Articles | Volume 25, issue 4
https://doi.org/10.5194/hess-25-1711-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-1711-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Global scenarios of irrigation water abstractions for bioenergy production: a systematic review
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Department of Geography, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
Integrative Research Institute on Transformations of Human-Environment Systems (IRI THESys), Humboldt-Universität zu Berlin, 10099 Berlin, Germany
Water program, International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1, 2361 Laxenburg, Austria
Dieter Gerten
Potsdam Institute for Climate Impact Research (PIK), Member of the Leibniz Association, P.O. Box 60 12 03, 14412 Potsdam, Germany
Department of Geography, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany
Integrative Research Institute on Transformations of Human-Environment Systems (IRI THESys), Humboldt-Universität zu Berlin, 10099 Berlin, Germany
Naota Hanasaki
Center for Climate Change Adaptation, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
Related authors
Sophie Wagner, Fabian Stenzel, Tobias Krueger, and Jana de Wiljes
Hydrol. Earth Syst. Sci., 28, 5049–5068, https://doi.org/10.5194/hess-28-5049-2024, https://doi.org/10.5194/hess-28-5049-2024, 2024
Short summary
Short summary
Statistical models that explain global irrigation rely on location-referenced data. Traditionally, a system based on longitude and latitude lines is chosen. However, this introduces bias to the analysis due to the Earth's curvature. We propose using a system based on hexagonal grid cells that allows for distortion-free representation of the data. We show that this increases the model's accuracy by 28 % and identify biophysical and socioeconomic drivers of historical global irrigation expansion.
This article is included in the Encyclopedia of Geosciences
Stephen Björn Wirth, Johanna Braun, Jens Heinke, Sebastian Ostberg, Susanne Rolinski, Sibyll Schaphoff, Fabian Stenzel, Werner von Bloh, Friedhelm Taube, and Christoph Müller
Geosci. Model Dev., 17, 7889–7914, https://doi.org/10.5194/gmd-17-7889-2024, https://doi.org/10.5194/gmd-17-7889-2024, 2024
Short summary
Short summary
We present a new approach to modelling biological nitrogen fixation (BNF) in the Lund–Potsdam–Jena managed Land dynamic global vegetation model. While in the original approach BNF depended on actual evapotranspiration, the new approach considers soil water content and temperature, vertical root distribution, the nitrogen (N) deficit and carbon (C) costs. The new approach improved simulated BNF compared to the scientific literature and the model ability to project future C and N cycle dynamics.
This article is included in the Encyclopedia of Geosciences
Fabian Stenzel, Johanna Braun, Jannes Breier, Karlheinz Erb, Dieter Gerten, Jens Heinke, Sarah Matej, Sebastian Ostberg, Sibyll Schaphoff, and Wolfgang Lucht
Geosci. Model Dev., 17, 3235–3258, https://doi.org/10.5194/gmd-17-3235-2024, https://doi.org/10.5194/gmd-17-3235-2024, 2024
Short summary
Short summary
We provide an R package to compute two biosphere integrity metrics that can be applied to simulations of vegetation growth from the dynamic global vegetation model LPJmL. The pressure metric BioCol indicates that we humans modify and extract > 20 % of the potential preindustrial natural biomass production. The ecosystems state metric EcoRisk shows a high risk of ecosystem destabilization in many regions as a result of climate change and land, water, and fertilizer use.
This article is included in the Encyclopedia of Geosciences
Qing He, Naota Hanasaki, Akiko Matsumura, Edwin H. Sutanudjaja, and Taikan Oki
EGUsphere, https://doi.org/10.5194/egusphere-2025-2952, https://doi.org/10.5194/egusphere-2025-2952, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
This work presents a global groundwater modeling framework at 5-arcminute resolution, developed through an offline coupling of the H08 water resource model and MODFLOW6. The model includes a single-layer aquifer and is designed to capture long-term mean groundwater dynamics under varying climate types. The manuscript describes the model structure, input datasets, and evaluation against available observations.
This article is included in the Encyclopedia of Geosciences
Arne Tobian, Sarah Cornell, Ingo Fetzer, Dieter Gerten, and Johan Rockström
EGUsphere, https://doi.org/10.5194/egusphere-2025-2202, https://doi.org/10.5194/egusphere-2025-2202, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
The land use change reallocation tool LUCATOO enables the creation of future land use change scenario datasets tailored to specific requirements in model study applications. Its usability is demonstrated in the planetary boundaries interaction context. Being written in the programming language R and made openly accessible, LUCATOO can be easily adapted to be employed in contexts other than the planetary boundaries framework.
This article is included in the Encyclopedia of Geosciences
Xin Huang, Qing He, Naota Hanasaki, Rolf H. Reichle, and Taikan Oki
EGUsphere, https://doi.org/10.5194/egusphere-2025-2004, https://doi.org/10.5194/egusphere-2025-2004, 2025
Preprint archived
Short summary
Short summary
This study demonstrates a new method using SMAP soil moisture products to identify irrigation effects, tested to be valid in an example region in California's Central Valley and showed great potential for application in arid/ semi-arid regions. The approach offers a simple, straightforward approach to monitoring irrigation signals without additional in-situ data or model tuning, providing a useful tool to extract irrigation water use data in observation-scarce regions.
This article is included in the Encyclopedia of Geosciences
Hannes Müller Schmied, Simon Newland Gosling, Marlo Garnsworthy, Laura Müller, Camelia-Eliza Telteu, Atiq Kainan Ahmed, Lauren Seaby Andersen, Julien Boulange, Peter Burek, Jinfeng Chang, He Chen, Lukas Gudmundsson, Manolis Grillakis, Luca Guillaumot, Naota Hanasaki, Aristeidis Koutroulis, Rohini Kumar, Guoyong Leng, Junguo Liu, Xingcai Liu, Inga Menke, Vimal Mishra, Yadu Pokhrel, Oldrich Rakovec, Luis Samaniego, Yusuke Satoh, Harsh Lovekumar Shah, Mikhail Smilovic, Tobias Stacke, Edwin Sutanudjaja, Wim Thiery, Athanasios Tsilimigkras, Yoshihide Wada, Niko Wanders, and Tokuta Yokohata
Geosci. Model Dev., 18, 2409–2425, https://doi.org/10.5194/gmd-18-2409-2025, https://doi.org/10.5194/gmd-18-2409-2025, 2025
Short summary
Short summary
Global water models contribute to the evaluation of important natural and societal issues but are – as all models – simplified representation of reality. So, there are many ways to calculate the water fluxes and storages. This paper presents a visualization of 16 global water models using a standardized visualization and the pathway towards this common understanding. Next to academic education purposes, we envisage that these diagrams will help researchers, model developers, and data users.
This article is included in the Encyclopedia of Geosciences
Joško Trošelj and Naota Hanasaki
Hydrol. Earth Syst. Sci., 29, 753–766, https://doi.org/10.5194/hess-29-753-2025, https://doi.org/10.5194/hess-29-753-2025, 2025
Short summary
Short summary
This study presents the first distributed hydrological simulation which confirms claims raised by historians that the eastward diversion project of the Tone River in Japan was conducted 4 centuries ago to increase low flows and subsequent travelling possibilities surrounding the capital, Edo (Tokyo), using inland navigation. We showed that great steps forward can be made for improving quality of life with small human engineering waterworks and small interventions in the regime of natural flows.
This article is included in the Encyclopedia of Geosciences
Sophie Wagner, Fabian Stenzel, Tobias Krueger, and Jana de Wiljes
Hydrol. Earth Syst. Sci., 28, 5049–5068, https://doi.org/10.5194/hess-28-5049-2024, https://doi.org/10.5194/hess-28-5049-2024, 2024
Short summary
Short summary
Statistical models that explain global irrigation rely on location-referenced data. Traditionally, a system based on longitude and latitude lines is chosen. However, this introduces bias to the analysis due to the Earth's curvature. We propose using a system based on hexagonal grid cells that allows for distortion-free representation of the data. We show that this increases the model's accuracy by 28 % and identify biophysical and socioeconomic drivers of historical global irrigation expansion.
This article is included in the Encyclopedia of Geosciences
Stephen Björn Wirth, Johanna Braun, Jens Heinke, Sebastian Ostberg, Susanne Rolinski, Sibyll Schaphoff, Fabian Stenzel, Werner von Bloh, Friedhelm Taube, and Christoph Müller
Geosci. Model Dev., 17, 7889–7914, https://doi.org/10.5194/gmd-17-7889-2024, https://doi.org/10.5194/gmd-17-7889-2024, 2024
Short summary
Short summary
We present a new approach to modelling biological nitrogen fixation (BNF) in the Lund–Potsdam–Jena managed Land dynamic global vegetation model. While in the original approach BNF depended on actual evapotranspiration, the new approach considers soil water content and temperature, vertical root distribution, the nitrogen (N) deficit and carbon (C) costs. The new approach improved simulated BNF compared to the scientific literature and the model ability to project future C and N cycle dynamics.
This article is included in the Encyclopedia of Geosciences
Fabian Stenzel, Johanna Braun, Jannes Breier, Karlheinz Erb, Dieter Gerten, Jens Heinke, Sarah Matej, Sebastian Ostberg, Sibyll Schaphoff, and Wolfgang Lucht
Geosci. Model Dev., 17, 3235–3258, https://doi.org/10.5194/gmd-17-3235-2024, https://doi.org/10.5194/gmd-17-3235-2024, 2024
Short summary
Short summary
We provide an R package to compute two biosphere integrity metrics that can be applied to simulations of vegetation growth from the dynamic global vegetation model LPJmL. The pressure metric BioCol indicates that we humans modify and extract > 20 % of the potential preindustrial natural biomass production. The ecosystems state metric EcoRisk shows a high risk of ecosystem destabilization in many regions as a result of climate change and land, water, and fertilizer use.
This article is included in the Encyclopedia of Geosciences
Kedar Otta, Hannes Müller Schmied, Simon N. Gosling, and Naota Hanasaki
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-215, https://doi.org/10.5194/hess-2023-215, 2023
Revised manuscript not accepted
Short summary
Short summary
Reservoirs play important roles in hydrology and water resources management globally and are incorporated into many Global Hydrological Models. Their simulations are, however, poorly validated due to the lack of available long-term in-situ observation data globally. Here we investigated the applicability of the latest satellite-based reservoir storage estimations in the contiguous US. We found that those products are useful for validating reservoir storage simulations when they are normalized.
This article is included in the Encyclopedia of Geosciences
Zhipin Ai and Naota Hanasaki
Geosci. Model Dev., 16, 3275–3290, https://doi.org/10.5194/gmd-16-3275-2023, https://doi.org/10.5194/gmd-16-3275-2023, 2023
Short summary
Short summary
Simultaneously simulating food production and the requirements and availability of water resources in a spatially explicit manner within a single framework remains challenging on a global scale. Here, we successfully enhanced the global hydrological model H08 that considers human water use and management to simulate the yields of four major staple crops: maize, wheat, rice, and soybean. Our improved model will be beneficial for advancing global food–water nexus studies in the future.
This article is included in the Encyclopedia of Geosciences
Chinchu Mohan, Tom Gleeson, James S. Famiglietti, Vili Virkki, Matti Kummu, Miina Porkka, Lan Wang-Erlandsson, Xander Huggins, Dieter Gerten, and Sonja C. Jähnig
Hydrol. Earth Syst. Sci., 26, 6247–6262, https://doi.org/10.5194/hess-26-6247-2022, https://doi.org/10.5194/hess-26-6247-2022, 2022
Short summary
Short summary
The relationship between environmental flow violations and freshwater biodiversity at a large scale is not well explored. This study intended to carry out an exploratory evaluation of this relationship at a large scale. While our results suggest that streamflow and EF may not be the only determinants of freshwater biodiversity at large scales, they do not preclude the existence of relationships at smaller scales or with more holistic EF methods or with other biodiversity data or metrics.
This article is included in the Encyclopedia of Geosciences
Vili Virkki, Elina Alanärä, Miina Porkka, Lauri Ahopelto, Tom Gleeson, Chinchu Mohan, Lan Wang-Erlandsson, Martina Flörke, Dieter Gerten, Simon N. Gosling, Naota Hanasaki, Hannes Müller Schmied, Niko Wanders, and Matti Kummu
Hydrol. Earth Syst. Sci., 26, 3315–3336, https://doi.org/10.5194/hess-26-3315-2022, https://doi.org/10.5194/hess-26-3315-2022, 2022
Short summary
Short summary
Direct and indirect human actions have altered streamflow across the world since pre-industrial times. Here, we apply a method of environmental flow envelopes (EFEs) that develops the existing global environmental flow assessments by methodological advances and better consideration of uncertainty. By assessing the violations of the EFE, we comprehensively quantify the frequency, severity, and trends of flow alteration during the past decades, illustrating anthropogenic effects on streamflow.
This article is included in the Encyclopedia of Geosciences
Inne Vanderkelen, Shervan Gharari, Naoki Mizukami, Martyn P. Clark, David M. Lawrence, Sean Swenson, Yadu Pokhrel, Naota Hanasaki, Ann van Griensven, and Wim Thiery
Geosci. Model Dev., 15, 4163–4192, https://doi.org/10.5194/gmd-15-4163-2022, https://doi.org/10.5194/gmd-15-4163-2022, 2022
Short summary
Short summary
Human-controlled reservoirs have a large influence on the global water cycle. However, dam operations are rarely represented in Earth system models. We implement and evaluate a widely used reservoir parametrization in a global river-routing model. Using observations of individual reservoirs, the reservoir scheme outperforms the natural lake scheme. However, both schemes show a similar performance due to biases in runoff timing and magnitude when using simulated runoff.
This article is included in the Encyclopedia of Geosciences
Saritha Padiyedath Gopalan, Adisorn Champathong, Thada Sukhapunnaphan, Shinichiro Nakamura, and Naota Hanasaki
Hydrol. Earth Syst. Sci., 26, 2541–2560, https://doi.org/10.5194/hess-26-2541-2022, https://doi.org/10.5194/hess-26-2541-2022, 2022
Short summary
Short summary
The modelling of diversion canals using hydrological models is important because they play crucial roles in water management. Therefore, we developed a simplified canal diversion scheme and implemented it into the H08 global hydrological model. The developed diversion scheme was validated in the Chao Phraya River basin, Thailand. Region-specific validation results revealed that the H08 model with the diversion scheme could effectively simulate the observed flood diversion pattern in the basin.
This article is included in the Encyclopedia of Geosciences
Naota Hanasaki, Hikari Matsuda, Masashi Fujiwara, Yukiko Hirabayashi, Shinta Seto, Shinjiro Kanae, and Taikan Oki
Hydrol. Earth Syst. Sci., 26, 1953–1975, https://doi.org/10.5194/hess-26-1953-2022, https://doi.org/10.5194/hess-26-1953-2022, 2022
Short summary
Short summary
Global hydrological models (GHMs) are usually applied with a spatial resolution of about 50 km, but this time we applied the H08 model, one of the most advanced GHMs, with a high resolution of 2 km to Kyushu island, Japan. Since the model was not accurate as it was, we incorporated local information and improved the model, which revealed detailed water stress in subregions that were not visible with the previous resolution.
This article is included in the Encyclopedia of Geosciences
Camelia-Eliza Telteu, Hannes Müller Schmied, Wim Thiery, Guoyong Leng, Peter Burek, Xingcai Liu, Julien Eric Stanislas Boulange, Lauren Seaby Andersen, Manolis Grillakis, Simon Newland Gosling, Yusuke Satoh, Oldrich Rakovec, Tobias Stacke, Jinfeng Chang, Niko Wanders, Harsh Lovekumar Shah, Tim Trautmann, Ganquan Mao, Naota Hanasaki, Aristeidis Koutroulis, Yadu Pokhrel, Luis Samaniego, Yoshihide Wada, Vimal Mishra, Junguo Liu, Petra Döll, Fang Zhao, Anne Gädeke, Sam S. Rabin, and Florian Herz
Geosci. Model Dev., 14, 3843–3878, https://doi.org/10.5194/gmd-14-3843-2021, https://doi.org/10.5194/gmd-14-3843-2021, 2021
Short summary
Short summary
We analyse water storage compartments, water flows, and human water use sectors included in 16 global water models that provide simulations for the Inter-Sectoral Impact Model Intercomparison Project phase 2b. We develop a standard writing style for the model equations. We conclude that even though hydrologic processes are often based on similar equations, in the end these equations have been adjusted, or the models have used different values for specific parameters or specific variables.
This article is included in the Encyclopedia of Geosciences
Jun'ya Takakura, Shinichiro Fujimori, Kiyoshi Takahashi, Naota Hanasaki, Tomoko Hasegawa, Yukiko Hirabayashi, Yasushi Honda, Toshichika Iizumi, Chan Park, Makoto Tamura, and Yasuaki Hijioka
Geosci. Model Dev., 14, 3121–3140, https://doi.org/10.5194/gmd-14-3121-2021, https://doi.org/10.5194/gmd-14-3121-2021, 2021
Short summary
Short summary
To simplify calculating economic impacts of climate change, statistical methods called emulators are developed and evaluated. There are trade-offs between model complexity and emulation performance. Aggregated economic impacts can be approximated by relatively simple emulators, but complex emulators are necessary to accommodate finer-scale economic impacts.
This article is included in the Encyclopedia of Geosciences
Robert Reinecke, Hannes Müller Schmied, Tim Trautmann, Lauren Seaby Andersen, Peter Burek, Martina Flörke, Simon N. Gosling, Manolis Grillakis, Naota Hanasaki, Aristeidis Koutroulis, Yadu Pokhrel, Wim Thiery, Yoshihide Wada, Satoh Yusuke, and Petra Döll
Hydrol. Earth Syst. Sci., 25, 787–810, https://doi.org/10.5194/hess-25-787-2021, https://doi.org/10.5194/hess-25-787-2021, 2021
Short summary
Short summary
Billions of people rely on groundwater as an accessible source of drinking water and for irrigation, especially in times of drought. Groundwater recharge is the primary process of regenerating groundwater resources. We find that groundwater recharge will increase in northern Europe by about 19 % and decrease by 10 % in the Amazon with 3 °C global warming. In the Mediterranean, a 2 °C warming has already lead to a reduction in recharge by 38 %. However, these model predictions are uncertain.
This article is included in the Encyclopedia of Geosciences
Zhipin Ai, Naota Hanasaki, Vera Heck, Tomoko Hasegawa, and Shinichiro Fujimori
Geosci. Model Dev., 13, 6077–6092, https://doi.org/10.5194/gmd-13-6077-2020, https://doi.org/10.5194/gmd-13-6077-2020, 2020
Short summary
Short summary
Incorporating bioenergy crops into the well-established global hydrological models is seldom seen today. Here, we successfully enhance a state-of-the-art global hydrological model H08 to simulate bioenergy crop yield. We found that unconstrained irrigation more than doubled the yield under rainfed conditions while simultaneously reducing the water use efficiency by 32 % globally. Our enhanced model provides a new tool for the future assessment of bioenergy–water tradeoffs.
This article is included in the Encyclopedia of Geosciences
Tokuta Yokohata, Tsuguki Kinoshita, Gen Sakurai, Yadu Pokhrel, Akihiko Ito, Masashi Okada, Yusuke Satoh, Etsushi Kato, Tomoko Nitta, Shinichiro Fujimori, Farshid Felfelani, Yoshimitsu Masaki, Toshichika Iizumi, Motoki Nishimori, Naota Hanasaki, Kiyoshi Takahashi, Yoshiki Yamagata, and Seita Emori
Geosci. Model Dev., 13, 4713–4747, https://doi.org/10.5194/gmd-13-4713-2020, https://doi.org/10.5194/gmd-13-4713-2020, 2020
Short summary
Short summary
The most significant feature of MIROC-INTEG-LAND is that the land surface model that describes the processes of the energy and water balances, human water management, and crop growth incorporates a land-use decision-making model based on economic activities. The future simulations indicate that changes in climate have significant impacts on crop yields, land use, and irrigation water demand.
This article is included in the Encyclopedia of Geosciences
Cited articles
Al-Ansari, T., Korre, A., Nie, Z., and Shah, N.: Integration of greenhouse gas
control technologies within the energy, water and food nexus to enhance the
environmental performance of food production systems, J. Clean.
Prod., 162, 1592–1606, https://doi.org/10.1016/j.jclepro.2017.06.097, 2017. a
Alcamo, J., Döll, P., Henrichs, T., Kaspar, F., Lehner, B., Rösch, T., and
Siebert, S.: Global estimates of water withdrawals and availability under
current and future “business-as-usual” conditions, Hydrolog. Sci.
J., 48, 339–348, https://doi.org/10.1623/hysj.48.3.339.45278, 2003. a
Azar, C., Lindgren, K., Larson, E., and Möllersten, K.: Carbon capture and
storage from fossil fuels and biomass – Costs and potential role in
stabilizing the atmosphere, Clim. Change, 74, 47–79,
https://doi.org/10.1007/s10584-005-3484-7, 2006. a
Bauer, N., Rose, S. K., Fujimori, S., van Vuuren, D. P., Weyant, J.,
Wise, M., Cui, Y., Daioglou, V., Gidden, M. J., Kato, E., Kitous, A.,
Leblanc, F., Sands, R., Sano, F., Strefler, J., Tsutsui, J., Bibas, R.,
Fricko, O., Hasegawa, T., Klein, D., Kurosawa, A., Mima, S., and Muratori,
M.: Global energy sector emission reductions and bioenergy use: overview of
the bioenergy demand phase of the EMF-33 model comparison, Climatic Change,
163, 1553–1568, https://doi.org/10.1007/s10584-018-2226-y, 2018. a, b
Berndes, G.: Bioenergy and water – the implications of large-scale bioenergy
production for water use and supply, Global Environ. Chang., 12, 253–271, https://doi.org/10.1016/S0959-3780(02)00040-7, 2002. a, b, c, d
Berndes, G. and Borjesson, P.: Implications of irrigation and water management
for the net energy performance of bioenergy systems, Department of Physical
Resource Theory, Chalmers University of Technology and Goteborg University,
Goteborg, Sweden, 2001. a
Bonsch, M., Humpenöder, F., Popp, A., Bodirsky, B., Dietrich, J. P., Rolinski,
S., Biewald, A., Lotze-Campen, H., Weindl, I., Gerten, D., and Stevanovic,
M.: Trade-offs between land and water requirements for large-scale bioenergy
production, GCB Bioenergy, 8, 11–24,
https://doi.org/10.1111/gcbb.12226, 2016. a, b, c, d, e, f, g, h, i
Brosse, N., Dufour, A., Meng, X., Sun, Q., and Ragauskas, A.: Miscanthus: a
fast-growing crop for biofuels and chemicals production, Biofuel.
Bioprod. Bior., 6, 580–598,
https://doi.org/10.1002/bbb.1353, 2012. a
Calvin, K., Patel, P., Clarke, L., Asrar, G., Bond-Lamberty, B., Cui, R. Y., Di Vittorio, A., Dorheim, K., Edmonds, J., Hartin, C., Hejazi, M., Horowitz, R., Iyer, G., Kyle, P., Kim, S., Link, R., McJeon, H., Smith, S. J., Snyder, A., Waldhoff, S., and Wise, M.: GCAM v5.1: representing the linkages between energy, water, land, climate, and economic systems, Geosci. Model Dev., 12, 677–698, https://doi.org/10.5194/gmd-12-677-2019, 2019. a
Campbell, J. E., Lobell, D. B., Genova, R. C., and Field, C. B.: The Global
Potential of Bioenergy on Abandoned Agriculture Lands, Environ. Sci.
Technol., 42, 5791–5794,
https://doi.org/10.1021/es800052w, 2008. a
Creutzig, F., Ravindranath, N. H., Berndes, G., Bolwig, S., Bright, R.,
Cherubini, F., Chum, H., Corbera, E., Delucchi, M., Faaij, A., Fargione, J.,
Haberl, H., Heath, G., Lucon, O., Plevin, R., Popp, A., Robledo-Abad, C.,
Rose, S., Smith, P., Stromman, A., Suh, S., and Masera, O.: Bioenergy and
climate change mitigation: an assessment, GCB Bioenergy, 7, 916–944,
https://doi.org/10.1111/gcbb.12205, 2015. a
DeAngelis, A., Dominguez, F., Fan, Y., Robock, A., Kustu, M. D., and Robinson,
D.: Evidence of enhanced precipitation due to irrigation over the Great
Plains of the United States, J. Geophys. Res.-Atmos.,
115, D15115, https://doi.org/10.1029/2010JD013892, 2010. a
De Fraiture, C. and Perry, C.: Why is irrigation water demand inelastic at low
price ranges, in: Conference on Irrigation Water Policies: Micro and Macro Considerations, 15–17 June 2002, Agadir, Morocco, 15–17, 2002. a
Dinar, A. and Mody, J.: Irrigation water management policies: Allocation and
pricing principles and implementation experience, Nat. Resour. Forum,
28, 112–122,
https://doi.org/10.1111/j.1477-8947.2004.00078.x, 2004. a
Ellison, D., Wang-Erlandsson, L., Van Der Ent, R., and Van Noordwijk, M.:
Upwind forests: managing moisture recycling for nature-based resilience,
in: Vol. 70 2019/1, edited by: Sarre, A., FAO, ISBN 978-92-5-131910-9,
ISSN 0041-6436, 2019. a
Fader, M., Gerten, D., Thammer, M., Heinke, J., Lotze-Campen, H., Lucht, W., and Cramer, W.: Internal and external green-blue agricultural water footprints of nations, and related water and land savings through trade, Hydrol. Earth Syst. Sci., 15, 1641–1660, https://doi.org/10.5194/hess-15-1641-2011, 2011. a
Fajardy, M. and Mac Dowell, N.: Can BECCS deliver sustainable and resource
efficient negative emissions?, Energ. Environ. Sci., 10,
1389–1426, https://doi.org/10.1039/C7EE00465F, 2017. a
Fike, J., Parrish, D., Alwang, J., and Cundiff, J.: Challenges for deploying
dedicated, large-scale, bioenergy systems in the USA, CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 2, 064, https://doi.org/10.1079/PAVSNNR20072064, 2007. a
Fuss, S., Lamb, W. F., Callaghan, M. W., Hilaire, J., Creutzig, F., Amann, T.,
Beringer, T., Garcia, W. D. O., Hartmann, J., Khanna, T., Luderer, G.,
Nemet, G. F., Rogelj, J., Smith, P., Vicente, J. L. V., Wilcox, J.,
Dominguez, M. D. M. Z., and Minx, J. C.: Negative emissions – Part 2: Costs,
potentials and side effects, Environ. Res. Lett., 13, 063002,
https://doi.org/10.1088/1748-9326/aabf9f, 2018. a
Gerbens-Leenes, P. W., van Lienden, A. R., Hoekstra, A. Y., and van der Meer,
T. H.: Biofuel scenarios in a water perspective: The global blue and green
water footprint of road transport in 2030, Global Environ. Change, 22, 764–775,
https://doi.org/10.1016/j.gloenvcha.2012.04.001, 2012. a, b, c, d
Gerten, D., Hoff, H., Rockström, J., Jägermeyr, J., Kummu, M., and Pastor,
A. V.: Towards a revised planetary boundary for consumptive freshwater use:
role of environmental flow requirements, Curr. Opin. Environ.
Sust., 5, 551–558,
https://doi.org/10.1016/j.cosust.2013.11.001, 2013. a
Gough, C. and Vaughan, N.: Synthesising existing knowledge on the feasibility
of BECCS, AVOID2 Report WPD1a, available at: https://avoid-net-uk.cc.ic.ac.uk/wp-content/uploads/delightful-downloads/2015/09/Synthesising-existing-knowledge-on-feasibility-of-BECCS (last access: 31 March 2021), 2015. a
Gough, C., Garcia-Freites, S., Jones, C., Mander, S., Moore, B., Pereira, C.,
Röder, M., Vaughan, N., and Welfle, A.: Challenges to the use of BECCS as
a keystone technology in pursuit of 1.5 ∘C, Global Sustainability,
1, e5, https://doi.org/10.1017/sus.2018.3, 2018. a
Graham, N. T., Davies, E. G. R., Hejazi, M. I., Calvin, K., Kim, S. H.,
Helinski, L., Miralles-Wilhelm, F. R., Clarke, L., Kyle, P., Patel, P., Wise,
M. A., and Vernon, C. R.: Water Sector Assumptions for the Shared
Socioeconomic Pathways in an Integrated Modeling Framework, Water Resour.
Res., 54, 6423–6440,
https://doi.org/10.1029/2018WR023452, 2018. a, b
Haberl, H., Beringer, T., Bhattacharya, S. C., Erb, K.-H., and Hoogwijk, M.:
The global technical potential of bio-energy in 2050 considering
sustainability constraints, Curr. Opin. Env. Sust.,
2, 394–403, https://doi.org/10.1016/j.cosust.2010.10.007,
2010. a, b
Hanasaki, N., Fujimori, S., Yamamoto, T., Yoshikawa, S., Masaki, Y., Hijioka, Y., Kainuma, M., Kanamori, Y., Masui, T., Takahashi, K., and Kanae, S.: A global water scarcity assessment under Shared Socio-economic Pathways – Part 1: Water use, Hydrol. Earth Syst. Sci., 17, 2375–2391, https://doi.org/10.5194/hess-17-2375-2013, 2013a. a, b, c, d, e
Hanasaki, N., Fujimori, S., Yamamoto, T., Yoshikawa, S., Masaki, Y., Hijioka, Y., Kainuma, M., Kanamori, Y., Masui, T., Takahashi, K., and Kanae, S.: A global water scarcity assessment under Shared Socio-economic Pathways – Part 1: Water use, Hydrol. Earth Syst. Sci., 17, 2375–2391, https://doi.org/10.5194/hess-17-2375-2013, 2013b. a
Hejazi, M. I., Edmonds, J., Clarke, L., Kyle, P., Davies, E., Chaturvedi, V., Wise, M., Patel, P., Eom, J., and Calvin, K.: Integrated assessment of global water scarcity over the 21st century under multiple climate change mitigation policies, Hydrol. Earth Syst. Sci., 18, 2859–2883, https://doi.org/10.5194/hess-18-2859-2014, 2014. a, b, c, d, e, f, g, h, i, j, k, l
Hejazi, M. I., Voisin, N., Liu, L., Bramer, L. M., Fortin, D. C., Hathaway,
J. E., Huang, M., Kyle, P., Leung, L. R., Li, H.-Y., Liu, Y., Patel, P. L.,
Pulsipher, T. C., Rice, J. S., Tesfa, T. K., Vernon, C. R., and Zhou, Y.:
21st century United States emissions mitigation could increase water stress
more than the climate change it is mitigating, P. Natl.
Acad. Sci. USA, 112, 10635–10640,
https://doi.org/10.1073/pnas.1421675112, 2015. a
Hoekstra, A., Chapagain, A., Martinez-Aldaya, M., and Mekonnen, M.: Water
footprint manual: state of the art 2009, Water Footprint Network, available at: https://waterfootprint.org/media/downloads/TheWaterFootprintAssessmentManual_2.pdf (last access: 31 March 2021), 2009. a
Hoff, H., Falkenmark, M., Gerten, D., Gordon, L., Karlberg, L., and Rockström,
J.: Greening the global water system, J. Hydrol., 384, 177–186,
https://doi.org/10.1016/j.jhydrol.2009.06.026, 2010. a
Hogan, R., Stiles, S., Tacker, P., Vories, E., and Bryant, K.: Estimating
irrigation costs, Little Rock, AR: Arkansas Cooperative Extension Service.
FSA28-PD-6-07RV, available at: https://www.ars.usda.gov/research/publications/publication/?seqNo115=210763 (last access: 31 March 2021), 2007. a
Hogeboom, R., de Bruin, D., Schyns, J. F., Krol, M., and Hoekstra, A. Y.:
Capping Human Water Footprints in the World's River Basins, Earths Future,
8, e2019EF001363, https://doi.org/10.1029/2019EF001363,
2020. a
Humpenöder, F., Popp, A., Bodirsky, B. L., Weindl, I., Biewald, A.,
Lotze-Campen, H., Dietrich, J. P., Klein, D., Kreidenweis, U., Müller,
C., Rolinski, S., and Stevanovic, M.: Large-scale bioenergy production: how to resolve sustainability trade-offs?, Environ. Res. Lett., 13, 024011,
https://doi.org/10.1088/1748-9326/aa9e3b, 2018. a, b, c, d, e, f, g, h, i
IEA: Bioenergy – a sustainable and reliable energy source, International
Energy Agency Bioenergy, Paris, France, 2009. a
Jägermeyr, J., Gerten, D., Heinke, J., Schaphoff, S., Kummu, M., and Lucht, W.: Water savings potentials of irrigation systems: global simulation of processes and linkages, Hydrol. Earth Syst. Sci., 19, 3073–3091, https://doi.org/10.5194/hess-19-3073-2015, 2015. a, b
Keeney, D. and Muller, M.: Water use by ethanol plants: Potential challenges,
Institute for Agriculture and Trade Policy, Minneapolis, USA, available at:
https://www.iatp.org/sites/default/files/258_2_89449.pdf (last access: 31 March 2021), 2006. a
King, J. S., Ceulemans, R., Albaugh, J. M., Dillen, S. Y., Domec, J.-C.,
Fichot, R., Fischer, M., Leggett, Z., Sucre, E., Trnka, M., and Zenone, T.:
The Challenge of Lignocellulosic Bioenergy in a Water-Limited World,
BioScience, 63, 102–117,
https://doi.org/10.1525/bio.2013.63.2.6, 2013. a, b, c, d, e, f
Klein, D., Luderer, G., Kriegler, E., Strefler, J., Bauer, N., Leimbach, M.,
Popp, A., Dietrich, J. P., Humpenöder, F., Lotze-Campen, H., and Edenhofer,
O.: The value of bioenergy in low stabilization scenarios: an assessment
using REMIND-MAgPIE, Clim. Change, 123, 705–718, 2014. a
Klein Goldewijk, K., Beusen, A., Doelman, J., and Stehfest, E.: Anthropogenic land use estimates for the Holocene – HYDE 3.2, Earth Syst. Sci. Data, 9, 927–953, https://doi.org/10.5194/essd-9-927-2017, 2017. a
Krausmann, F., Erb, K.-H., Gingrich, S., Haberl, H., Bondeau, A., Gaube, V.,
Lauk, C., Plutzar, C., and Searchinger, T. D.: Global human appropriation of
net primary production doubled in the 20th century, P.
Natl. Acad. Sci. USA, 110, 10324–10329,
https://doi.org/10.1073/pnas.1211349110, 2013. a
Layton, K. and Ellison, D.: Induced precipitation recycling (IPR): A proposed
concept for increasing precipitation through natural vegetation feedback
mechanisms, Ecol. Eng., 91, 553–565,
https://doi.org/10.1016/j.ecoleng.2016.02.031, 2016. a
Lenton, T. M.: The potential for land-based biological CO2 removal to lower
future atmospheric CO2 concentration, Carbon Manag., 1, 145–160,
https://doi.org/10.4155/cmt.10.12, 2010. a
Li, W., Ciais, P., Makowski, D., and Peng, S.: A global yield dataset for major
lignocellulosic bioenergy crops based on field measurements, Sci. Data,
5, 180169, https://doi.org/10.1038/sdata.2018.169, 2018. a
Ma, S., He, F., Tian, D., Zou, D., Yan, Z., Yang, Y., Zhou, T., Huang, K., Shen, H., and Fang, J.: Variations and determinants of carbon content in plants: a global synthesis, Biogeosciences, 15, 693–702, https://doi.org/10.5194/bg-15-693-2018, 2018. a
Markewitz, P., Kuckshinrichs, W., Leitner, W., Linssen, J., Zapp, P., Bongartz,
R., Schreiber, A., and Müller, T. E.: Worldwide innovations in the
development of carbon capture technologies and the utilization of CO2, Energy
Environ. Sci., 5, 7281–7305,
https://doi.org/10.1039/C2EE03403D, 2012. a
Minx, J. C., Lamb, W. F., Callaghan, M. W., Fuss, S., Hilaire, J., Creutzig,
F., Amann, T., Beringer, T., de Oliveira Garcia, W., Hartmann, J., Khanna,
T., Lenzi, D., Luderer, G., Nemet, G. F., Rogelj, J., Smith, P., Vicente, J.
L. V., Wilcox, J., and del Mar Zamora Dominguez, M.: Negative
emissions – Part 1: Research landscape and synthesis, Environ. Res.
Lett., 13, 063001,
https://doi.org/10.1088/1748-9326/aabf9b, 2018. a
Moore, N. and Rojstaczer, S.: Irrigation's influence on precipitation: Texas
High Plains, U.S.A., Geophys. Res. Lett., 29, 1755,
https://doi.org/10.1029/2002GL014940, 2002. a
Mouratiadou, I., Biewald, A., Pehl, M., Bonsch, M., Baumstark, L., Klein, D.,
Popp, A., Luderer, G., and Kriegler, E.: The impact of climate change
mitigation on water demand for energy and food: An integrated analysis based
on the Shared Socioeconomic Pathways, Environ. Sci. Policy, 64,
48–58, https://doi.org/10.1016/j.envsci.2016.06.007, 2016. a, b, c, d
Poff, N. L. and Zimmerman, J. K.: Ecological responses to altered flow regimes:
a literature review to inform the science and management of environmental
flows, Freshwater Biol., 55, 194–205,
https://doi.org/10.1111/j.1365-2427.2009.02272.x, 2010. a
Pokhrel, Y. N., Felfelani, F., Shin, S., Yamada, T. J., and Satoh, Y.: Modeling
large-scale human alteration of land surface hydrology and climate,
Geosci. Lett., 4, 1–13, https://doi.org/10.1186/s40562-017-0076-5, 2017. a
Postel, S. L., Daily, G. C., and Ehrlich, P. R.: Human Appropriation of
Renewable Fresh Water, Science, 271, 785–788,
https://doi.org/10.1126/science.271.5250.785, 1996. a
Rockström, J., Steffen, W., Noone, K., Persson, Å., Chapin, F. S., Lambin,
E. F., Lenton, T. M., Scheffer, M., Folke, C., Schellnhuber, H. J., Nykvist,
B., de Wit, C. A., Hughes, T., van der Leeuw, S., Rodhe, H., Sörlin, S.,
Snyder, P. K., Costanza, R., Svedin, U., Falkenmark, M., Karlberg, L.,
Corell, R. W., Fabry, V. J., Hansen, J., Walker, B., Liverman, D.,
Richardson, K., Crutzen, P., and Foley, J. A.: A safe operating space for
humanity, Nature, 461, 472–475,
https://doi.org/10.1038/461472a, 2009. a
Rockström, J., Gaffney, O., Rogelj, J., Meinshausen, M., Nakicenovic, N., and
Schellnhuber, H. J.: A roadmap for rapid decarbonization, Science, 355,
1269–1271, https://doi.org/10.1126/science.aah3443, 2017. a
Rogelj, J., Luderer, G., Pietzcker, R. C., Kriegler, E., Schaeffer, M., Krey,
V., and Riahi, K.: Energy system transformations for limiting end-of-century
warming to below 1.5 ∘C, Nat. Clim. Change, 5, 519–527,
https://doi.org/10.1038/nclimate2572, 2015. a
Rogelj, J., Popp, A., Calvin, K. V., Luderer, G., Emmerling, J., Gernaat, D.,
Fujimori, S., Strefler, J., Hasegawa, T., and Marangoni, G.: Scenarios
towards limiting global mean temperature increase below 1.5 ∘C,
Nat. Clim. Change, 8, 325,
https://doi.org/10.1038/s41558-018-0091-3, 2018. a
Rosa, L., Rulli, M. C., Davis, K. F., Chiarelli, D. D., Passera, C., and
D'Odorico, P.: Closing the yield gap while ensuring water sustainability,
Environ. Res. Lett., 13, 104002, https://doi.org/10.1088/1748-9326/aadeef, 2018. a
Rose, S. K., Kriegler, E., Bibas, R., Calvin, K., Popp, A., van Vuuren, D. P.,
and Weyant, J.: Bioenergy in energy transformation and climate management,
Clim. Change, 123, 477–493,
https://doi.org/10.1007/s10584-013-0965-3, 2014. a
Schewe, J., Heinke, J., Gerten, D., Haddeland, I., Arnell, N. W., Clark, D. B.,
Dankers, R., Eisner, S., Fekete, B. M., Colón-González, F. J.,
Gosling, S. N., Kim, H., Liu, X., Masaki, Y., Portmann, F. T., Satoh, Y.,
Stacke, T., Tang, Q., Wada, Y., Wisser, D., Albrecht, T., Frieler, K.,
Piontek, F., Warszawski, L., and Kabat, P.: Multimodel assessment of water
scarcity under climate change, P. Natl. Acad. Sci. USA, 111, 3245–3250,
https://doi.org/10.1073/pnas.1222460110, 2014. a
Schlesinger, W. H. and Bernhardt, E. S.: Biogeochemistry: an analysis of global change, Academic press, available at: https://www.elsevier.com/books/biogeochemistry/schlesinger/978-0-12-385874-0 (last access: 31 March 2021), 1991. a
Schmidt, H.-P., Anca-Couce, A., Hagemann, N., Werner, C., Gerten, D., Lucht,
W., and Kammann, C.: Pyrogenic carbon capture and storage, GCB Bioenergy, 11,
573–591, https://doi.org/10.1111/gcbb.12553, 2019. a
Séférian, R., Rocher, M., Guivarch, C., and Colin, J.: Constraints on biomass
energy deployment in mitigation pathways: the case of water scarcity,
Environ. Res. Lett., 13, 054011,
https://doi.org/10.1088/1748-9326/aabcd7, 2018. a, b, c, d
Shen, Y., Oki, T., Utsumi, N., Kanae, S., and Hanasaki, N.: Projection of
future world water resources under SRES scenarios: water withdrawal/Projection des ressources en eau mondiales futures selon les scénarios du
RSSE: prélèvement d'eau, Hydrolog. Sci. J., 53, 11–33,
https://doi.org/10.1623/hysj.53.1.11, 2008. a, b
Siebert, S., Kummu, M., Porkka, M., Döll, P., Ramankutty, N., and Scanlon, B. R.: A global data set of the extent of irrigated land from 1900 to 2005, Hydrol. Earth Syst. Sci., 19, 1521–1545, https://doi.org/10.5194/hess-19-1521-2015, 2015. a
Smith, L. J. and Torn, M. S.: Ecological limits to terrestrial biological
carbon dioxide removal, Clim. Change, 118, 89–103,
https://doi.org/10.1007/s10584-012-0682-3, 2013. a, b, c, d
Soccol, C. R., Brar, S. K., Faulds, C., and Ramos, L. P.: Green fuels
technology: Biofuels, Springer, Switzerland, https://doi.org/10.1007/978-3-319-30205-8, 2016. a
Sperna Weiland, F. C., van Beek, L. P. H., Kwadijk, J. C. J., and Bierkens, M. F. P.: The ability of a GCM-forced hydrological model to reproduce global discharge variability, Hydrol. Earth Syst. Sci., 14, 1595–1621, https://doi.org/10.5194/hess-14-1595-2010, 2010. a
Steffen, W., Richardson, K., Rockström, J., Cornell, S. E., Fetzer, I.,
Bennett, E. M., Biggs, R., Carpenter, S. R., Vries, W. D., Wit, C. A. D.,
Folke, C., Gerten, D., Heinke, J., Mace, G. M., Persson, L. M., Ramanathan,
V., Reyers, B., and Sörlin, S.: Planetary boundaries: Guiding human
development on a changing planet, Science, 347, 1259855,
https://doi.org/10.1126/science.1259855, 2015. a
Tuinenburg, O. A. and Staal, A.: Tracking the global flows of atmospheric moisture and associated uncertainties, Hydrol. Earth Syst. Sci., 24, 2419–2435, https://doi.org/10.5194/hess-24-2419-2020, 2020. a
UNFCCC, C.: Paris agreement, FCCCC/CP/2015/L. 9/Rev. 1, available at:
https://unfccc.int/sites/default/files/english_paris_agreement.pdf (last access: 30 March 2021), 2015. a
Van Noordwijk, M. and Ellison, D.: Rainfall recycling needs to be considered in defining limits to the world's green water resources, P. Natl. Acad. Sci. USA, 116, 8102–8103, https://doi.org/10.1073/pnas.1903554116, 2019. a
Varis, O.: Water Demands for Bioenergy Production, Int. J.
Water Resour. Dev., 23, 519–535,
https://doi.org/10.1080/07900620701486004, 2007. a, b, c
Vervoort, R. W., Torfs, P. J. J. F., and van Ogtrop, F. F.: Irrigation
increases moisture recycling and climate feedback, Australas, J.
Water Resour., 13, 121–134,
https://doi.org/10.1080/13241583.2009.11465367, 2009. a
Vuuren, D. P. V., Edmonds, J., Kainuma, M., Riahi, K., Thomson, A., Hibbard,
K., Hurtt, G. C., Kram, T., Krey, V., Lamarque, J.-F., Masui, T.,
Meinshausen, M., Nakicenovic, N., Smith, S. J., and Rose, S. K.: The
representative concentration pathways: an overview, Climatic Change, 109, 5–31, https://doi.org/10.1007/s10584-011-0148-z, 2011. a
Wada, Y. and Bierkens, M. F. P.: Sustainability of global water use: past
reconstruction and future projections, Environ. Res. Lett., 9,
104003, https://doi.org/10.1088/1748-9326/9/10/104003, 2014. a
Wada, Y., Gleeson, T., and Esnault, L.: Wedge approach to water stress, Nat.
Geosci., 7, 615–617, https://doi.org/10.1038/ngeo2241,
2014. a
Wada, Y., Flörke, M., Hanasaki, N., Eisner, S., Fischer, G., Tramberend, S., Satoh, Y., van Vliet, M. T. H., Yillia, P., Ringler, C., Burek, P., and Wiberg, D.: Modeling global water use for the 21st century: the Water Futures and Solutions (WFaS) initiative and its approaches, Geosci. Model Dev., 9, 175–222, https://doi.org/10.5194/gmd-9-175-2016, 2016. a
Wang, M., Wagner, M., Miguez-Macho, G., Kamarianakis, Y., Mahalov, A.,
Moustaoui, M., Miller, J., VanLoocke, A., Bagley, J. E., Bernacchi, C. J.,
and Georgescu, M.: On the Long-Term Hydroclimatic Sustainability of Perennial
Bioenergy Crop Expansion over the United States, J. Climate, 30,
2535–2557, https://doi.org/10.1175/JCLI-D-16-0610.1, 2017. a
Werner, C., Schmidt, H.-P., Gerten, D., Lucht, W., and Kammann, C.:
Biogeochemical potential of biomass pyrolysis systems for limiting global
warming to 1.5 ∘C, Environ. Res. Lett., 13, 044036,
https://doi.org/10.1088/1748-9326/aabb0e, 2018. a
Yuan, J. S., Tiller, K. H., Al-Ahmad, H., Stewart, N. R., and Stewart, C. N.:
Plants to power: bioenergy to fuel the future, Trends Plant Sci., 13,
421–429, https://doi.org/10.1016/j.tplants.2008.06.001,
2008. a
Short summary
Ideas to mitigate climate change include the large-scale cultivation of fast-growing plants to capture atmospheric CO2 in biomass. To maximize the productivity of these plants, they will likely be irrigated. However, there is strong disagreement in the literature on how much irrigation water is needed globally, potentially inducing water stress. We provide a comprehensive overview of global irrigation demand studies for biomass production and discuss the diverse underlying study assumptions.
Ideas to mitigate climate change include the large-scale cultivation of fast-growing plants to...