Articles | Volume 25, issue 4
https://doi.org/10.5194/hess-25-1827-2021
https://doi.org/10.5194/hess-25-1827-2021
Research article
 | 
09 Apr 2021
Research article |  | 09 Apr 2021

Field-scale soil moisture bridges the spatial-scale gap between drought monitoring and agricultural yields

Noemi Vergopolan, Sitian Xiong, Lyndon Estes, Niko Wanders, Nathaniel W. Chaney, Eric F. Wood, Megan Konar, Kelly Caylor, Hylke E. Beck, Nicolas Gatti, Tom Evans, and Justin Sheffield

Related authors

Hyper-Resolution Land Surface Modeling for Farm-Scale Soil Moisture in India: Enhancing Simulations with Soil Vertical Heterogeneity
Vishnu U. Krishnan, Noemi Vergopolan, Bhupendra Bahadur Singh, Jayaluxmi Indu, and Lanka Karthikeyan
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-339,https://doi.org/10.5194/hess-2024-339, 2024
Preprint under review for HESS
Short summary
A comprehensive assessment of in situ and remote sensing soil moisture data assimilation in the APSIM model for improving agricultural forecasting across the US Midwest
Marissa Kivi, Noemi Vergopolan, and Hamze Dokoohaki
Hydrol. Earth Syst. Sci., 27, 1173–1199, https://doi.org/10.5194/hess-27-1173-2023,https://doi.org/10.5194/hess-27-1173-2023, 2023
Short summary
HydroBlocks v0.2: enabling a field-scale two-way coupling between the land surface and river networks in Earth system models
Nathaniel W. Chaney, Laura Torres-Rojas, Noemi Vergopolan, and Colby K. Fisher
Geosci. Model Dev., 14, 6813–6832, https://doi.org/10.5194/gmd-14-6813-2021,https://doi.org/10.5194/gmd-14-6813-2021, 2021
Short summary
Evaluation of 18 satellite- and model-based soil moisture products using in situ measurements from 826 sensors
Hylke E. Beck, Ming Pan, Diego G. Miralles, Rolf H. Reichle, Wouter A. Dorigo, Sebastian Hahn, Justin Sheffield, Lanka Karthikeyan, Gianpaolo Balsamo, Robert M. Parinussa, Albert I. J. M. van Dijk, Jinyang Du, John S. Kimball, Noemi Vergopolan, and Eric F. Wood
Hydrol. Earth Syst. Sci., 25, 17–40, https://doi.org/10.5194/hess-25-17-2021,https://doi.org/10.5194/hess-25-17-2021, 2021
Short summary
Global-scale evaluation of 22 precipitation datasets using gauge observations and hydrological modeling
Hylke E. Beck, Noemi Vergopolan, Ming Pan, Vincenzo Levizzani, Albert I. J. M. van Dijk, Graham P. Weedon, Luca Brocca, Florian Pappenberger, George J. Huffman, and Eric F. Wood
Hydrol. Earth Syst. Sci., 21, 6201–6217, https://doi.org/10.5194/hess-21-6201-2017,https://doi.org/10.5194/hess-21-6201-2017, 2017
Short summary

Related subject area

Subject: Water Resources Management | Techniques and Approaches: Modelling approaches
Spatially explicit assessment of water stress and potential mitigating solutions in a large water-limited basin: the Yellow River basin in China
Weibin Zhang, Xining Zhao, Xuerui Gao, Wei Liang, Junyi Li, and Baoqing Zhang
Hydrol. Earth Syst. Sci., 29, 507–524, https://doi.org/10.5194/hess-29-507-2025,https://doi.org/10.5194/hess-29-507-2025, 2025
Short summary
A scalable and modular reservoir implementation for large-scale integrated hydrologic simulations
Benjamin D. West, Reed M. Maxwell, and Laura E. Condon
Hydrol. Earth Syst. Sci., 29, 245–259, https://doi.org/10.5194/hess-29-245-2025,https://doi.org/10.5194/hess-29-245-2025, 2025
Short summary
The interprovincial green water flow in China and its teleconnected effects on the social economy
Shan Sang, Yan Li, Chengcheng Hou, Shuangshuang Zi, and Huiqing Lin
Hydrol. Earth Syst. Sci., 29, 67–84, https://doi.org/10.5194/hess-29-67-2025,https://doi.org/10.5194/hess-29-67-2025, 2025
Short summary
Modeling hydropower operations at the scale of a power grid: a demand-based approach
Laure Baratgin, Jan Polcher, Patrice Dumas, and Philippe Quirion
Hydrol. Earth Syst. Sci., 28, 5479–5509, https://doi.org/10.5194/hess-28-5479-2024,https://doi.org/10.5194/hess-28-5479-2024, 2024
Short summary
Determining the threshold of issuing flash flood warnings based on people's response process simulation
Ruikang Zhang, Dedi Liu, Lihua Xiong, Jie Chen, Hua Chen, and Jiabo Yin
Hydrol. Earth Syst. Sci., 28, 5229–5247, https://doi.org/10.5194/hess-28-5229-2024,https://doi.org/10.5194/hess-28-5229-2024, 2024
Short summary

Cited articles

Adegoke, J. O. and Carleton, A. M.: Relations between Soil Moisture and Satellite Vegetation Indices in the U.S. Corn Belt, J. Hydrometeorol., 3, 395–405, https://doi.org/10.1175/1525-7541(2002)003<0395:rbsmas>2.0.co;2, 2002. a
Aghighi, H., Azadbakht, M., Ashourloo, D., Shahrabi, H. S., and Radiom, S.: Machine Learning Regression Techniques for the Silage Maize Yield Prediction Using Time-Series Images of Landsat 8 OLI, IEEE J. Sel. Top. Appl., 11, 4563–4577, https://doi.org/10.1109/jstars.2018.2823361, 2018. a
Alfani, F., Arslan, A., McCarthy, N., Cavatassi, R., and Sitko, N.: Climate-change vulnerability in rural Zambia: the impact of an El Niño-induced shock on income and productivity, available at: http://www.fao.org/3/ca3255en/CA3255EN.pdf (last access: 18 May 2020), 2019. a, b, c, d
Archer, K. J. and Kimes, R. V.: Empirical characterization of random forest variable importance measures, Comput. Stat. Data An., 52, 2249–2260, https://doi.org/10.1016/j.csda.2007.08.015, 2008. a, b
Azzari, G., Jain, M., and Lobell, D. B.: Towards fine resolution global maps of crop yields: Testing multiple methods and satellites in three countries, Remote Sens. Environ., 202, 129–141, https://doi.org/10.1016/j.rse.2017.04.014, 2017. a, b
Download
Short summary
Drought monitoring and yield prediction often rely on coarse-scale hydroclimate data or (infrequent) vegetation indexes that do not always indicate the conditions farmers face in the field. Consequently, decision-making based on these indices can often be disconnected from the farmer reality. Our study focuses on smallholder farming systems in data-sparse developing countries, and it shows how field-scale soil moisture can leverage and improve crop yield prediction and drought impact assessment.