networks were provided with a previously unknown data set, originating from the same source as the training set. The difference between generated and target values during testing is called the generalization error, representing the ability of a network to perform on previously unobserved data. The average of the three optimal network results was utilized for evaluation in order to moderately eliminate the individual deficiencies of the selected networks, thereby improving the quality of the final results (Goodfellow et al., 2017; Brownlee, 2018). The metrics to assess network performance in this study are the root mean square error (RMSE), the coefficient of determination \((R^2) \), and the bias from \(R (\alpha) \), as shown in Eqs. (8)–(10), respectively. \(\alpha \) indicates systematic additive and multiplicative biases in the generated values, with a value between 0 and 1, where \(\alpha = 1 \) means no bias (Duveiller et al., 2016).

\[
RMSE = \sqrt{\frac{\sum_{i=1}^{N} (y_{exp} - y_{gene})^2}{N}},
\]

\[
R^2 = 1 - \frac{\sum_{i=1}^{N} (y_{exp} - y_{gene})^2}{\sum_{i=1}^{N} (y_{exp} - \bar{y}_{exp})^2},
\]

\[
\alpha = 2\left(\frac{\sigma_{exp}/\sigma_{y_{gene}} + \sigma_{y_{gene}}/\sigma_{exp} + (\bar{y}_{exp} - \bar{y}_{gene})}{2\sigma_{exp}\sigma_{y_{gene}}}\right),
\]
Figure 4. Workflow for LSTM network setup over the European CORDEX domain. The left section represents the overall processes of the network setup, whereas the right section shows how to apply LSTM networks at a selected pixel. The blue dashed lines with arrows indicate additional data transmission paths.

Table 3. Intervals of yearly averaged wtd, ET, θ, S_w, and S_t and dominant PFT for categorization.

<table>
<thead>
<tr>
<th>Yearly averaged water table depth, wtd (m)</th>
<th>Yearly averaged evapotranspiration, ET (mm)</th>
<th>Yearly averaged soil moisture, θ (m3 m$^{-3}$)</th>
<th>Yearly averaged snow water equivalent, S_w (mm)</th>
<th>Soil type, S_t</th>
<th>Dominant plant functional type, PFT*</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0–1.0</td>
<td>< 0.0</td>
<td>0.0–0.05</td>
<td>≤ 10.0</td>
<td>Sand</td>
<td>Needleleaf evergreen temperate tree</td>
</tr>
<tr>
<td>1.0–2.0</td>
<td>0.0–100.0</td>
<td>0.05–0.10</td>
<td>> 10.0</td>
<td>Loamy sand</td>
<td>Needleleaf evergreen boreal tree</td>
</tr>
<tr>
<td>2.0–3.0</td>
<td>100.0–200.0</td>
<td>0.10–0.15</td>
<td></td>
<td>Sandy loam</td>
<td>Needleleaf deciduous boreal tree</td>
</tr>
<tr>
<td>3.0–4.0</td>
<td>200.0–300.0</td>
<td>0.15–0.20</td>
<td></td>
<td>Silt loam</td>
<td>Broadleaf evergreen tropical tree</td>
</tr>
<tr>
<td>4.0–5.0</td>
<td>300.0–400.0</td>
<td>0.20–0.25</td>
<td></td>
<td>Silt</td>
<td>Broadleaf evergreen temperate tree</td>
</tr>
<tr>
<td>5.0–6.0</td>
<td>400.0–500.0</td>
<td>0.25–0.30</td>
<td></td>
<td>Loam</td>
<td>Broadleaf deciduous tropical tree</td>
</tr>
<tr>
<td>6.0–7.0</td>
<td>500.0–600.0</td>
<td>0.30–0.35</td>
<td></td>
<td>Sandy clay loam</td>
<td>Broadleaf deciduous temperate tree</td>
</tr>
<tr>
<td>7.0–8.0</td>
<td>600.0–700.0</td>
<td>0.35–0.40</td>
<td></td>
<td>Silty clay loam</td>
<td>Broadleaf deciduous boreal tree</td>
</tr>
<tr>
<td>8.0–9.0</td>
<td>700.0–800.0</td>
<td>0.40–0.45</td>
<td></td>
<td>Clay loam</td>
<td>Broadleaf evergreen shrub</td>
</tr>
<tr>
<td>9.0–10.0</td>
<td>800.0–900.0</td>
<td>0.45–0.50</td>
<td></td>
<td>Sandy clay</td>
<td>Broadleaf deciduous temperate shrub</td>
</tr>
<tr>
<td>10.0–50.0</td>
<td>900.0–1000.0</td>
<td></td>
<td></td>
<td>Silty clay</td>
<td>Broadleaf deciduous boreal shrub</td>
</tr>
<tr>
<td></td>
<td>1000.0–1100.0</td>
<td></td>
<td></td>
<td>Clay</td>
<td>C3 Arctic grass</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Organic material</td>
<td>C3 non-Arctic grass</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Water</td>
<td>C4 grass</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bedrock</td>
<td>Corn</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Others</td>
<td>Wheat</td>
</tr>
</tbody>
</table>

* Dominant PFT – the PFT of which the percentage is ≥ 50 % at 1 px.
Figure 5. European wtdₐ maps for (a) August 2003 (i.e., in the training period) and (b) August 2015 (i.e., in the testing period) derived from the TSMP-G2A data set (left) and the results from LSTM networks (right).

In each PRUDENCE region, we computed the averages and standard deviations of the test R^2 scores and RMSEs for the categories based on different intervals (Table 3) of yearly averaged wtd, ET, $θ$, S_w, and S_t and dominant PFT (Fig. 6) to study dependents of the network test performances on different local factors. For statistical significance, we only considered categories with \geq 50 px. In addition, negative R^2 values at the pixel level were set to zero in the calculation of averages and standard deviations.
Figure 6. Averages and standard deviations of the test R^2 scores (left) and RMSEs (right) over the categorized results. Shown are the yearly averaged (a) wtd, (b) ET, (c) θ, and (d) S_w. The averages are indicated as dots, while the bars indicate standard deviations. The different colors reflect test results in different PRUDENCE regions.

There was no significant influence of S_t and dominant PFT on the scores (not shown here). In general, the performance decreased with increasing yearly averaged wtd, which was manifested by decreasing average R^2 scores and growing average RMSEs (Fig. 6a). This type of network behavior can be attributed to a stronger connection of groundwater to P in shallow aquifers, which is intuitive. In contrast to the impact of yearly averaged wtd on the test performance, the performance was positively correlated to yearly averaged ET and θ. With increasing yearly averaged ET (Fig. 6b) or θ (Fig. 6c), there was an increase in average R^2 scores and a decrease in average RMSEs. We can explain this phenomenon by the overlap between low-wtd and high-ET (or high-θ) areas over Europe. We also discovered that yearly averaged S_w played an important role in the network test performance. In most PRUDENCE regions, the performance decreased in the case of increasing S_w, leading to smaller average R^2 scores and larger average RMSEs presented in Fig. 6d. The reason is that snow accumulation resulted in complex feedback with groundwater processes that cannot be captured well by the networks without including additional input information. Overall, in the same region, most of the proposed LSTM networks achieved a relatively good test performance at the pixels with yearly averaged wtd < 3 m, ET > 200 mm, $\theta > 0.15$ m3 m$^{-3}$ and $S_w < 10$ mm, where a stronger relationship exists between p_r and wtd$_a$.

As mentioned in Sect. 2.4, we only used the training set to calculate the climatological average and standard deviation.
in order to prevent the networks from incorporating future information in the training process. However, some extreme values in the validation and test sets may exceed the range of the training set, resulting in decreased validation and test performances and suggesting that a varying pattern may exist between pr_a and wtd_a over the study period (see discussion in Sect. 3.3). This can also be a potential reason for large standard deviations in the test RMSEs in Fig. 6.

Figure 6 also reveals different regional network test performances. In the same interval of yearly averaged wtd, the difference in yearly average R^2 scores between two PRUDENCE regions can be more than 40%. FR exhibits the overall best network performance during testing. As shown in Table 1, the regional average wtd, ET, θ, and S_w of FR are 2.95 m (< 3 m), 485 mm (> 200 mm), 0.35 m^3 m^-3 (> 0.15 m^3 m^-3), and 0.31 mm (< 10 mm), respectively. Hence, there was a close connection between pr_a and wtd_a at most pixels in FR, resulting in good network test performance.

To further analyze the network test performances in different PRUDENCE regions, Fig. 7 and Table 4 provide test R^2 scores over Europe and percentages of the selected pixels with test R^2 ≥ 50%, respectively. FR outperformed the other regions on test R^2 scores, which is consistent with the finding from Fig. 6. In BI, ME, EA, and AL, the proposed LSTM networks behaved well during testing (i.e., having test R^2 ≥ 50%) at more than 30% of the selected pixels (colored in blue in Fig. 7). However, we also found low percentages of the selected pixels with test R^2 ≥ 50% in SC, IB, and MD, which are 17.46%, 33.38%, and 27.72%, respectively. In Table 1, SC is characterized as the region with the largest regional average S_w (79.80 mm) and the smallest regional average ET (283 mm), and as shown in Fig. 6, the networks tended to perform poorly during testing in the areas with large S_w and small ET. The pixels in IB and MD (regional average wtd > 6 m) generally have larger wtd than the other regions, resulting in a more lagged and weaker connection between pr_a and wtd_a, which is intuitive. Therefore, the network behavior in IB and MD was relatively poor.

We extended the scope of the analyses to the entire study period and found that the performance of individual networks generally followed two combinations with respect to training and test scores, which are as follows:

- C1 – training R^2 score ≥ 50%; test R^2 score ≥ 50%
- C2 – training R^2 score ≥ 50%; test R^2 score ≤ 0%

The data distribution in the training and test sets was expected to be analogous, and if the networks did not encounter overfitting during training, their test performance increased by the improvement of the training performance and vice versa. C1 is the expected network behavior with both satisfactory training and test scores. C2 is an exception in which the networks that performed well on the training set failed to handle the test set. Significantly reduced test performance in C2 can be attributed to the hypothesis that the pattern between pr_a and wtd_a varied over the study period.

Figure 7 shows the percentages of the pixels where the network performance followed C1 (Fig. 8a) and C2 (Fig. 8b) in different PRUDENCE regions and intervals of wtd, ET, θ, and S_w. For statistical significance, only the regions and the intervals of wtd, ET, θ, and S_w with ≥ 50 selected pixels were considered. Here, we focused on the regions and the intervals with high percentages (> 30%; above the black dashed lines in Fig. 8) to identify common hydrometeorological characteristics of a pixel where the network performance followed C1 or C2. For C1, high percentages were found in regions except for SC, IB, and MD and in areas with wtd ≤ 3 m, ET ≥ 200 mm, θ ≤ 0.10 m^3 m^-3 and θ ≥ 0.20 m^3 m^-3, and S_w ≤ 10 mm, which are in good agreement with our previous findings. In contrast, for C2, the percentages are high in SC, EA, IB, and MD and in areas with wtd ≥ 2 m, ET ≤ 300 mm, and 0.10 m^3 m^-3 < θ ≤ 0.25 m^3 m^-3. The distribution of C2 is not very sensitive to S_w, and the percentages are large in both areas, with S_w ≤ 10 mm and S_w > 10 mm. Moreover, in areas with negative ET, there is no pixel where the network performances followed C1, and C2 is the dominant network performance combination. We explain negative ET by pronounced freezing and sublimation processes in these areas, which significantly affect the response of wtd_a to pr_a.

3.3 Cross-wavelet transform (XWT) analysis

In the previous section, we posed the hypothesis that the temporal pattern between pr_a and wtd_a during training, validation, and testing was different at a number of pixels over
the European continent. XWT was employed here for hypothesis testing at the individual, representative pixels (Table 5), which were randomly selected based on the hydrometeorological characteristics of C1 and C2 summarized in Fig. 8. XWT showed the time–frequency pattern in the pr_a and wtd_a time series derived from the TSMP-G2A data set (i.e., TSMP-G2A pr_a and wtd_a) at these pixels and highlighted the common high power of the frequency components in the time series (Fig. 9). The α values (Eq. 10) of pixel 1 were generally suggesting that smaller biases existed in the results of the LSTM networks. In addition, we found different α values for pixel 2, with small biases in the training and large biases in the validation and testing.

Figure 9 shows the results of the XWT analyses of the selected pixels in combination with the corresponding TSMP-G2A pr_a and wtd_a time series. Inspecting the results of the XWT analyses (bottom panel of Fig. 9), the concentration period of power was inconsistent in the area without edge effects (i.e., the area within the black dashed line) at pixel 2 from the time period 1996 to 2016, indicating a time-varying pattern between pr_a and wtd_a at the pixel, thus supporting our hypothesis. It also explores the high sensitivity of LSTM networks to outliers, which is a drawback of data-driven models.

The high power in the XWT results at the representative pixel of C1 (pixel 1; Fig. 9a) was consistently located in a certain period (i.e., below 64 months), indicating a consistent pattern between pr_a and wtd_a throughout the whole study period, which is the prerequisite of good network performances. At the pixel, we found that most of the high power in the XWT results was consistently concentrated in the period from 2 to 16 months during the study period (see Fig. 9a). The plot in Appendix C (Fig. C1a) showed similar phenomena as above. Therefore, we speculate that LSTM networks might be frequency aware and work well to capture the pr_a–wtd_a relationship at the monthly, seasonal, and annual periods.

4 Summary and conclusions

In this study, we proposed LSTM networks as an indirect method to model monthly wtd_a over the European continent, using monthly pr_a as input. Local LSTM networks were constructed at individual pixels randomly selected over Europe to capture the time-varying and time-lagged relationship between pr_a and wtd_a from integrated hydrologic simulation (TSMP-G2A) results covering the 1996 to 2016 episode. The monthly anomaly series derived from the TSMP-G2A data set were divided into three sections at each pixel for network training, validation, and testing. Using the output of the LSTM networks, we successfully reproduced TSMP-G2A wtd_a maps over Europe for drought months in both the training and testing period (e.g., August 2003 and August 2015) in terms of the spatial distribution of dry and wet events. The good agreement between the TSMP-G2A and LSTM wtd_a maps demonstrated the ability of the trained networks to model wtd_a from pr_a data. The results highlighted the impact of local factors on the network test performance, as manifested by R^2 scores and RMSEs. Most of the networks attained high test R^2 scores at the pixels with wtd < 3 m, ET > 200 mm, $θ > 0.15$ m3 m$^{-3}$, and $S_w < 10$ mm, where a stronger connection existed between pr_a and wtd_a. Also, the various hydrometeorological characteristics in each PRUDENCE region resulted in regional differences in the test performance of the proposed networks, with FR showing the overall best network performance. In some regions, test performance deteriorated due to changing temporal patterns in the pr_a–wtd_a relationship, approved by XWT analyses. Ac-
Table 5. Pixel characteristics in the XWT analysis (pixels 1–2).

<table>
<thead>
<tr>
<th>Performance combination</th>
<th>Region</th>
<th>Yearly averaged water table depth, wtd (m)</th>
<th>Yearly averaged evapotranspiration, ET (mm)</th>
<th>Yearly averaged soil moisture, θ (m3m$^{-3}$)</th>
<th>Yearly average snow water equivalent, S_{sw} (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pixel 1</td>
<td>C1</td>
<td>1.38</td>
<td>422.91</td>
<td>0.28</td>
<td>0.0</td>
</tr>
<tr>
<td>Pixel 2</td>
<td>C2</td>
<td>5.19</td>
<td>−24.41</td>
<td>0.16</td>
<td>535.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Training R^2 (%)</th>
<th>Validation R^2 (%)</th>
<th>Test R^2 (%)</th>
<th>Test α (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pixel 1</td>
<td>82.50</td>
<td>53.99</td>
<td>91.32</td>
</tr>
<tr>
<td>Pixel 2</td>
<td>66.47</td>
<td>−34.74</td>
<td>34.82</td>
</tr>
</tbody>
</table>

Figure 9. TSMP-G2A pr_a, TSMP-G2A wtd$_a$, and LSTM wtd$_a$ time series (top), as well as cross-wavelet spectra for TSMP-G2A pr_a and wtd$_a$ series (bottom), at a representative pixel of the performance combination (a) C1 and (b) C2. In the cross-wavelet spectra, the black dashed line marks the boundary of the cone of influence. The color bar presents \log_2(power/scale). In all plots, the two gray dashed lines separate the study period into the training, validation, and testing periods.

According to the results of the XWT analyses, we hypothesize that LSTM networks have frequency awareness and tend to perform well to capture the pr_a–wtd$_a$ relationship at the monthly, seasonal, and annual periods.

We also recognized that the limited amount of data in the training introduces uncertainties in the network performances. Any potential extension of training data may lead to a significant improvement in the quality of the derived networks. In addition, hyperparameters of the proposed LSTM...
networks may be further tuned at the individual pixel level to improve network performance. Due to a lack of spatiotemporally continuous wtd observations over Europe, this study presents a methodology for deriving a LSTM network model for wtd from pr based on simulation results from a terrestrial model (i.e., the TSMP-G2A data set). As demonstrated in Furusho-Percot et al. (2019) and Hartick et al. (2021), the TSMP-G2A data set shows a good agreement with hydrometeorological and GRACE observations in different European regions. Therefore, we argue that the TSMP-G2A data set is a good reference data set to establish the methodology. The results suggest that LSTM networks are useful for estimating wtd time series based on other hydrometeorological variables which are routinely measured and, therefore, are more easily available from, e.g., atmospheric reanalyses and forecast data sets and observations than groundwater level measurements. After training, LSTM networks could provide fast and reliable predictions of wtd only based on the data of input variables, which is impossible for traditional, physically based models such as TSMP. The proposed methodology may be transferred into a real-time monitoring and forecasting workflow for wtd at the continental scale.
Appendix A: Pseudocode of the LSTM network (displayed in Fig. 2)

The pseudocode, shown below, is of the one hidden layer LSTM networks illustrated in Fig. 2, which is modified from Gers et al. (2000). Variables were defined in the caption of Fig. 2. Note that, in order to simplify the code, the biases are not shown here.

RESET all network parameters (i.e., weights, biases, and cell states) as listed in Table 2

REPEAT learning loop

forward pass

for t = 1, 2, …

network input to the hidden layer (self-recurrent and from input):

input gate: $net_{in}(t) = w_{in}x(t) + w_{inh}h(t - 1)$

forget gate: $net_{forget}(t) = w_{forget}x(t) + w_{forgh}h(t - 1)$

output gate: $net_{out}(t) = w_{out}x(t) + w_{outh}h(t - 1)$

cell: $netc(t) = wcx(t) + wcnh(t - 1)$

activations in the hidden layer:

input gate: $i(t) = \sigma(net_{in}(t))$

forget gate: $f(t) = \sigma(net_{forget}(t))$

output gate: $o(t) = \sigma(net_{out}(t))$

cell’s internal state:

$c(0) = 0, c(t) = f(t)c(t - 1) + i(t)g(t)$, where $g(t) = \tanh(net_c(t))$

cell’s activation: $h(t) = o(t)\tanh(c(t))$

output of the network:

$net(t) = w_{net}h(t)$, out(t) = net(t)

backward pass if error injected

for t = n, n-1, …

use RMSprop optimization algorithm (Hinton et al., 2020)

UNTIL validation error begins to drop and number of epochs ≥ 50
Appendix B: Additional European water table depth anomaly maps

Figure B1. European wtd$_a$ maps for (a) July 2003 (i.e., in the training period) and (b) July 2015 (i.e., in the testing period) derived from the TSMP-G2A data set (left) and the results from LSTM networks (right).
Figure B2. European wtd₄ maps for (a) December 2003 (i.e., in the training period) and (b) December 2015 (i.e., in the testing period) derived from the TSMP-G2A data set (left) and the results from LSTM networks (right).
Appendix C: Results of the cross-wavelet transform (XWT) analysis at additional pixels

Table C1. Pixel characteristics in the XWT analysis (pixels 3–4).

<table>
<thead>
<tr>
<th>Performance combination</th>
<th>Region</th>
<th>Yearly averaged water table depth, (\text{wt}\text{d}) (m)</th>
<th>Yearly averaged evapotranspiration, (\text{ET}) (mm)</th>
<th>Yearly averaged soil moisture, (\theta) (m(^3) m(^{-3}))</th>
<th>Yearly average snow water equivalent, (S_{\text{sw}}) (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pixel 3</td>
<td>C1</td>
<td>FR</td>
<td>1.06</td>
<td>418.39</td>
<td>0.31</td>
</tr>
<tr>
<td>Pixel 4</td>
<td>C2</td>
<td>IB</td>
<td>6.44</td>
<td>153.92</td>
<td>0.16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Training (R^2) (%)</th>
<th>Training (\alpha) (%)</th>
<th>Validation (R^2) (%)</th>
<th>Validation (\alpha) (%)</th>
<th>Test (R^2) (%)</th>
<th>Test (\alpha) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pixel 3</td>
<td>84.29</td>
<td>97.89</td>
<td>60.61</td>
<td>98.38</td>
<td>62.22</td>
</tr>
<tr>
<td>Pixel 4</td>
<td>94.39</td>
<td>99.79</td>
<td>46.87</td>
<td>90.86</td>
<td>–724.90</td>
</tr>
</tbody>
</table>

Figure C1. TSMP-G2A pr\(_a\), TSMP-G2A wtd\(_a\), and LSTM wtd\(_a\) time series (top), as well as cross-wavelet spectra for TSMP-G2A pr\(_a\) and wtd\(_a\) series (bottom), at (a) pixel 3 and (b) pixel 4. The lines have the same definitions as in Fig. 9.
Author contributions. YM and SK conceived and designed the experiments. YM conducted all the experiments and analyzed the results, with feedback from CM, BB, and SK. YM prepared the paper, with contributions from all co-authors.

Competing interests. The authors declare that they have no conflict of interest.

Disclaimer. Publisher’s note: Copernicus Publications remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Acknowledgements. This work was supported by the European Commission HORIZON 2020 Program ERP-PLANET/GEOEssential project (grant no. 689443). The authors gratefully acknowledge the computing time granted through JARA-HPC and the VSR commission on the supercomputer JUWELS at the Forschungszentrum Jülich.

Financial support. This research has been supported by the European Commission HORIZON 2020 Program ERP-PLANET/GEOEssential project (grant no. 689443).

The article processing charges for this open-access publication were covered by the Forschungszentrum Jülich.

Review statement. This paper was edited by Zhongbo Yu and reviewed by four anonymous referees.

References

Grinsted, A., Moore, J. C., and Jevrejeva, S.: Application of the cross wavelet transform and wavelet coherence to geophys-

