Articles | Volume 25, issue 4
Hydrol. Earth Syst. Sci., 25, 1827–1847, 2021
https://doi.org/10.5194/hess-25-1827-2021
Hydrol. Earth Syst. Sci., 25, 1827–1847, 2021
https://doi.org/10.5194/hess-25-1827-2021

Research article 09 Apr 2021

Research article | 09 Apr 2021

Field-scale soil moisture bridges the spatial-scale gap between drought monitoring and agricultural yields

Noemi Vergopolan et al.

Related authors

Evaluation of 18 satellite- and model-based soil moisture products using in situ measurements from 826 sensors
Hylke E. Beck, Ming Pan, Diego G. Miralles, Rolf H. Reichle, Wouter A. Dorigo, Sebastian Hahn, Justin Sheffield, Lanka Karthikeyan, Gianpaolo Balsamo, Robert M. Parinussa, Albert I. J. M. van Dijk, Jinyang Du, John S. Kimball, Noemi Vergopolan, and Eric F. Wood
Hydrol. Earth Syst. Sci., 25, 17–40, https://doi.org/10.5194/hess-25-17-2021,https://doi.org/10.5194/hess-25-17-2021, 2021
Short summary
Two-way coupling between the sub-grid land surface and river networks in Earth system models
Nathaniel W. Chaney, Laura Torres-Rojas, Noemi Vergopolan, and Colby K. Fisher
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-291,https://doi.org/10.5194/gmd-2020-291, 2020
Revised manuscript accepted for GMD
Short summary
Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling
Hylke E. Beck, Noemi Vergopolan, Ming Pan, Vincenzo Levizzani, Albert I. J. M. van Dijk, Graham P. Weedon, Luca Brocca, Florian Pappenberger, George J. Huffman, and Eric F. Wood
Hydrol. Earth Syst. Sci., 21, 6201–6217, https://doi.org/10.5194/hess-21-6201-2017,https://doi.org/10.5194/hess-21-6201-2017, 2017
Short summary

Related subject area

Subject: Water Resources Management | Techniques and Approaches: Modelling approaches
Robustness of a parsimonious subsurface drainage model at the French national scale
Alexis Jeantet, Hocine Henine, Cédric Chaumont, Lila Collet, Guillaume Thirel, and Julien Tournebize
Hydrol. Earth Syst. Sci., 25, 5447–5471, https://doi.org/10.5194/hess-25-5447-2021,https://doi.org/10.5194/hess-25-5447-2021, 2021
Short summary
Spatially distributed impacts of climate change and groundwater demand on the water resources in a wadi system
Nariman Mahmoodi, Jens Kiesel, Paul D. Wagner, and Nicola Fohrer
Hydrol. Earth Syst. Sci., 25, 5065–5081, https://doi.org/10.5194/hess-25-5065-2021,https://doi.org/10.5194/hess-25-5065-2021, 2021
Short summary
Delineation of dew formation zones in Iran using long-term model simulations and cluster analysis
Nahid Atashi, Dariush Rahimi, Victoria A. Sinclair, Martha A. Zaidan, Anton Rusanen, Henri Vuollekoski, Markku Kulmala, Timo Vesala, and Tareq Hussein
Hydrol. Earth Syst. Sci., 25, 4719–4740, https://doi.org/10.5194/hess-25-4719-2021,https://doi.org/10.5194/hess-25-4719-2021, 2021
Short summary
Streamflow estimation at partially gaged sites using multiple-dependence conditions via vine copulas
Kuk-Hyun Ahn
Hydrol. Earth Syst. Sci., 25, 4319–4333, https://doi.org/10.5194/hess-25-4319-2021,https://doi.org/10.5194/hess-25-4319-2021, 2021
Short summary
Water resources management and dynamic changes in water politics in the transboundary river basins of Central Asia
Xuanxuan Wang, Yaning Chen, Zhi Li, Gonghuan Fang, Fei Wang, and Haichao Hao
Hydrol. Earth Syst. Sci., 25, 3281–3299, https://doi.org/10.5194/hess-25-3281-2021,https://doi.org/10.5194/hess-25-3281-2021, 2021
Short summary

Cited articles

Adegoke, J. O. and Carleton, A. M.: Relations between Soil Moisture and Satellite Vegetation Indices in the U.S. Corn Belt, J. Hydrometeorol., 3, 395–405, https://doi.org/10.1175/1525-7541(2002)003<0395:rbsmas>2.0.co;2, 2002. a
Aghighi, H., Azadbakht, M., Ashourloo, D., Shahrabi, H. S., and Radiom, S.: Machine Learning Regression Techniques for the Silage Maize Yield Prediction Using Time-Series Images of Landsat 8 OLI, IEEE J. Sel. Top. Appl., 11, 4563–4577, https://doi.org/10.1109/jstars.2018.2823361, 2018. a
Alfani, F., Arslan, A., McCarthy, N., Cavatassi, R., and Sitko, N.: Climate-change vulnerability in rural Zambia: the impact of an El Niño-induced shock on income and productivity, available at: http://www.fao.org/3/ca3255en/CA3255EN.pdf (last access: 18 May 2020), 2019. a, b, c, d
Archer, K. J. and Kimes, R. V.: Empirical characterization of random forest variable importance measures, Comput. Stat. Data An., 52, 2249–2260, https://doi.org/10.1016/j.csda.2007.08.015, 2008. a, b
Azzari, G., Jain, M., and Lobell, D. B.: Towards fine resolution global maps of crop yields: Testing multiple methods and satellites in three countries, Remote Sens. Environ., 202, 129–141, https://doi.org/10.1016/j.rse.2017.04.014, 2017. a, b
Download
Short summary
Drought monitoring and yield prediction often rely on coarse-scale hydroclimate data or (infrequent) vegetation indexes that do not always indicate the conditions farmers face in the field. Consequently, decision-making based on these indices can often be disconnected from the farmer reality. Our study focuses on smallholder farming systems in data-sparse developing countries, and it shows how field-scale soil moisture can leverage and improve crop yield prediction and drought impact assessment.