Articles | Volume 23, issue 12
https://doi.org/10.5194/hess-23-5151-2019
https://doi.org/10.5194/hess-23-5151-2019
Research article
 | 
19 Dec 2019
Research article |  | 19 Dec 2019

Hybrid climate datasets from a climate data evaluation system and their impacts on hydrologic simulations for the Athabasca River basin in Canada

Hyung-Il Eum and Anil Gupta

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Modelling approaches
The suitability of a seasonal ensemble hybrid framework including data-driven approaches for hydrological forecasting
Sandra M. Hauswirth, Marc F. P. Bierkens, Vincent Beijk, and Niko Wanders
Hydrol. Earth Syst. Sci., 27, 501–517, https://doi.org/10.5194/hess-27-501-2023,https://doi.org/10.5194/hess-27-501-2023, 2023
Short summary
Continuous streamflow prediction in ungauged basins: long short-term memory neural networks clearly outperform traditional hydrological models
Richard Arsenault, Jean-Luc Martel, Frédéric Brunet, François Brissette, and Juliane Mai
Hydrol. Earth Syst. Sci., 27, 139–157, https://doi.org/10.5194/hess-27-139-2023,https://doi.org/10.5194/hess-27-139-2023, 2023
Short summary
Daily ensemble river discharge reforecasts and real-time forecasts from the operational Global Flood Awareness System
Shaun Harrigan, Ervin Zsoter, Hannah Cloke, Peter Salamon, and Christel Prudhomme
Hydrol. Earth Syst. Sci., 27, 1–19, https://doi.org/10.5194/hess-27-1-2023,https://doi.org/10.5194/hess-27-1-2023, 2023
Short summary
Spatial distribution of oceanic moisture contributions to precipitation over the Tibetan Plateau
Ying Li, Chenghao Wang, Ru Huang, Denghua Yan, Hui Peng, and Shangbin Xiao
Hydrol. Earth Syst. Sci., 26, 6413–6426, https://doi.org/10.5194/hess-26-6413-2022,https://doi.org/10.5194/hess-26-6413-2022, 2022
Short summary
Ensemble streamflow prediction considering the influence of reservoirs in Narmada River Basin, India
Urmin Vegad and Vimal Mishra
Hydrol. Earth Syst. Sci., 26, 6361–6378, https://doi.org/10.5194/hess-26-6361-2022,https://doi.org/10.5194/hess-26-6361-2022, 2022
Short summary

Cited articles

Asong, Z. E., Khaliq, M. N., and Wheater, H. S.: Regionalization of precipitation characteristics in the Canadian Prairie Provinces using large-scale atmospheric covariates and geophysical attributes, Stoch. Env. Res. Risk A., 29, 875–892, 2015. 
Betrie, G. D., Deng, B., and Wang, J.: Integrated modeling of the Athabasca River Basin using SWAT, Proceedings of Science and Technology Innovations, Faculty of Science and Technology, Athabasca University, Alberta, Canada, 27–38, ISBN 978-1-987973-00-6, 2015. 
Choi, W., Kim, S. J., Rasmussen, P. F., and Moore, A. R.: Use of the North American Regional Reanalysis for hydrological modeling in Manitoba, Can. Water Resour. J., 34, 13–36, 2009. 
Christensen, N. S. and Lettenmaier, D. P.: A multimodel ensemble approach to assessment of climate change impacts on the hydrology and water resources of the Colorado River Basin, Hydrol. Earth Syst. Sci., 11, 1417–1434, https://doi.org/10.5194/hess-11-1417-2007, 2007. 
Côté, J., Desmarais, J.-G., Gravel, S., Méthot, A., Patoine, A., Roch, M., and Staniforth, A.: The operational CMC–MRB global environmental multiscale (GEM) model. Part II: Results, Mon. Weather Rev., 126, 1397–1418, 1998a. 
Download
Short summary
As numerous high-resolution historical gridded climate datasets are available in Alberta, many previous works have simply combined multiple climate datasets without pre-assessment, which may cause unreliable outputs. This study suggested a systematic climate data evaluation system and generated a new performance-based climate dataset. This study proved that the new dataset is a better representation of historical climate conditions, enhancing hydrologic simulations.