Articles | Volume 24, issue 7
https://doi.org/10.5194/hess-24-3737-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-24-3737-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Using water stable isotopes to understand evaporation, moisture stress, and re-wetting in catchment forest and grassland soils of the summer drought of 2018
Department of Geography, Humboldt-Universität zu Berlin, Rudower Chaussee 16, 12489 Berlin, Germany
Department of Ecohydrology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310,
12587 Berlin, Germany
Doerthe Tetzlaff
Department of Geography, Humboldt-Universität zu Berlin, Rudower Chaussee 16, 12489 Berlin, Germany
Department of Ecohydrology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310,
12587 Berlin, Germany
Aaron Smith
Department of Ecohydrology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310,
12587 Berlin, Germany
Hailong Wang
School of Civil Engineering, Sun Yat-sen University, 135 Xin’gang Xi Road, Guangzhou, 510275, China
Chris Soulsby
Northern Rivers Institute, University of Aberdeen, St. Mary’s Building, Kings College, Old Aberdeen, AB24 3UE, UK
Department of Ecohydrology, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310,
12587 Berlin, Germany
Related authors
Aaron Smith, Doerthe Tetzlaff, Lukas Kleine, Marco Maneta, and Chris Soulsby
Hydrol. Earth Syst. Sci., 25, 2239–2259, https://doi.org/10.5194/hess-25-2239-2021, https://doi.org/10.5194/hess-25-2239-2021, 2021
Short summary
Short summary
We used a tracer-aided ecohydrological model on a mixed land use catchment in northeastern Germany to quantify water flux–storage–age interactions at four model grid resolutions. The model's ability to reproduce spatio-temporal flux–storage–age interactions decreases with increasing model grid sizes. Similarly, larger model grids showed vegetation-influenced changes in blue and green water partitioning. Simulations reveal the value of measured soil and stream isotopes for model calibration.
Maria Magdalena Warter, Dörthe Tetzlaff, Chris Soulsby, Tobias Goldhammer, Daniel Gebler, Kati Vierrikko, and Michael T. Monaghan
EGUsphere, https://doi.org/10.5194/egusphere-2024-3537, https://doi.org/10.5194/egusphere-2024-3537, 2024
Short summary
Short summary
There is a lack of understanding of how urban aquatic nature-based solutions affect ecohydrology and how they in turn are affected by urbanization and climate change. We use a multi-tracer approach using stable water isotopes, hydrochemistry and microbial and macrophyte diversity, to disentangle the effects of hydroclimate and urbanization. The results show potential limitations of aquaNBS impacts on water quality and biodiversity in response to hydroclimate and urban water sources.
Maria Magdalena Warter, Dörthe Tetzlaff, Christian Marx, and Chris Soulsby
Nat. Hazards Earth Syst. Sci., 24, 3907–3924, https://doi.org/10.5194/nhess-24-3907-2024, https://doi.org/10.5194/nhess-24-3907-2024, 2024
Short summary
Short summary
Streams are increasingly impacted by droughts and floods. Still, the amount of water needed for sustainable flows remains unclear and contested. A comparison of two streams in the Berlin–Brandenburg region of northeast Germany, using stable water isotopes, shows strong groundwater dependence with seasonal rainfall contributing to high/low flows. Understanding streamflow variability can help us assess the impacts of climate change on future water resource management.
Salim Goudarzi, Chris Soulsby, Jo Smith, Jamie Lee Stevenson, Alessandro Gimona, Scot Ramsay, Alison Hester, Iris Aalto, and Josie Geris
EGUsphere, https://doi.org/10.5194/egusphere-2024-2258, https://doi.org/10.5194/egusphere-2024-2258, 2024
Short summary
Short summary
Planting trees on farmlands is now considered as one of the potential solutions to climate change. Trees can suck CO2 out of our atmosphere and store it in their trunks and in the soil beneath them. They can promote biodiversity, protect against soil erosion and drought. They can even help reduce flood risk for downstream communities. But we need models that can tell us the likely impact of trees at different locations and scales. Our study provides such a model.
Doerthe Tetzlaff, Aaron Smith, Lukas Kleine, Hauke Daempfling, Jonas Freymueller, and Chris Soulsby
Earth Syst. Sci. Data, 15, 1543–1554, https://doi.org/10.5194/essd-15-1543-2023, https://doi.org/10.5194/essd-15-1543-2023, 2023
Short summary
Short summary
We present a comprehensive set of ecohydrological hydrometric and stable water isotope data of 2 years of data. The data set is unique as the different compartments of the landscape were sampled and the effects of a prolonged drought (2018–2020) captured by a marked negative rainfall anomaly (the most severe regional drought of the 21st century). Thus, the data allow the drought effects on water storage, flux and age dynamics, and persistence of lowland landscapes to be investigated.
Xiaoqiang Yang, Doerthe Tetzlaff, Chris Soulsby, and Dietrich Borchardt
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-239, https://doi.org/10.5194/gmd-2022-239, 2022
Preprint retracted
Short summary
Short summary
We develop the catchment water quality assessment platform HiWaQ v1.0, which is compatible with multiple hydrological model structures. The nitrogen module (HiWaQ-N) and its coupling tests with two contrasting grid-based hydrological models demonstrate the robustness of the platform in estimating catchment N dynamics. With the unique design of the coupling flexibility, HiWaQ can leverage advancements in hydrological modelling and advance integrated catchment water quantity-quality assessments.
Guangxuan Li, Xi Chen, Zhicai Zhang, Lichun Wang, and Chris Soulsby
Hydrol. Earth Syst. Sci., 26, 5515–5534, https://doi.org/10.5194/hess-26-5515-2022, https://doi.org/10.5194/hess-26-5515-2022, 2022
Short summary
Short summary
We developed a coupled flow–tracer model to understand the effects of passive storage on modeling hydrological function and isotope dynamics in a karst flow system. Models with passive storages show improvement in matching isotope dynamics performance, and the improved performance also strongly depends on the number and location of passive storages. Our results also suggested that the solute transport is primarily controlled by advection and hydrodynamic dispersion in the steep hillslope unit.
Aaron Smith, Doerthe Tetzlaff, Jessica Landgraf, Maren Dubbert, and Chris Soulsby
Biogeosciences, 19, 2465–2485, https://doi.org/10.5194/bg-19-2465-2022, https://doi.org/10.5194/bg-19-2465-2022, 2022
Short summary
Short summary
This research utilizes high-spatiotemporal-resolution soil and vegetation measurements, including water stable isotopes, within an ecohydrological model to partition water flux dynamics and identify flow paths and durations. Results showed high vegetation water use and high spatiotemporal dynamics of vegetation water source and vegetation isotopes. The evaluation of these dynamics further revealed relatively fast flow paths through both shallow soil and vegetation.
Jessica Landgraf, Dörthe Tetzlaff, Maren Dubbert, David Dubbert, Aaron Smith, and Chris Soulsby
Hydrol. Earth Syst. Sci., 26, 2073–2092, https://doi.org/10.5194/hess-26-2073-2022, https://doi.org/10.5194/hess-26-2073-2022, 2022
Short summary
Short summary
Using water stable isotopes, we studied from which water source (lake water, stream water, groundwater, or soil water) two willows were taking their water. We monitored the environmental conditions (e.g. air temperature and soil moisture) and the behaviour of the trees (water flow in the stem). We found that the most likely water sources of the willows were the upper soil layers but that there were seasonal dynamics.
Aaron J. Neill, Christian Birkel, Marco P. Maneta, Doerthe Tetzlaff, and Chris Soulsby
Hydrol. Earth Syst. Sci., 25, 4861–4886, https://doi.org/10.5194/hess-25-4861-2021, https://doi.org/10.5194/hess-25-4861-2021, 2021
Short summary
Short summary
Structural changes (cover and height of vegetation plus tree canopy characteristics) to forests during regeneration on degraded land affect how water is partitioned between streamflow, groundwater recharge and evapotranspiration. Partitioning most strongly deviates from baseline conditions during earlier stages of regeneration with dense forest, while recovery may be possible as the forest matures and opens out. This has consequences for informing sustainable landscape restoration strategies.
Hailong Wang, Kai Duan, Bingjun Liu, and Xiaohong Chen
Hydrol. Earth Syst. Sci., 25, 4741–4758, https://doi.org/10.5194/hess-25-4741-2021, https://doi.org/10.5194/hess-25-4741-2021, 2021
Short summary
Short summary
Using remote sensing and reanalysis data, we examined the relationships between vegetation development and water resource availability in a humid subtropical basin. We found overall increases in total water storage and surface greenness and vegetation production, and the changes were particularly profound in cropland-dominated regions. Correlation analysis implies water availability leads the variations in greenness and production, and irrigation may improve production during dry periods.
Mikael Gillefalk, Dörthe Tetzlaff, Reinhard Hinkelmann, Lena-Marie Kuhlemann, Aaron Smith, Fred Meier, Marco P. Maneta, and Chris Soulsby
Hydrol. Earth Syst. Sci., 25, 3635–3652, https://doi.org/10.5194/hess-25-3635-2021, https://doi.org/10.5194/hess-25-3635-2021, 2021
Short summary
Short summary
We used a tracer-aided ecohydrological model to quantify water flux–storage–age interactions for three urban vegetation types: trees, shrub and grass. The model results showed that evapotranspiration increased in the order shrub < grass < trees during one growing season. Additionally, we could show how
infiltration hotspotscreated by runoff from sealed onto vegetated surfaces can enhance both evapotranspiration and groundwater recharge.
Aaron Smith, Doerthe Tetzlaff, Lukas Kleine, Marco Maneta, and Chris Soulsby
Hydrol. Earth Syst. Sci., 25, 2239–2259, https://doi.org/10.5194/hess-25-2239-2021, https://doi.org/10.5194/hess-25-2239-2021, 2021
Short summary
Short summary
We used a tracer-aided ecohydrological model on a mixed land use catchment in northeastern Germany to quantify water flux–storage–age interactions at four model grid resolutions. The model's ability to reproduce spatio-temporal flux–storage–age interactions decreases with increasing model grid sizes. Similarly, larger model grids showed vegetation-influenced changes in blue and green water partitioning. Simulations reveal the value of measured soil and stream isotopes for model calibration.
Jenna R. Snelgrove, James M. Buttle, Matthew J. Kohn, and Dörthe Tetzlaff
Hydrol. Earth Syst. Sci., 25, 2169–2186, https://doi.org/10.5194/hess-25-2169-2021, https://doi.org/10.5194/hess-25-2169-2021, 2021
Short summary
Short summary
Co-evolution of plant and soil water isotopic composition throughout the growing season in a little-studied northern mixed forest landscape was explored. Marked inter-specific differences in the isotopic composition of xylem water relative to surrounding soil water occurred, despite thin soil cover constraining inter-species differences in rooting depths. We provide potential explanations for differences in temporal evolution of xylem water isotopic composition in this northern landscape.
Lena-Marie Kuhlemann, Doerthe Tetzlaff, Aaron Smith, Birgit Kleinschmit, and Chris Soulsby
Hydrol. Earth Syst. Sci., 25, 927–943, https://doi.org/10.5194/hess-25-927-2021, https://doi.org/10.5194/hess-25-927-2021, 2021
Short summary
Short summary
We studied water partitioning under urban grassland, shrub and trees during a warm and dry growing season in Berlin, Germany. Soil evaporation was highest under grass, but total green water fluxes and turnover time of soil water were greater under trees. Lowest evapotranspiration losses under shrub indicate potential higher drought resilience. Knowledge of water partitioning and requirements of urban green will be essential for better adaptive management of urban water and irrigation strategies.
Aaron Smith, Doerthe Tetzlaff, Hjalmar Laudon, Marco Maneta, and Chris Soulsby
Hydrol. Earth Syst. Sci., 23, 3319–3334, https://doi.org/10.5194/hess-23-3319-2019, https://doi.org/10.5194/hess-23-3319-2019, 2019
Short summary
Short summary
We adapted and used a spatially distributed eco-hydrological model, EcH2O-iso, to temporally evaluate the influence of soil freeze–thaw dynamics on evaporation and transpiration fluxes in a northern Swedish catchment. We used multi-criterion calibration over multiple years and found an early-season influence of soil frost on transpiration water ages. This work provides a framework for quantifying the current and future interactions of soil water, evaporation, and transpiration.
Thea I. Piovano, Doerthe Tetzlaff, Sean K. Carey, Nadine J. Shatilla, Aaron Smith, and Chris Soulsby
Hydrol. Earth Syst. Sci., 23, 2507–2523, https://doi.org/10.5194/hess-23-2507-2019, https://doi.org/10.5194/hess-23-2507-2019, 2019
Short summary
Short summary
We adapted the spatially distributed, tracer-aided model, STARR, to a permafrost-influenced catchment in the Yukon Territory, Canada, with a time-variable implementation of field capacity to capture thaw layer spatio-temporal dynamics. We applied a multi-criteria calibration with multi-year field data. This study demonstrates the value of the integration of isotope data in a spatially distributed model to quantify catchment water storage and age dynamics in a permafrost-influenced environment.
Hongkai Gao, Christian Birkel, Markus Hrachowitz, Doerthe Tetzlaff, Chris Soulsby, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 23, 787–809, https://doi.org/10.5194/hess-23-787-2019, https://doi.org/10.5194/hess-23-787-2019, 2019
Short summary
Short summary
Supported by large-sample ecological observations, a novel, simple and topography-driven runoff generation module (HSC-MCT) was created. The HSC-MCT is calibration-free, and therefore it can be used to predict in ungauged basins, and has great potential to be generalized at the global scale. Also, it allows us to reproduce the variation of saturation areas, which has great potential to be used for broader hydrological, ecological, climatological, and biogeochemical studies.
Zhicai Zhang, Xi Chen, Qinbo Cheng, and Chris Soulsby
Hydrol. Earth Syst. Sci., 23, 51–71, https://doi.org/10.5194/hess-23-51-2019, https://doi.org/10.5194/hess-23-51-2019, 2019
Short summary
Short summary
We developed a new tracer-aided hydrological model for karst catchments. This model captured the flow and tracer dynamics within each landscape unit quite well, and we could estimate the storage, fluxes and age of water within each. Such tracer-aided models enhance our understanding of the hydrological connectivity between different landscape units and the mixing processes between various flow sources. It is an encouraging step forward in tracer-aided modelling of karst catchments.
Sylvain Kuppel, Doerthe Tetzlaff, Marco P. Maneta, and Chris Soulsby
Geosci. Model Dev., 11, 3045–3069, https://doi.org/10.5194/gmd-11-3045-2018, https://doi.org/10.5194/gmd-11-3045-2018, 2018
Short summary
Short summary
This paper presents a novel ecohydrological model in which both the fluxes of water and the relative concentration in stable isotopes (2H and 18O) can be simulated. Spatial heterogeneity, lateral transfers and plant-driven water use are incorporated. A thorough evaluation shows encouraging results using a wide range of in situ measurements from a Scottish catchment. The same modelling principles are then used to simulate how (and where) precipitation ages as water transits in the catchment.
Matthias Sprenger, Doerthe Tetzlaff, Jim Buttle, Hjalmar Laudon, and Chris Soulsby
Hydrol. Earth Syst. Sci., 22, 3965–3981, https://doi.org/10.5194/hess-22-3965-2018, https://doi.org/10.5194/hess-22-3965-2018, 2018
Short summary
Short summary
We estimated water ages in the upper critical zone with a soil physical model (SWIS) and found that the age of water stored in the soil, as well as of water leaving the soil via evaporation, transpiration, or recharge, was younger the higher soil water storage (inverse storage effect). Travel times of transpiration and evaporation were different. We conceptualized the subsurface into fast and slow flow domains and the water was usually half as young in the fast as in the slow flow domain.
Aaron A. Smith, Doerthe Tetzlaff, and Chris Soulsby
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-57, https://doi.org/10.5194/hess-2018-57, 2018
Preprint withdrawn
Pertti Ala-aho, Doerthe Tetzlaff, James P. McNamara, Hjalmar Laudon, and Chris Soulsby
Hydrol. Earth Syst. Sci., 21, 5089–5110, https://doi.org/10.5194/hess-21-5089-2017, https://doi.org/10.5194/hess-21-5089-2017, 2017
Short summary
Short summary
We used the Spatially Distributed Tracer-Aided Rainfall-Runoff model (STARR) to simulate streamflows, stable water isotope ratios, snowpack dynamics, and water ages in three snow-influenced experimental catchments with exceptionally long and rich datasets. Our simulations reproduced the hydrological observations in all three catchments, suggested contrasting stream water age distributions between catchments, and demonstrated the importance of snow isotope processes in tracer-aided modelling.
Matthias Sprenger, Doerthe Tetzlaff, and Chris Soulsby
Hydrol. Earth Syst. Sci., 21, 3839–3858, https://doi.org/10.5194/hess-21-3839-2017, https://doi.org/10.5194/hess-21-3839-2017, 2017
Short summary
Short summary
We sampled the isotopic composition in the top 20 cm at four different sites in the Scottish Highlands at 5 cm intervals over 1 year. The relationship between the soil water isotopic fractionation and evapotranspiration showed a hysteresis pattern due to a lag response to onset and offset of the evaporative losses. The isotope data revealed that vegetation had a significant influence on the soil evaporation with evaporation being double from soils beneath Scots pine compared to heather.
J. R. Poulsen, E. Sebok, C. Duque, D. Tetzlaff, and P. K. Engesgaard
Hydrol. Earth Syst. Sci., 19, 1871–1886, https://doi.org/10.5194/hess-19-1871-2015, https://doi.org/10.5194/hess-19-1871-2015, 2015
M. Hrachowitz, H. Savenije, T. A. Bogaard, D. Tetzlaff, and C. Soulsby
Hydrol. Earth Syst. Sci., 17, 533–564, https://doi.org/10.5194/hess-17-533-2013, https://doi.org/10.5194/hess-17-533-2013, 2013
Related subject area
Subject: Ecohydrology | Techniques and Approaches: Instruments and observation techniques
Seasonal shifts in depth-to-water uptake by young thinned and overstocked lodgepole pine (Pinus contorta) forests under drought conditions in the Okanagan Valley, British Columbia, Canada
Hydrological and pedological effects of combining Italian alder and blackberries in an agroforestry windbreak system in South Africa
Rainfall redistribution in subtropical Chinese forests changes over 22 years
The influence of hillslope topography on beech water use: a comparative study in two different climates
Real-time biological early-warning system based on freshwater mussels’ valvometry data
Root water uptake patterns are controlled by tree species interactions and soil water variability
The seasonal origins and ages of water provisioning streams and trees in a tropical montane cloud forest
Benefits of a robotic chamber system for determining evapotranspiration in an erosion-affected, heterogeneous cropland
Quantifying river water contributions to the transpiration of riparian trees along a losing river: lessons from stable isotopes and an iteration method
Dye-tracer-aided investigation of xylem water transport velocity distributions
Technical note: Lessons from and best practices for the deployment of the Soil Water Isotope Storage System
Throughfall spatial patterns translate into spatial patterns of soil moisture dynamics – empirical evidence
Routing stemflow water through the soil via preferential flow: a dual-labelling approach with artificial tracers
Improving soil aquifer treatment efficiency using air injection into the subsurface
Dynamic root growth in response to depth-varying soil moisture availability: a rhizobox study
Controls on leaf water hydrogen and oxygen isotopes: a local investigation across seasons and altitude
Resolving seasonal and diel dynamics of non-rainfall water inputs in a Mediterranean ecosystem using lysimeters
The effect of rainfall amount and timing on annual transpiration in a grazed savanna grassland
Inter- and intra-event rainfall partitioning dynamics of two typical xerophytic shrubs in the Loess Plateau of China
A comparative study of plant water extraction methods for isotopic analyses: Scholander-type pressure chamber vs. cryogenic vacuum distillation
Technical note: Conservative storage of water vapour – practical in situ sampling of stable isotopes in tree stems
Xylem water in riparian willow trees (Salix alba) reveals shallow sources of root water uptake by in situ monitoring of stable water isotopes
Technical note: High-accuracy weighing micro-lysimeter system for long-term measurements of non-rainfall water inputs to grasslands
Response of water fluxes and biomass production to climate change in permanent grassland soil ecosystems
Ecohydrological travel times derived from in situ stable water isotope measurements in trees during a semi-controlled pot experiment
Insights into the isotopic mismatch between bulk soil water and Salix matsudana Koidz trunk water from root water stable isotope measurements
The role of dew and radiation fog inputs in the local water cycling of a temperate grassland during dry spells in central Europe
Co-evolution of xylem water and soil water stable isotopic composition in a northern mixed forest biome
Vapor plumes in a tropical wet forest: spotting the invisible evaporation
Rapid reduction in ecosystem productivity caused by flash droughts based on decade-long FLUXNET observations
Throughfall isotopic composition in relation to drop size at the intra-event scale in a Mediterranean Scots pine stand
Rainfall interception and redistribution by a common North American understory and pasture forb, Eupatorium capillifolium (Lam. dogfennel)
In situ measurements of soil and plant water isotopes: a review of approaches, practical considerations and a vision for the future
Coalescence of bacterial groups originating from urban runoffs and artificial infiltration systems among aquifer microbiomes
A combination of soil water extraction methods quantifies the isotopic mixing of waters held at separate tensions in soil
Partitioning growing season water balance within a forested boreal catchment using sap flux, eddy covariance, and a process-based model
Technical note: Long-term probe misalignment and proposed quality control using the heat pulse method for transpiration estimations
Contribution of understory evaporation in a tropical wet forest during the dry season
Coffee and shade trees show complementary use of soil water in a traditional agroforestry ecosystem
Responses of soil water storage and crop water use efficiency to changing climatic conditions: a lysimeter-based space-for-time approach
Neighbourhood and stand structure affect stemflow generation in a heterogeneous deciduous temperate forest
Technical Note: A global database of the stable isotopic ratios of meteoric and terrestrial waters
Temporally dependent effects of rainfall characteristics on inter- and intra-event branch-scale stemflow variability in two xerophytic shrubs
Dissolved organic carbon driven by rainfall events from a semi-arid catchment during concentrated rainfall season in the Loess Plateau, China
Dew frequency across the US from a network of in situ radiometers
Seasonal origins of soil water used by trees
Forest harvesting impacts on microclimate conditions and sediment transport activities in a humid periglacial environment
Hydrogeochemical controls on brook trout spawning habitats in a coastal stream
Speculations on the application of foliar 13C discrimination to reveal groundwater dependency of vegetation and provide estimates of root depth and rates of groundwater use
Evaporation from cultivated and semi-wild Sudanian Savanna in west Africa
Emory C. Ellis, Robert D. Guy, and Xiaohua A. Wei
Hydrol. Earth Syst. Sci., 28, 4667–4684, https://doi.org/10.5194/hess-28-4667-2024, https://doi.org/10.5194/hess-28-4667-2024, 2024
Short summary
Short summary
This study analyzes water-stable isotope composition by analyzing the impact of forest thinning on lodgepole pine depth-to-water uptake and water-use strategies. Lodgepole pine's primary source is spring snowmelt and shifts to rely on deeper soil water to maintain water uptake. There was no effect of decreased stand density on depth-to-water uptake. It will become more critical that we know how much water forests are using and which strategies trees use to sustain their water supply.
Svenja Hoffmeister, Rafael Bohn Reckziegel, Ben du Toit, Sibylle K. Hassler, Florian Kestel, Rebekka Maier, Jonathan P. Sheppard, and Erwin Zehe
Hydrol. Earth Syst. Sci., 28, 3963–3982, https://doi.org/10.5194/hess-28-3963-2024, https://doi.org/10.5194/hess-28-3963-2024, 2024
Short summary
Short summary
We studied a tree–crop ecosystem consisting of a blackberry field and an alder windbreak. In the water-scarce region, irrigation provides sufficient water for plant growth. The windbreak lowers the irrigation amount by reducing wind speed and therefore water transport into the atmosphere. These ecosystems could provide sustainable use of water-scarce landscapes, and we studied the complex interactions by observing several aspects (e.g. soil, nutrients, carbon assimilation, water).
Wanjun Zhang, Thomas Scholten, Steffen Seitz, Qianmei Zhang, Guowei Chu, Linhua Wang, Xin Xiong, and Juxiu Liu
Hydrol. Earth Syst. Sci., 28, 3837–3854, https://doi.org/10.5194/hess-28-3837-2024, https://doi.org/10.5194/hess-28-3837-2024, 2024
Short summary
Short summary
Rainfall input generally controls soil water and plant growth. We focus on rainfall redistribution in succession sequence forests over 22 years. Some changes in rainwater volume and chemistry in the throughfall and stemflow and drivers were investigated. Results show that shifted open rainfall over time and forest factors induced remarkable variability in throughfall and stemflow, which potentially makes forecasting future changes in water resources in the forest ecosystems more difficult.
Ginevra Fabiani, Julian Klaus, and Daniele Penna
Hydrol. Earth Syst. Sci., 28, 2683–2703, https://doi.org/10.5194/hess-28-2683-2024, https://doi.org/10.5194/hess-28-2683-2024, 2024
Short summary
Short summary
There is a limited understanding of the role that topography and climate play in tree water use. Through a cross-site comparison in Luxembourg and Italy, we investigated beech water use along slopes in different climates. Our findings indicate that in landscapes characterized by stronger hydraulic and climatic gradients there is greater spatial variation in tree physiological responses. This highlights how differing growing conditions across landscapes can lead to contrasting tree performances.
Ashkan Pilbala, Nicoletta Riccardi, Nina Benistati, Vanessa Modesto, Donatella Termini, Dario Manca, Augusto Benigni, Cristiano Corradini, Tommaso Lazzarin, Tommaso Moramarco, Luigi Fraccarollo, and Sebastiano Piccolroaz
Hydrol. Earth Syst. Sci., 28, 2297–2311, https://doi.org/10.5194/hess-28-2297-2024, https://doi.org/10.5194/hess-28-2297-2024, 2024
Short summary
Short summary
This study investigates the impact of floods on the aquatic ecosystem using freshwater mussels instrumented with sensors to monitor the opening of their valves. Signal analysis techniques were used to gain insight into their responses in terms of changes in the intensity and frequency of valve opening. The approach used in the study enables the development of real-time monitoring systems for ecological purposes and provides a pathway for practical biological early-warning systems.
Gökben Demir, Andrew J. Guswa, Janett Filipzik, Johanna Clara Metzger, Christine Römermann, and Anke Hildebrandt
Hydrol. Earth Syst. Sci., 28, 1441–1461, https://doi.org/10.5194/hess-28-1441-2024, https://doi.org/10.5194/hess-28-1441-2024, 2024
Short summary
Short summary
Experimental evidence is scarce to understand how the spatial variation in below-canopy precipitation affects root water uptake patterns. Here, we conducted field measurements to investigate drivers of root water uptake patterns while accounting for canopy induced heterogeneity in water input. We found that tree species interactions and soil moisture variability, rather than below-canopy precipitation patterns, control root water uptake patterns in a mixed unmanaged forest.
Emily I. Burt, Gregory R. Goldsmith, Roxanne M. Cruz-de Hoyos, Adan Julian Ccahuana Quispe, and A. Joshua West
Hydrol. Earth Syst. Sci., 27, 4173–4186, https://doi.org/10.5194/hess-27-4173-2023, https://doi.org/10.5194/hess-27-4173-2023, 2023
Short summary
Short summary
When it rains, water remains in the ground for variable amounts of time before it is taken up by plants or becomes streamflow. Understanding how long water stays in the ground before it is taken up by plants or becomes streamflow helps predict what will happen to the water cycle in future climates. Some studies suggest that plants take up water that has been in the ground for a long time; in contrast, we find that plants take up a significant amount of recent rain.
Adrian Dahlmann, Mathias Hoffmann, Gernot Verch, Marten Schmidt, Michael Sommer, Jürgen Augustin, and Maren Dubbert
Hydrol. Earth Syst. Sci., 27, 3851–3873, https://doi.org/10.5194/hess-27-3851-2023, https://doi.org/10.5194/hess-27-3851-2023, 2023
Short summary
Short summary
Evapotranspiration (ET) plays a pivotal role in terrestrial water cycling, returning up to 90 % of precipitation to the atmosphere. We studied impacts of soil type and management on an agroecosystem using an automated system with modern modeling approaches. We modeled ET at high spatial and temporal resolution to highlight differences in heterogeneous soils on an hourly basis. Our results show significant differences in yield and smaller differences in ET overall, impacting water use efficiency.
Yue Li, Ying Ma, Xianfang Song, Qian Zhang, and Lixin Wang
Hydrol. Earth Syst. Sci., 27, 3405–3425, https://doi.org/10.5194/hess-27-3405-2023, https://doi.org/10.5194/hess-27-3405-2023, 2023
Short summary
Short summary
We proposed an iteration method in combination with the MixSIAR model and water isotopes to quantify the river water contribution (RWC) to riparian deep-rooted trees nearby a losing river. River water can indirectly contribute by 20.3 % to water uptake of riparian trees. River recharged riparian groundwater rapidly with a short groundwater residence time (no more than 0.28 d). The RWC to riparian trees was negatively correlated with the water table depth and leaf δ13C in linear functions.
Stefan Seeger and Markus Weiler
Hydrol. Earth Syst. Sci., 27, 3393–3404, https://doi.org/10.5194/hess-27-3393-2023, https://doi.org/10.5194/hess-27-3393-2023, 2023
Short summary
Short summary
This study proposes a low-budget method to quantify the radial distribution of water transport velocities within trees at a high spatial resolution. We observed a wide spread of water transport velocities within a tree stem section, which were on average 3 times faster than the flux velocity. The distribution of transport velocities has implications for studies that use water isotopic signatures to study root water uptake and usually assume uniform or even implicitly infinite velocities.
Rachel E. Havranek, Kathryn Snell, Sebastian Kopf, Brett Davidheiser-Kroll, Valerie Morris, and Bruce Vaughn
Hydrol. Earth Syst. Sci., 27, 2951–2971, https://doi.org/10.5194/hess-27-2951-2023, https://doi.org/10.5194/hess-27-2951-2023, 2023
Short summary
Short summary
We present an automated, field-ready system that collects soil water vapor for stable isotope analysis. This system can be used to determine soil water evolution through time, which is helpful for understanding crop water use, water vapor fluxes to the atmosphere, and geologic proxy development. Our system can automatically collect soil water vapor and then store it for up to 30 d, which allows researchers to collect datasets from historically understudied, remote locations.
Christine Fischer-Bedtke, Johanna Clara Metzger, Gökben Demir, Thomas Wutzler, and Anke Hildebrandt
Hydrol. Earth Syst. Sci., 27, 2899–2918, https://doi.org/10.5194/hess-27-2899-2023, https://doi.org/10.5194/hess-27-2899-2023, 2023
Short summary
Short summary
Canopies change how rain reaches the soil: some spots receive more and others less water. It has long been debated whether this also leads to locally wetter and drier soil. We checked this using measurements of canopy drip and soil moisture. We found that the increase in soil water content after rain was aligned with canopy drip. Independently, the soil storage reaction was dampened in locations prone to drainage, like hig-macroporosity areas, suggesting that canopy drip enhances bypass flow.
Juan Pinos, Markus Flury, Jérôme Latron, and Pilar Llorens
Hydrol. Earth Syst. Sci., 27, 2865–2881, https://doi.org/10.5194/hess-27-2865-2023, https://doi.org/10.5194/hess-27-2865-2023, 2023
Short summary
Short summary
We investigated how stemflow (intercepted rainwater by the tree crown that travels down the stem) infiltrates within the soil. We simulated stemflow, applying coloured water along a tree trunk. Coloured patterns, observed when we excavated the soil after the experiment, were used to view and quantify preferential flow in the soil. We found that stemflow was mainly funnelled belowground along tree roots and macropores. Soil moisture near the trunk was affected both vertically and horizontally.
Ido Arad, Aviya Ziner, Shany Ben Moshe, Noam Weisbrod, and Alex Furman
Hydrol. Earth Syst. Sci., 27, 2509–2522, https://doi.org/10.5194/hess-27-2509-2023, https://doi.org/10.5194/hess-27-2509-2023, 2023
Short summary
Short summary
In a series of long-column experiments, subsurface air injection in soil aquifer treatment (Air-SAT) was tested as an alternative to conventional flooding–drying operation (FDO) in tertiary wastewater (WW) treatment. Our results show that Air-SAT allows for the treatment of increased WW volumes and results in similar or better effluent quality compared with FDO. These results highlight the possibility of using air injection to treat more effluent and alleviate the pressure on existing SAT sites.
Cynthia Maan, Marie-Claire ten Veldhuis, and Bas J. H. van de Wiel
Hydrol. Earth Syst. Sci., 27, 2341–2355, https://doi.org/10.5194/hess-27-2341-2023, https://doi.org/10.5194/hess-27-2341-2023, 2023
Short summary
Short summary
Their flexible growth provides the plants with a strong ability to adapt and develop resilience to droughts and climate change. But this adaptability is badly included in crop and climate models. To model plant development in changing environments, we need to include the survival strategies of plants. Based on experimental data, we set up a simple model for soil-moisture-driven root growth. The model performance suggests that soil moisture is a key parameter determining root growth.
Jinzhao Liu, Chong Jiang, Huawu Wu, Li Guo, Haiwei Zhang, and Ying Zhao
Hydrol. Earth Syst. Sci., 27, 599–612, https://doi.org/10.5194/hess-27-599-2023, https://doi.org/10.5194/hess-27-599-2023, 2023
Short summary
Short summary
What controls leaf water isotopes? We answered the question from two perspectives: respective and dual isotopes. On the one hand, the δ18O and δ2H values of leaf water responded to isotopes of potential source water (i.e., twig water, soil water, and precipitation) and meteorological parameters (i.e., temperature, RH, and precipitation) differently. On the other hand, dual δ18O and δ2H values of leaf water yielded a significant linear relationship associated with altitude and seasonality.
Sinikka Jasmin Paulus, Tarek Sebastian El-Madany, René Orth, Anke Hildebrandt, Thomas Wutzler, Arnaud Carrara, Gerardo Moreno, Oscar Perez-Priego, Olaf Kolle, Markus Reichstein, and Mirco Migliavacca
Hydrol. Earth Syst. Sci., 26, 6263–6287, https://doi.org/10.5194/hess-26-6263-2022, https://doi.org/10.5194/hess-26-6263-2022, 2022
Short summary
Short summary
In this study, we analyze small inputs of water to ecosystems such as fog, dew, and adsorption of vapor. To measure them, we use a scaling system and later test our attribution of different water fluxes to weight changes. We found that they occur frequently during 1 year in a dry summer ecosystem. In each season, a different flux seems dominant, but they all mainly occur during the night. Therefore, they could be important for the biosphere because rain is unevenly distributed over the year.
Matti Räsänen, Mika Aurela, Ville Vakkari, Johan P. Beukes, Juha-Pekka Tuovinen, Pieter G. Van Zyl, Miroslav Josipovic, Stefan J. Siebert, Tuomas Laurila, Markku Kulmala, Lauri Laakso, Janne Rinne, Ram Oren, and Gabriel Katul
Hydrol. Earth Syst. Sci., 26, 5773–5791, https://doi.org/10.5194/hess-26-5773-2022, https://doi.org/10.5194/hess-26-5773-2022, 2022
Short summary
Short summary
The productivity of semiarid grazed grasslands is linked to the variation in rainfall and transpiration. By combining carbon dioxide and water flux measurements, we show that the annual transpiration is nearly constant during wet years while grasses react quickly to dry spells and drought, which reduce transpiration. The planning of annual grazing strategies could consider the early-season rainfall frequency that was linked to the portion of annual transpiration.
Jinxia An, Guangyao Gao, Chuan Yuan, Juan Pinos, and Bojie Fu
Hydrol. Earth Syst. Sci., 26, 3885–3900, https://doi.org/10.5194/hess-26-3885-2022, https://doi.org/10.5194/hess-26-3885-2022, 2022
Short summary
Short summary
An in-depth investigation was conducted of all rainfall-partitioning components at inter- and intra-event scales for two xerophytic shrubs. Inter-event rainfall partitioning amount and percentage depended more on rainfall amount, and rainfall intensity and duration controlled intra-event rainfall-partitioning variables. One shrub has larger branch angle, small branch and smaller canopy area to produce stemflow more efficiently, and the other has larger biomass to intercept more rainfall.
Giulia Zuecco, Anam Amin, Jay Frentress, Michael Engel, Chiara Marchina, Tommaso Anfodillo, Marco Borga, Vinicio Carraro, Francesca Scandellari, Massimo Tagliavini, Damiano Zanotelli, Francesco Comiti, and Daniele Penna
Hydrol. Earth Syst. Sci., 26, 3673–3689, https://doi.org/10.5194/hess-26-3673-2022, https://doi.org/10.5194/hess-26-3673-2022, 2022
Short summary
Short summary
We analyzed the variability in the isotopic composition of plant water extracted by two different methods, i.e., cryogenic vacuum distillation (CVD) and Scholander-type pressure chamber (SPC). Our results indicated that the isotopic composition of plant water extracted by CVD and SPC was significantly different. We concluded that plant water extraction by SPC is not an alternative for CVD as SPC mostly extracts the mobile plant water whereas CVD retrieves all water stored in the sampled tissue.
Ruth-Kristina Magh, Benjamin Gralher, Barbara Herbstritt, Angelika Kübert, Hyungwoo Lim, Tomas Lundmark, and John Marshall
Hydrol. Earth Syst. Sci., 26, 3573–3587, https://doi.org/10.5194/hess-26-3573-2022, https://doi.org/10.5194/hess-26-3573-2022, 2022
Short summary
Short summary
We developed a method of sampling and storing water vapour for isotope analysis, allowing us to infer plant water uptake depth. Measurements can be made at high temporal and spatial resolution even in remote areas. We ensured that all necessary components are easily available, making this method cost efficient and simple to implement. We found our method to perform well in the lab and in the field, enabling it to become a tool for everyone aiming to resolve questions regarding the water cycle.
Jessica Landgraf, Dörthe Tetzlaff, Maren Dubbert, David Dubbert, Aaron Smith, and Chris Soulsby
Hydrol. Earth Syst. Sci., 26, 2073–2092, https://doi.org/10.5194/hess-26-2073-2022, https://doi.org/10.5194/hess-26-2073-2022, 2022
Short summary
Short summary
Using water stable isotopes, we studied from which water source (lake water, stream water, groundwater, or soil water) two willows were taking their water. We monitored the environmental conditions (e.g. air temperature and soil moisture) and the behaviour of the trees (water flow in the stem). We found that the most likely water sources of the willows were the upper soil layers but that there were seasonal dynamics.
Andreas Riedl, Yafei Li, Jon Eugster, Nina Buchmann, and Werner Eugster
Hydrol. Earth Syst. Sci., 26, 91–116, https://doi.org/10.5194/hess-26-91-2022, https://doi.org/10.5194/hess-26-91-2022, 2022
Short summary
Short summary
The aim of this study was to develop a high-accuracy micro-lysimeter system for the quantification of non-rainfall water inputs that overcomes existing drawbacks. The micro-lysimeter system had a high accuracy and allowed us to quantify and distinguish between different types of non-rainfall water inputs, like dew and fog. Non-rainfall water inputs occurred frequently in a Swiss Alpine grassland ecosystem. These water inputs can be an important water source for grasslands during dry periods.
Veronika Forstner, Jannis Groh, Matevz Vremec, Markus Herndl, Harry Vereecken, Horst H. Gerke, Steffen Birk, and Thomas Pütz
Hydrol. Earth Syst. Sci., 25, 6087–6106, https://doi.org/10.5194/hess-25-6087-2021, https://doi.org/10.5194/hess-25-6087-2021, 2021
Short summary
Short summary
Lysimeter-based manipulative and observational experiments were used to identify responses of water fluxes and aboveground biomass (AGB) to climatic change in permanent grassland. Under energy-limited conditions, elevated temperature actual evapotranspiration (ETa) increased, while seepage, dew, and AGB decreased. Elevated CO2 mitigated the effect on ETa. Under water limitation, elevated temperature resulted in reduced ETa, and AGB was negatively correlated with an increasing aridity.
David Mennekes, Michael Rinderer, Stefan Seeger, and Natalie Orlowski
Hydrol. Earth Syst. Sci., 25, 4513–4530, https://doi.org/10.5194/hess-25-4513-2021, https://doi.org/10.5194/hess-25-4513-2021, 2021
Short summary
Short summary
In situ stable water isotope measurements are a recently developed method to measure water movement from the soil through the plant to the atmosphere in high resolution and precision. Here, we present important advantages of the new method in comparison to commonly used measurement methods in an experimental setup. Overall, this method can help to answer research questions such as plant responses to climate change with potentially shifting water availability or temperatures.
Ying Zhao and Li Wang
Hydrol. Earth Syst. Sci., 25, 3975–3989, https://doi.org/10.5194/hess-25-3975-2021, https://doi.org/10.5194/hess-25-3975-2021, 2021
Short summary
Short summary
At our study site during the experimental period, trunk water was only isotopically similar to root water at 100–160 cm depths. The isotopic composition of root water deviated from that of bulk soil water but overlapped with the composition derived for less mobile water. These findings suggest that the isotopic offset between bulk soil water and trunk water was due to the isotopic mismatch between root water and bulk soil water associated with soil water heterogeneity.
Yafei Li, Franziska Aemisegger, Andreas Riedl, Nina Buchmann, and Werner Eugster
Hydrol. Earth Syst. Sci., 25, 2617–2648, https://doi.org/10.5194/hess-25-2617-2021, https://doi.org/10.5194/hess-25-2617-2021, 2021
Short summary
Short summary
During dry spells, dew and fog potentially play an increasingly important role in temperate grasslands. Research on the combined mechanisms of dew and fog inputs to ecosystems and distillation of water vapor from soil to plant surfaces is rare. Our results using stable water isotopes highlight the importance of dew and fog inputs to temperate grasslands during dry spells and reveal the complexity of the local water cycling in such conditions, including different pathways of dew and fog inputs.
Jenna R. Snelgrove, James M. Buttle, Matthew J. Kohn, and Dörthe Tetzlaff
Hydrol. Earth Syst. Sci., 25, 2169–2186, https://doi.org/10.5194/hess-25-2169-2021, https://doi.org/10.5194/hess-25-2169-2021, 2021
Short summary
Short summary
Co-evolution of plant and soil water isotopic composition throughout the growing season in a little-studied northern mixed forest landscape was explored. Marked inter-specific differences in the isotopic composition of xylem water relative to surrounding soil water occurred, despite thin soil cover constraining inter-species differences in rooting depths. We provide potential explanations for differences in temporal evolution of xylem water isotopic composition in this northern landscape.
César Dionisio Jiménez-Rodríguez, Miriam Coenders-Gerrits, Bart Schilperoort, Adriana del Pilar González-Angarita, and Hubert Savenije
Hydrol. Earth Syst. Sci., 25, 619–635, https://doi.org/10.5194/hess-25-619-2021, https://doi.org/10.5194/hess-25-619-2021, 2021
Short summary
Short summary
During rainfall events, evaporation from tropical forests is usually ignored. However, the water retained in the canopy during rainfall increases the evaporation despite the high-humidity conditions. In a tropical wet forest in Costa Rica, it was possible to depict vapor plumes rising from the forest canopy during rainfall. These plumes are evidence of forest evaporation. Also, we identified the conditions that allowed this phenomenon to happen using time-lapse videos and meteorological data.
Miao Zhang and Xing Yuan
Hydrol. Earth Syst. Sci., 24, 5579–5593, https://doi.org/10.5194/hess-24-5579-2020, https://doi.org/10.5194/hess-24-5579-2020, 2020
Short summary
Short summary
We identify flash drought events by considering the decline rate of soil moisture and the drought persistency, and we detect the response of ecosystem carbon and water fluxes to flash droughts based on FLUXNET observations. We find rapid declines in carbon assimilation within 16–24 d of flash drought onset, where savannas show the highest sensitivity. Water use efficiency increases for forests but decreases for herbaceous ecosystems during the recovery stage of flash droughts.
Juan Pinos, Jérôme Latron, Kazuki Nanko, Delphis F. Levia, and Pilar Llorens
Hydrol. Earth Syst. Sci., 24, 4675–4690, https://doi.org/10.5194/hess-24-4675-2020, https://doi.org/10.5194/hess-24-4675-2020, 2020
Short summary
Short summary
Water that drips or splashes from a canopy or passes through it is termed throughfall. This is the first known study to examine interrelationships between throughfall isotopic fractionation and throughfall drop size. Working in a mountainous Scots pine forest, we found that throughfall splash droplets were more prevalent at the onset of rain when vapour pressure deficits were larger. This finding has important implications for water mixing in the canopy and for theories of canopy interception.
D. Alex R. Gordon, Miriam Coenders-Gerrits, Brent A. Sellers, S. M. Moein Sadeghi, and John T. Van Stan II
Hydrol. Earth Syst. Sci., 24, 4587–4599, https://doi.org/10.5194/hess-24-4587-2020, https://doi.org/10.5194/hess-24-4587-2020, 2020
Short summary
Short summary
Where plants exist, rain must pass through canopies to reach soils. We studied how rain interacts with dogfennel – a highly problematic weed that is abundant in pastures, grasslands, rangelands, urban forests and along highways. Dogfennels evaporated large portions (approx. one-fifth) of rain and drained significant (at times > 25 %) rain (and dew) down their stems to their roots (via stemflow). This may explain how dogfennel survives and even invades managed landscapes during extended droughts.
Matthias Beyer, Kathrin Kühnhammer, and Maren Dubbert
Hydrol. Earth Syst. Sci., 24, 4413–4440, https://doi.org/10.5194/hess-24-4413-2020, https://doi.org/10.5194/hess-24-4413-2020, 2020
Short summary
Short summary
Water isotopes are a scientific tool that can be used to identify sources of water and answer questions such as
From which soil depths do plants take up water?, which are highly relevant under changing climatic conditions. In the past, the measurement of water isotopes required tremendous effort. In the last decade methods have advanced and can now be applied in the field. Herein, we review the current status of direct field measurements of water isotopes and discuss future applications.
Yannick Colin, Rayan Bouchali, Laurence Marjolet, Romain Marti, Florian Vautrin, Jérémy Voisin, Emilie Bourgeois, Veronica Rodriguez-Nava, Didier Blaha, Thierry Winiarski, Florian Mermillod-Blondin, and Benoit Cournoyer
Hydrol. Earth Syst. Sci., 24, 4257–4273, https://doi.org/10.5194/hess-24-4257-2020, https://doi.org/10.5194/hess-24-4257-2020, 2020
Short summary
Short summary
Stormwater infiltration systems (SISs) are a source of pollution that may have adverse ecological and sanitary impacts. The incidence of a SIS on the coalescence of microbial communities from runoff waters and aboveground sediments with those of an aquifer was investigated. Aquifer waters showed lower coalescence with aboveground bacterial taxa than aquifer biofilms. These biofilms were colonized by bacterial hydrocarbon degraders and harboured undesirable human-opportunistic pathogens.
William H. Bowers, Jason J. Mercer, Mark S. Pleasants, and David G. Williams
Hydrol. Earth Syst. Sci., 24, 4045–4060, https://doi.org/10.5194/hess-24-4045-2020, https://doi.org/10.5194/hess-24-4045-2020, 2020
Short summary
Short summary
Determining the chemical composition of soil water can help to address questions concerning water transport and use. However, there are many observations of incompletely mixed soil water within various soil pore domains. We applied two contrasting waters to soil samples and then removed water from the soils with three sequential and increasing applied energy steps to assess soil water mixing and equilibration over time. We found it took more than 3 d for soil water to mix and equilibrate.
Nataliia Kozii, Kersti Haahti, Pantana Tor-ngern, Jinshu Chi, Eliza Maher Hasselquist, Hjalmar Laudon, Samuli Launiainen, Ram Oren, Matthias Peichl, Jörgen Wallerman, and Niles J. Hasselquist
Hydrol. Earth Syst. Sci., 24, 2999–3014, https://doi.org/10.5194/hess-24-2999-2020, https://doi.org/10.5194/hess-24-2999-2020, 2020
Short summary
Short summary
The hydrologic cycle is one of the greatest natural processes on Earth and strongly influences both regional and global climate as well as ecosystem functioning. Results from this study clearly show the central role trees play in regulating the water cycle of boreal catchments, implying that forest management impacts on stand structure as well as climate change effects on tree growth are likely to have large cascading effects on the way water moves through boreal forested landscapes.
Elisabeth K. Larsen, Jose Luis Palau, Jose Antonio Valiente, Esteban Chirino, and Juan Bellot
Hydrol. Earth Syst. Sci., 24, 2755–2767, https://doi.org/10.5194/hess-24-2755-2020, https://doi.org/10.5194/hess-24-2755-2020, 2020
Short summary
Short summary
To improve long-term sap flow measurements when using the heat ratio method, this study introduces a dynamic probe misalignment correction method. This work uses sap flow data from four Aleppo pines from April 2017 to December 2018 and shows how a classical probe correction approach declines in accuracy over time. Additionally, it is proposed that a new set of statistical information be recorded along with the sap flow readings to ensure the quality of the raw data.
César Dionisio Jiménez-Rodríguez, Miriam Coenders-Gerrits, Jochen Wenninger, Adriana Gonzalez-Angarita, and Hubert Savenije
Hydrol. Earth Syst. Sci., 24, 2179–2206, https://doi.org/10.5194/hess-24-2179-2020, https://doi.org/10.5194/hess-24-2179-2020, 2020
Short summary
Short summary
Tropical forest ecosystems are able to export a lot of water to the atmosphere by means of evaporation. However, little is known on how their complex structure affects this water flux. This paper analyzes the contribution of three canopy layers in terms of water fluxes and stable water isotope signatures. During the dry season in 2018 the two lower canopy layers provide 20 % of measured evaporation, highlighting the importance of knowing how forest structure can affect the hydrological cycle.
Lyssette Elena Muñoz-Villers, Josie Geris, María Susana Alvarado-Barrientos, Friso Holwerda, and Todd Dawson
Hydrol. Earth Syst. Sci., 24, 1649–1668, https://doi.org/10.5194/hess-24-1649-2020, https://doi.org/10.5194/hess-24-1649-2020, 2020
Short summary
Short summary
Our research showed, consistently, a complementary use of soil water sources between coffee (Coffea Arabica var. typica) plants and shade tree species during the dry and wet seasons in a traditional agroforestry ecosystem in central Veracruz, Mexico. However, more variability in plant water sources was observed among species in the rainy season when higher soil moisture conditions were present and water stress was largely absent.
Jannis Groh, Jan Vanderborght, Thomas Pütz, Hans-Jörg Vogel, Ralf Gründling, Holger Rupp, Mehdi Rahmati, Michael Sommer, Harry Vereecken, and Horst H. Gerke
Hydrol. Earth Syst. Sci., 24, 1211–1225, https://doi.org/10.5194/hess-24-1211-2020, https://doi.org/10.5194/hess-24-1211-2020, 2020
Johanna C. Metzger, Jens Schumacher, Markus Lange, and Anke Hildebrandt
Hydrol. Earth Syst. Sci., 23, 4433–4452, https://doi.org/10.5194/hess-23-4433-2019, https://doi.org/10.5194/hess-23-4433-2019, 2019
Short summary
Short summary
Variation in stemflow (rain water running down the stem) enhances the formation of flow hot spots at the forest floor. Investigating drivers based on detailed measurements, we find that forest structure affects stemflow, both for individual trees and small communities. Densely packed forest patches received more stemflow, due to a higher proportion of woody structure and canopy morphology adjustments, which increase the potential for flow path generation connecting crowns and soil.
Annie L. Putman and Gabriel J. Bowen
Hydrol. Earth Syst. Sci., 23, 4389–4396, https://doi.org/10.5194/hess-23-4389-2019, https://doi.org/10.5194/hess-23-4389-2019, 2019
Short summary
Short summary
We describe an open-access, global database of stable water isotope ratios of various water types. The database facilitates data archiving, supports standardized metadata collection, and decreases the time investment for metanalyses. To promote data discovery and collaboration, the database exposes metadata and data owner contact information for private data but only permits download of public data. Two companion apps support digital data collection and processing and upload of analyzed data.
Chuan Yuan, Guangyao Gao, Bojie Fu, Daming He, Xingwu Duan, and Xiaohua Wei
Hydrol. Earth Syst. Sci., 23, 4077–4095, https://doi.org/10.5194/hess-23-4077-2019, https://doi.org/10.5194/hess-23-4077-2019, 2019
Short summary
Short summary
The stemflow dynamics of two xerophytic shrubs were investigated at the inter- and intra-event scales with high-temporal-resolution data in 54 rain events. Stemflow process was depicted by intensity, duration and time lags to rain events. Funneling ratio was calculated as the ratio of stemflow to rainfall intensities. Rainfall intensity and raindrop momentum controlled stemflow intensity and time lags. Influences of rainfall characteristics on stemflow variables showed temporal dependence.
Linhua Wang, Haw Yen, Xinhui E, Liding Chen, and Yafeng Wang
Hydrol. Earth Syst. Sci., 23, 3141–3153, https://doi.org/10.5194/hess-23-3141-2019, https://doi.org/10.5194/hess-23-3141-2019, 2019
Short summary
Short summary
A high-frequency approach was used to monitor dynamic changes of DOC exported during the concentrated rainfall season in LPR, China. DOC concentration and flux from an ecologically restored catchment in the LPR was investigated. Hysteresis analysis indicated non-linear relationships between DOC concentration and discharge rate in a rainfall event. DOC export is substantially affected by the interaction of rainfall and antecedent conditions for a rainfall event.
François Ritter, Max Berkelhammer, and Daniel Beysens
Hydrol. Earth Syst. Sci., 23, 1179–1197, https://doi.org/10.5194/hess-23-1179-2019, https://doi.org/10.5194/hess-23-1179-2019, 2019
Short summary
Short summary
There currently is no standardized approach for measuring dew formation, making it difficult to compare its frequency and importance across ecosystems. Recently, canopy surface temperature data from 30 sites in the US were measured continuously using in situ infrared radiometers. The analysis presented here provides the first continental-scale standardized synthesis of dew formation. This work provides a basis for considering how changing climate and land use will influence dew formation.
Scott T. Allen, James W. Kirchner, Sabine Braun, Rolf T. W. Siegwolf, and Gregory R. Goldsmith
Hydrol. Earth Syst. Sci., 23, 1199–1210, https://doi.org/10.5194/hess-23-1199-2019, https://doi.org/10.5194/hess-23-1199-2019, 2019
Short summary
Short summary
We used stable isotopes of xylem water to study differences in the seasonal origin of water in more than 900 individual trees from three dominant species in 182 Swiss forested sites. We discovered that midsummer transpiration was mostly supplied by winter precipitation across diverse humid climates. Our findings provide new insights into tree vulnerability to droughts, transport of water (and thus solutes) in soils, and the climatic information conveyed by plant-tissue isotopes.
Fumitoshi Imaizumi, Ryoko Nishii, Kenichi Ueno, and Kousei Kurobe
Hydrol. Earth Syst. Sci., 23, 155–170, https://doi.org/10.5194/hess-23-155-2019, https://doi.org/10.5194/hess-23-155-2019, 2019
Short summary
Short summary
We investigated seasonal changes in sediment transport activities following forest harvesting in a humid periglacial area. Removal of the forest canopy by forest harvesting alters the type of winter soil creep. Winter creep velocity of the ground surface sediment in the harvested site was significantly higher than that in the non-harvested site. Meanwhile, sediment flux on the hillslopes decreased in the harvested site because of capture of sediment by branches of harvested trees.
Martin A. Briggs, Judson W. Harvey, Stephen T. Hurley, Donald O. Rosenberry, Timothy McCobb, Dale Werkema, and John W. Lane Jr.
Hydrol. Earth Syst. Sci., 22, 6383–6398, https://doi.org/10.5194/hess-22-6383-2018, https://doi.org/10.5194/hess-22-6383-2018, 2018
Short summary
Short summary
Brook trout are known to seek out groundwater-discharge zones for spawning. However, in a groundwater-dominated system, we observed trout using a few locations for repeatedly laying eggs. To improve the management of this cold-water species, we wanted to know why these specific groundwater-discharge zones were desirable. Through a combination of geophysical and chemical measurements, we found that locations where the stream intersects the sandy valley wall create oxygen-rich seepage zones.
Rizwana Rumman, James Cleverly, Rachael H. Nolan, Tonantzin Tarin, and Derek Eamus
Hydrol. Earth Syst. Sci., 22, 4875–4889, https://doi.org/10.5194/hess-22-4875-2018, https://doi.org/10.5194/hess-22-4875-2018, 2018
Short summary
Short summary
Groundwater is a significant water resource for humans and for groundwater-dependent vegetation. Several challenges to managing both groundwater resources and dependent vegetation include defining the location of dependent vegetation, the rate of groundwater use, and the depth of roots accessing groundwater. In this study we demonstrate a novel application of measurements of stable isotopes of carbon that can be used to identify the location, the rooting depth, and the rate of groundwater use.
Natalie C. Ceperley, Theophile Mande, Nick van de Giesen, Scott Tyler, Hamma Yacouba, and Marc B. Parlange
Hydrol. Earth Syst. Sci., 21, 4149–4167, https://doi.org/10.5194/hess-21-4149-2017, https://doi.org/10.5194/hess-21-4149-2017, 2017
Short summary
Short summary
We relate land cover (savanna forest and agriculture) to evaporation in Burkina Faso, west Africa. We observe more evaporation and temperature movement over the savanna forest in the headwater area relative to the agricultural section of the watershed. We find that the fraction of available energy converted to evaporation relates to vegetation cover and soil moisture. From the results, evaporation can be calculated where ground-based measurements are lacking, frequently the case across Africa.
Cited articles
Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop
evapotranspiration: Guidelines for computing crop water requirements, FAO
Irrigation and drainage paper 56, Fao, 300, D05109, 1998. a
Allen, S. T., Keim, R. F., Barnard, H. R., McDonnell, J. J., and Renée
Brooks, J.: The role of stable isotopes in understanding rainfall
interception processes: a review, Wiley Interdiscip. Rev. Water, 4, e1187,
https://doi.org/10.1002/wat2.1187, 2017. a
Allison, G. B. and Barnes, C. J.: Estimation of evaporation from non-vegetated
surfaces using natural deuterium, Nature, 301, 143–145,
https://doi.org/10.1038/301143a0, 1983. a
Amin, A., Zuecco, G., Geris, J., Schwendenmann, L., McDonnell, J. J., Borga,
M., and Penna, D.: Depth distribution of soil water sourced by plants at the
global scale: A new direct inference approach, Ecohydrology, 1–15, e2177, https://doi.org/10.1002/eco.2177, 2019. a
Barnes, C. J. and Allison, G. B.: Tracing of water movement in the unsaturated
zone using stable isotopes of hydrogen and oxygen, J. Hydrol., 100,
143–176, https://doi.org/10.1016/0022-1694(88)90184-9, 1988. a
Barkmann, T., Siebert, R., and Lange, A.: Land-use experts' perception of
regional climate change: an empirical analysis from the North German Plain,
Clim. Change, 144, 287–301, https://doi.org/10.1007/s10584-017-2041-x, 2017. a
Bowers, W. H., Mercer, J. J., Pleasants, M. S., and Williams, D. G.: Combination of soil water extraction methods quantifies isotopic mixing of waters held at separate tensions in soil, Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-687, in review, 2020. a
Brooks, R. J., Barnard, H. R., Coulombe, R., and McDonnell, J. J.:
Ecohydrologic separation of water between trees and streams in a
Mediterranean climate, Nat. Geosci., 3, 100–104, https://doi.org/10.1038/ngeo722,
2010. a
Bullen, T. D. and Kendall, C.: Tracing of Weathering Reactions and Water
Flowpaths: A Multi-isotope Approach, in: Isot. Tracers Catchment Hydrol.,
edited by: Kendall, C. and McDonnell, J. J., chap. 18, pp. 611–646, https://doi.org/10.1016/B978-0-444-81546-0.50025-2,
1998. a
Craig, H.: Isotopic variations in meteoric waters, Science, 133, 1702–1703,
1961. a
Dansgaard, W.: Stable isotopes in precipitation, Tellus, 16, 436–468,
https://doi.org/10.3402/tellusa.v16i4.8993, 1964. a, b
David, T. S., Ferreira, M. I., Cohen, S., Pereira, J. S., and David, J. S.:
Constraints on transpiration from an evergreen oak tree in southern
Portugal, Agric. For. Meteorol., 122, 193–205,
https://doi.org/10.1016/j.agrformet.2003.09.014, 2004. a
Douinot, A., Tetzlaff, D., Maneta, M., Kuppel, S., Schulte-Bisping, H., and
Soulsby, C.: Ecohydrological modelling with EcH2O-iso to quantify forest and
grassland effects on water partitioning and flux ages, Hydrol. Process., 33,
2174–2191, https://doi.org/10.1002/hyp.13480, 2019. a, b
Dubbert, M. and Werner, C.: Water fluxes mediated by vegetation: emerging
isotopic insights at the soil and atmosphere interfaces, New Phytol., 221,
1754–1763, https://doi.org/10.1111/nph.15547, 2019. a, b
Evaristo, J., Kim, M., van Haren, J., Pangle, L. A., Harman, C. J., Troch,
P. A., and McDonnell, J. J.: Characterizing the Fluxes and Age Distribution
of Soil Water, Plant Water, and Deep Percolation in a Model Tropical
Ecosystem, Water Resour. Res., 55, 3307–3327, https://doi.org/10.1029/2018WR023265,
2019. a
Gaj, M. and McDonnell, J. J.: Possible soil tension controls on the isotopic
equilibrium fractionation factor for evaporation from soil, Hydrol.
Process., 33, 1629–1634, https://doi.org/10.1002/hyp.13418, 2019. a
Gelbrecht, J., Fait, M., Dittrich, M., and Steinberg, C.: Use of GC and
equilibrium calculations of CO2 saturation index to indicate whether
freshwater bodies in north-eastern Germany are net sources or sinks for
atmospheric CO2, Fresenius. J. Anal. Chem., 361, 47–53,
https://doi.org/10.1007/s002160050832, 1998. a
Geris, J., Tetzlaff, D., Mcdonnell, J., Anderson, J., Paton, G., and Soulsby,
C.: Ecohydrological separation in wet, low energy northern environments? A
preliminary assessment using different soil water extraction techniques,
Hydrol. Process., 29, 5139–5152, https://doi.org/10.1002/hyp.10603, 2015. a
Goldsmith, G. R., Allen, S. T., Braun, S., Engbersen, N.,
González-Quijano, C. R., Kirchner, J. W., and Siegwolf, R. T.: Spatial
variation in throughfall, soil, and plant water isotopes in a temperate
forest, Ecohydrology, 12, e2059, https://doi.org/10.1002/eco.2059, 2019. a
Gralher, B., Herbstritt, B., Weiler, M., Wassenaar, L. I., and Stumpp, C.:
Correcting for Biogenic Gas Matrix Effects on Laser-Based Pore Water-Vapor
Stable Isotope Measurements, Vadose Zo. J., 17, 170157,
https://doi.org/10.2136/vzj2017.08.0157, 2018. a, b
Granier, A.: Evaluation of transpiration in a Douglas-fir stand by means of sap
flow measurements, Tree Physiol., 3, 309–320, 1987. a
Grant, G. E. and Dietrich, W. E.: The frontier beneath our feet Gordon, Water
Resour. Res., 53, 2605–2609, https://doi.org/10.1029/eo066i003p00017-03, 2017. a
Gücker, B., Brauns, M., Pusch, M. T., Journal, S., American, N., Society,
B., and June, N.: Effects of wastewater treatment plant discharge on
ecosystem structure and function of lowland streams Effects of wastewater
treatment plant discharge on ecosystem structure and function of lowland
streams, J. North Am. Benthol. Soc., 25, 313–329, 2014. a
Gupta, H. V., Kling, H., Yilmaz, K. K., and Martinez-Baquero, G. F.:
Decomposition of the Mean Squared Error & NSE Performance Criteria:
Implications for Improving Hydrological Modelling, J. Hydrol., 2011, 1–9,
2009. a
Hahm, W. J., Dietrich, W. E., and Dawson, T. E.: Controls on the distribution
and resilience of Quercus garryana: ecophysiological evidence of oak's
water-limitation tolerance, Ecosphere, 9, e02218, https://doi.org/10.1002/ecs2.2218, 2018. a
Heinrich, I., Balanzategui, D., Bens, O., Blume, T., Brauer, A., Dietze, E.,
Gottschalk, P., Güntner, A., Katharina Harfenmeister, G. H., Hohmann,
C., Itzerott, S., Kaiser, K., Liebner, S., Merz, B., Pinkerneil, S., Plessen,
B., Sachs, T., Schwab, M. J., Spengler, D., Vallentin, C., and Wille, C.:
Regionale Auswirkungen des Globalen Wandels: Der Extremsommer 2018 in
Nordostdeutschland, Syst. Erde. GFZ-Journal, 9, 38–47,
https://doi.org/10.2312/GFZ.syserde.09.01.6, 2019. a
Hendry, M. J., Schmeling, E., Wassenaar, L. I., Barbour, S. L., and Pratt, D.: Determining the stable isotope composition of pore water from saturated and unsaturated zone core: improvements to the direct vapour equilibration laser spectrometry method, Hydrol. Earth Syst. Sci., 19, 4427–4440, https://doi.org/10.5194/hess-19-4427-2015, 2015. a
Imbery, F., Friedrich, K., Fleckenstein, R., Kaspar, F., Ziese, M.,
Fildebrandt, J., and Schube, C.: Mai 2018: Zweiter monatlicher
Temperaturrekord in Folge, regional mit Dürren und
Starkniederschlägen, Tech. rep., DWD,
available at: https://www.dwd.de/DE/leistungen/besondereereignisse/temperatur/20180604_bericht_mai2018.pdf (last acess: 22 July 2020), 2018. a, b
Kirchner, J. W., Feng, X., and Neal, C.: Catchment-scale advection and
dispersion as a mechanism for fractal scaling in stream tracer
concentrations, J. Hydrol., 254, 82–101, 2001. a
Klaus, J., Zehe, E., Elsner, M., Külls, C., and McDonnell, J. J.: Macropore flow of old water revisited: experimental insights from a tile-drained hillslope, Hydrol. Earth Syst. Sci., 17, 103–118, https://doi.org/10.5194/hess-17-103-2013, 2013. a
Koeniger, P., Gaj, M., Beyer, M., and Himmelsbach, T.: Review on soil water
isotope-based groundwater recharge estimations, Hydrol. Process., 30,
2817–2834, https://doi.org/10.1002/hyp.10775, 2016. a
Kool, D., Agam, N., Lazarovitch, N., Heitman, J. L., Sauer, T. J., and Ben-gal,
A.: A review of approaches for evapotranspiration partitioning, Agr. Forest Meteorol., 184, 56–70, 2014. a
Lüttger, A., Gerstengarbe, F.-W., Gutsch, M., Hattermann, F., Lasch, P.,
Murawski, A., Petraschek, J., Suckow, F., and Werner, P.: Klimawandel in der
Region Havelland-Fläming, Tech. rep., 121, Potsdam-Institut für Klimafolgenforschung (PIK), 2011. a
McGuire, K. J., DeWalle, D. R., and Gburek, W. J.: Evaluation of mean
residence time in subsurface waters using oxygen-18 fluctuations during
drought conditions in the mid-Appalachians, J. Hydrol., 261, 132–149,
https://doi.org/10.1016/S0022-1694(02)00006-9, 2002. a
McKee, T. B., Doesken, N. J., and Kleist, J.: The relationship of drought
frequency and duration to time scales, in: Proceedings of the 8th Conference
on Applied Climatology, vol. 17, 179–183, Boston, 1993. a
Mishra, A. K. and Singh, V. P.: A review of drought concepts, J. Hydrol.,
391, 202–216, https://doi.org/10.1016/j.jhydrol.2010.07.012, 2010. a
Nitzsche, K. N., Kalettka, T., Premke, K., Lischeid, G., Gessler, A., and
Kayler, Z. E.: Land-use and hydroperiod affect kettle hole sediment carbon
and nitrogen biogeochemistry, Sci. Total Environ., 574, 46–56,
https://doi.org/10.1016/j.scitotenv.2016.09.003, 2017. a
Oerter, E. J. and Bowen, G. J.: Spatio-temporal heterogeneity in soil water
stable isotopic composition and its ecohydrologic implications in semiarid
ecosystems, Hydrol. Process., 33, 1724–1738, https://doi.org/10.1002/hyp.13434, 2019. a
Orlowski, N., Breuer, L., and Mcdonnell, J. J.: Critical issues with cryogenic
extraction of soil water for stable isotope analysis, Ecohydrology, 9,
3–10, https://doi.org/10.1002/eco.1722, 2016. a
Orlowski, N., Breuer, L., Angeli, N., Boeckx, P., Brumbt, C., Cook, C. S., Dubbert, M., Dyckmans, J., Gallagher, B., Gralher, B., Herbstritt, B., Hervé-Fernández, P., Hissler, C., Koeniger, P., Legout, A., Macdonald, C. J., Oyarzún, C., Redelstein, R., Seidler, C., Siegwolf, R., Stumpp, C., Thomsen, S., Weiler, M., Werner, C., and McDonnell, J. J.: Inter-laboratory comparison of cryogenic water extraction systems for stable isotope analysis of soil water, Hydrol. Earth Syst. Sci., 22, 3619–3637, https://doi.org/10.5194/hess-22-3619-2018, 2018. a
Penna, D., Hopp, L., Scandellari, F., Allen, S. T., Benettin, P., Beyer, M., Geris, J., Klaus, J., Marshall, J. D., Schwendenmann, L., Volkmann, T. H. M., von Freyberg, J., Amin, A., Ceperley, N., Engel, M., Frentress, J., Giambastiani, Y., McDonnell, J. J., Zuecco, G., Llorens, P., Siegwolf, R. T. W., Dawson, T. E., and Kirchner, J. W.: Ideas and perspectives: Tracing terrestrial ecosystem water fluxes using hydrogen and oxygen stable isotopes – challenges and opportunities from an interdisciplinary perspective, Biogeosciences, 15, 6399–6415, https://doi.org/10.5194/bg-15-6399-2018, 2018. a
Rothfuss, Y. and Javaux, M.: Reviews and syntheses: Isotopic approaches to quantify root water uptake: a review and comparison of methods, Biogeosciences, 14, 2199–2224, https://doi.org/10.5194/bg-14-2199-2017, 2017. a
Smith, A., Tetzlaff, D., Gelbrecht, J., Kleine, L., and Soulsby, C.: Riparian
wetland rehabilitation and beaver re-colonization impacts on hydrological
processes and water quality in a lowland agricultural catchment, Sci. Total
Environ., 699, 134302, https://doi.org/10.1016/j.scitotenv.2019.134302, 2020a. a, b, c, d, e, f
Smith, A., Tetzlaff, D., Kleine, L., Maneta, M., and Soulsby, C.:
Isotope‐aided modelling of ecohydrologic fluxes and water ages under mixed
land use in central Europe: the 2018 drought and its recovery, Hydrol.
Process., 34, 3406–3425, https://doi.org/10.1002/hyp.13838, 2020b. a, b
Soulsby, C., Braun, H., Sprenger, M., Weiler, M., and Tetzlaff, D.: Influence
of forest and shrub canopies on precipitation partitioning and isotopic
signatures, Hydrol. Process., 31, 4282–4296, https://doi.org/10.1002/hyp.11351, 2017. a
Sprenger, M., Herbstritt, B., and Weiler, M.: Established methods and new
opportunities for pore water stable isotope analysis, Hydrol. Process., 29,
5174–5192, https://doi.org/10.1002/hyp.10643, 2015. a, b, c, d
Sprenger, M., Leistert, H., Gimbel, K., and Weiler, M.: Illuminating
hydrological processes at the soil-vegetation- atmosphere interface with
water stable isotopes, Rev. Geophys., 54, 674–704, https://doi.org/10.1029/88EO01108,
2016. a
Sprenger, M., Tetzlaff, D., and Soulsby, C.: Soil water stable isotopes reveal evaporation dynamics at the soil-plant-atmosphere interface of the critical zone, Hydrol. Earth Syst. Sci., 21, 3839–3858, https://doi.org/10.5194/hess-21-3839-2017, 2017. a, b, c
Sprenger, M., Tetzlaff, D., Buttle, J., Laudon, H., Leistert, H., Mitchell,
C. P., Snelgrove, J., Weiler, M., and Soulsby, C.: Measuring and Modeling
Stable Isotopes of Mobile and Bulk Soil Water, Vadose Zo. J., 17, 170149,
https://doi.org/10.2136/vzj2017.08.0149, 2018. a, b
Sprenger, M., Llorens, P., Cayuela, C., Gallart, F., and Latron, J.: Mechanisms of consistently disjunct soil water pools over (pore) space and time, Hydrol. Earth Syst. Sci., 23, 2751–2762, https://doi.org/10.5194/hess-23-2751-2019, 2019a. a
Sprenger, M., Stumpp, C., Weiler, M., Aeschbach, W., Allen, S. T., Benettin,
P., Dubbert, M., Hartmann, A., Hrachowitz, M., Kirchner, J. W., McDonnell,
J. J., Orlowski, N., Penna, D., Pfahl, S., Rinderer, M., Rodriguez, N.,
Schmidt, M., and Werner, C.: The Demographics of Water: A Review of Water
Ages in the Critical Zone, Rev. Geophys., 57, 800–834,
https://doi.org/10.1029/2018RG000633, 2019b. a
Stoate, C., Báldi, A., Beja, P., Boatman, N. D., Herzon, I., van Doorn,
A., de Snoo, G. R., Rakosy, L., and Ramwell, C.: Ecological impacts of early
21st century agricultural change in Europe – A review, J. Environ. Manage.,
91, 22–46, https://doi.org/10.1016/j.jenvman.2009.07.005, 2009.
a
Stumpp, C. and Hendry, M. J.: Spatial and temporal dynamics of water flow and
solute transport in a heterogeneous glacial till: The application of
high-resolution profiles of δ18O and δ2H in pore waters, J.
Hydrol., 438–439, 203–214, https://doi.org/10.1016/j.jhydrol.2012.03.024, 2012. a
Tetzlaff, D., Soulsby, C., Buttle, J., Capell, R., Carey, S. K., Laudon, H.,
Mcdonnell, J., Mcguire, K., Seibert, J., and Shanley, J.: Catchments on the
cusp?, Structural and functional change in northern ecohydrology, Hydrol.
Process., 27, 766–774, https://doi.org/10.1002/hyp.9700, 2013. a
Tetzlaff, D., Birkel, C., Dick, J., Geris, J., and Soulsby, C.: Storage
dynamics in hydropedological units control hillslope connectivity, runoff
generation, and the evolution of catchment transit time distributions, Water
Resour. Res., 50, 969–985, https://doi.org/10.1002/2013WR014147, 2014. a, b
von Freyberg, J., Allen, S. T., Seeger, S., Weiler, M., and Kirchner, J. W.: Sensitivity of young water fractions to hydro-climatic forcing and landscape properties across 22 Swiss catchments, Hydrol. Earth Syst. Sci., 22, 3841–3861, https://doi.org/10.5194/hess-22-3841-2018, 2018. a
Wang, L., D'Odorico, P., Evans, J. P., Eldridge, D. J., McCabe, M. F., Caylor, K. K., and King, E. G.: Dryland ecohydrology and climate change: critical issues and technical advances, Hydrol. Earth Syst. Sci., 16, 2585–2603, https://doi.org/10.5194/hess-16-2585-2012, 2012. a
Wassenaar, L. I., Hendry, M. J., Chostner, V. L., and Lis, G. P.: High
resolution pore water δ2H and δ18O measurements by
H2O(liquid)-H2O(vapor) equilibration laser spectroscopy, Environ. Sci.
Technol., 42, 9262–9267, https://doi.org/10.1021/es802065s, 2008. a, b
Wookey, P. A., Aerts, R., Bardgett, R. D., Baptist, F., Bråthen, K.,
Cornelissen, J. H., Gough, L., Hartley, I. P., Hopkins, D. W., Lavorel, S.,
and Shaver, G. R.: Ecosystem feedbacks and cascade processes: Understanding
their role in the responses of Arctic and alpine ecosystems to environmental
change, Glob. Chang. Biol., 15, 1153–1172,
https://doi.org/10.1111/j.1365-2486.2008.01801.x, 2009. a
Xiao, W., Wei, Z., and Wen, X.: Evapotranspiration partitioning at the
ecosystem scale using the stable isotope method – A review, Agric. For.
Meteorol., 263, 346–361, https://doi.org/10.1016/j.agrformet.2018.09.005, 2018. a
Short summary
We investigated the effects of the 2018 drought on water partitioning in a lowland catchment under grassland and forest in north-eastern Germany. Conditions resulted in drying up of streams, yield losses, and lower groundwater levels. Oak trees continued to transpire during the drought. We used stable isotopes to assess the fluxes and ages of water. Sustainable use of resource water requires such understanding of ecohydrological water partitioning.
We investigated the effects of the 2018 drought on water partitioning in a lowland catchment...