Articles | Volume 25, issue 6
Research article
03 Jun 2021
Research article |  | 03 Jun 2021

Evaluation of random forests for short-term daily streamflow forecasting in rainfall- and snowmelt-driven watersheds

Leo Triet Pham, Lifeng Luo, and Andrew Finley

Related authors

Seasonal drought predictability and forecast skill in the semi-arid endorheic Heihe River basin in northwestern China
Feng Ma, Lifeng Luo, Aizhong Ye, and Qingyun Duan
Hydrol. Earth Syst. Sci., 22, 5697–5709,,, 2018
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Technical note: How physically based is hydrograph separation by recursive digital filtering?
Klaus Eckhardt
Hydrol. Earth Syst. Sci., 27, 495–499,,, 2023
Short summary
A comprehensive open-source course for teaching applied hydrological modelling in Central Asia
Beatrice Sabine Marti, Aidar Zhumabaev, and Tobias Siegfried
Hydrol. Earth Syst. Sci., 27, 319–330,,, 2023
Short summary
Impact of distributed meteorological forcing on simulated snow cover and hydrological fluxes over a mid-elevation alpine micro-scale catchment
Aniket Gupta, Alix Reverdy, Jean-Martial Cohard, Basile Hector, Marc Descloitres, Jean-Pierre Vandervaere, Catherine Coulaud, Romain Biron, Lucie Liger, Reed Maxwell, Jean-Gabriel Valay, and Didier Voisin
Hydrol. Earth Syst. Sci., 27, 191–212,,, 2023
Short summary
Technical note: Extending the SWAT model to transport chemicals through tile and groundwater flow
Hendrik Rathjens, Jens Kiesel, Michael Winchell, Jeffrey Arnold, and Robin Sur
Hydrol. Earth Syst. Sci., 27, 159–167,,, 2023
Short summary
Long-term reconstruction of satellite-based precipitation, soil moisture, and snow water equivalent in China
Wencong Yang, Hanbo Yang, Changming Li, Taihua Wang, Ziwei Liu, Qingfang Hu, and Dawen Yang
Hydrol. Earth Syst. Sci., 26, 6427–6441,,, 2022
Short summary

Cited articles

Adamowski, J. F.: Development of a short-term river flood forecasting method for snowmelt driven floods based on wavelet and cross-wavelet analysis, J. Hydrol., 353, 247–266, 2008. a
Altman, D. G. and Bland, J. M.: Statistics notes Variables and parameters, Brit. Med. J., 318, 1667, 1999. a
Aubert, D., Loumagne, C., and Oudin, L.: Sequential assimilation of soil moisture and streamflow data in a conceptual rainfall–runoff model, J. Hydrol., 280, 145–161, 2003. a
Bernard, S., Heutte, L., and Adam, S.: Influence of hyperparameters on random forest accuracy, in: International Workshop on Multiple Classifier Systems, Springer, Berlin, Heidelberg, 171–180, 2009. a, b
Boyle, D. P., Gupta, H. V., and Sorooshian, S.: Toward improved calibration of hydrologic models: Combining the strengths of manual and automatic methods, Water Resour. Res., 36, 3663–3674, 2000. a
Short summary
Model evaluation metrics suggest that RF performs better in snowmelt-driven watersheds. The largest improvements in forecasts compared to benchmark models are found among rainfall-driven watersheds. RF performance deteriorates with increases in catchment slope and soil sandiness. We note disagreement between two popular measures of RF variable importance and recommend jointly considering these measures with the physical processes under study.