

Supplement of

Field-scale soil moisture bridges the spatial-scale gap between drought monitoring and agricultural yields

Noemi Vergopolan et al.

Correspondence to: Noemi Vergopolan (noemi.v.rocha@gmail.com)

The copyright of individual parts of the supplement might differ from the article licence.

Zambia Land Cover and Districts

Figure S1. Zambia districts and the land cover distribution at 20-m resolution from ESA-CCI (2016).

Table S1. Implementation of the Recursive Feature Elimination approach.

Recursive Feature Elimination													
1	T		.1	DD	1 1			1 1		1.1	c	1 .	

- 1. Train the RF model using a year-based cross-validation fashion;
- 2. Calculate the cross-validation average R^2 performance and set it as the baseline R^2 ;
- 3. Calculate the importance of each predictor by:
 - Re-training the RF model without the selected predictor;
 - Calculate the new cross-validation average R^2 performance;
 - Calculated the change in performance as delta R^2 = baseline R^2 new R^2 . The higher the positive change in delta R^2 the more important is the predictor.
- 4. Rank the predictors based on their importance (higher delta R^2 to lowest delta R^2);
- 5. Remove the least important predictor (lowest delta R^2), and update the predictor set;
- 6. Repeat step 1–5 until stop when the lowest delta R^2 is < 0.001;
- 7. Compute the importance rank (step 3–4) for the final predictor set.

Figure S2. Relationship between field-scale mean annual maize yields and coefficient of variation, as estimated by the random forest model. We observe an inverse relationship (Pearson correlation of -0.31) that shows that locations of lower mean annual yields tend to have higher variation on their inter-annual yields, while locations of consistent high yield productivity tend to show minimal variation.

Figure S3. The z-score of the field-scale maize yields aggregate to the district-level in comparison with the z-score from the PHS district-level data.

Figure S4. The number of grid cells used to calculate the mean yield anomaly values of each hexbin in Figure 8

Figure S5. Mean field-scale maize yield for different cropland and shrubland percent. Shrubland percent characterized how much the agricultural area is fragmented, and it showed to be a strong predictor (inversely correlated) to maize yield. The shade shows the standard deviation.

Figure S6. Time-series of field-scale maize yield, as predicted by the random forest model. Five locations were selected to illustrate the different dynamics across the country.