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Abstract. A reliable climate dataset is the backbone for mod-
elling the essential processes of the water cycle and predict-
ing future conditions. Although a number of gridded climate
datasets are available for the North American content which
provide reasonable estimates of climatic conditions in the re-
gion, there are inherent inconsistencies in these available cli-
mate datasets (e.g., spatially and temporally varying data ac-
curacies, meteorological parameters, lengths of records, spa-
tial coverage, temporal resolution, etc.). These inconsisten-
cies raise questions as to which datasets are the most suitable
for the study area and how to systematically combine these
datasets to produce a reliable climate dataset for climate
studies and hydrological modelling. This study suggests a
framework called the REFerence Reliability Evaluation Sys-
tem (REFRES) that systematically ranks multiple climate
datasets to generate a hybrid climate dataset for a region.
To demonstrate the usefulness of the proposed framework,
REFRES was applied to produce a historical hybrid climate
dataset for the Athabasca River basin (ARB) in Alberta,
Canada. A proxy validation was also conducted to prove
the applicability of the generated hybrid climate datasets
to hydrologic simulations. This study evaluated five climate
datasets, including the station-based gridded climate datasets
ANUSPLIN (Australia National University Spline), Alberta
Township, and the Pacific Climate Impacts Consortium’s
(PCIC) PNWNAmet (PCIC NorthWest North America me-
teorological dataset), a multi-source gridded dataset (Cana-
dian Precipitation Analysis; CaPA), and a reanalysis-based
dataset (North American Regional Reanalysis; NARR). The

results showed that the gridded climate interpolated from sta-
tion data performed better than multi-source- and reanalysis-
based climate datasets. For the Athabasca River basin, Town-
ship and ANUSPLIN were ranked first for precipitation and
temperature, respectively. The proxy validation also con-
firmed the utility of hybrid climate datasets in hydrologic
simulations compared with the other five individual climate
datasets investigated in this study. These results indicate that
the hybrid climate dataset provides the best representation of
historical climatic conditions and, thus, enhances the relia-
bility of hydrologic simulations.

1 Introduction

A reliable historical climate dataset is essential to under-
standing the climatic and hydrological characteristics of a
watershed, as it is crucial forcing input data for simulating
key processes of the water and energy cycles in impact mod-
els (Deacu et al., 2012; Essou et al., 2016; Wong et al., 2017).
Although climate monitoring networks have advanced over
the last decades, poor network density still exists, especially
in western mountainous and northern parts of Canada. More-
over, climate observations are often spatially interpolated to
cover ungauged regions, which may cause unexpected er-
roneous model predictions as a consequence of the sparse
measurement network, especially for mountainous areas af-
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fected by orographic effects (Rinke et al., 2004; Wang and
Lin, 2015).

As advances in numerical hydrologic and hydrodynamic
modelling have increased the capability and reliability in
simulating complex natural processes to detect anthro-
pogenic and natural climate changes, a need for temporally
and spatially reliable climate data has also grown to ac-
commodate the requirements of input data for numerical
models (Shen et al., 2010; Shrestha et al., 2012; Islam and
Déry, 2017). For instance, process-based distributed hydro-
logic models have a grid-based structure that requires input
data for each grid cell. However, a simple spatial interpola-
tion of observational station data to all model grid cells may
not produce a reliable input forcing dataset for hydrologic
models, particularly in a region with a sparse gauging net-
work. A reliable historical climate dataset is also crucial in
climate change studies when used for statistical downscaling
techniques that employ the relationships between observa-
tions and outputs of global (or regional) climate models to
produce climate forcing at regional or local scales. Since the
resolution of products from a statistical downscaling tech-
nique usually corresponds to that of the historical climate
dataset (Werner and Cannon, 2016; Eum and Cannon, 2017),
the availability of temporally and spatially reliable historical
climate data is essential for climate-related impact studies
(Christensen and Lettenmaier, 2007; Kay et al., 2009; Gut-
mann et al., 2014; Eum et al., 2016).

A number of high-resolution gridded climate datasets have
been developed for various applications such as intercom-
parison studies (Eum et al., 2014a; Wong et al., 2017) and
hydrologic modelling (Choi et al., 2009; Eum et al., 2016).
There are various types of gridded climate datasets avail-
able for the North American region: (1) station-based inter-
polated, (2) station-based multi-source, and (3) reanalysis-
based multi-source (Wong et al., 2017). By interpolation
of observational station data, long-term gridded climate
datasets have been produced over various domains defined
by stations incorporated such as the Canada-wide Aus-
tralia National University Spline (ANUSPLIN, Hutchison et
al., 2009), the Alberta Township data (Shen et al., 2001),
and the Pacific Climate Impacts Consortium (PCIC) North-
West North America meteorological (PNWNAmet) datasets
(Werner et al., 2019). The Canadian Precipitation Analy-
sis (CaPA) system, a multi-source-based climate dataset, has
been developed to produce near-real-time precipitation anal-
yses (6 h accumulated precipitation) over North America at
15 km resolution which has been further improved to 10 km
resolution (Lespinas et al., 2015). North American Regional
Reanalysis (NARR), one of the reanalysis-based datasets de-
rived from a regional climate model (∼ 32 km), has been
tested as an alternative climate dataset (Choi et al., 2009;
Praskievicz and Bartlein, 2014; Essou et al., 2016; Islam and
Déry, 2017).

In most of the large-scale modelling studies, multiple cli-
mate datasets were combined to cover the entire modelling

domain for all the required climate variables, usually without
evaluating the performance of different climate datasets for
the modelled regions (Faramarzi et al., 2015; R. R. Shrestha
et al., 2017; Wong et al., 2017). The lack of performance
indicators for available climate datasets may cause the in-
appropriate application of these datasets for various large-
scale studies, resulting in unreliable outputs, e.g., consider-
able bias in statistical downscaling studies. Therefore, se-
lecting reliable gridded climate data for a study area is cru-
cial for hydrological or climate-related studies (Werner and
Cannon, 2016; Eum et al., 2014a, 2017). Eum et al. (2014a)
intercompared three gridded climate datasets (ANUSPLIN,
NARR, and CaPA) for the Athabasca River basin (ARB) and
found that data accuracy varies spatially and temporally over
the basin mainly due to the heterogeneity of spatial den-
sity of the observational climate network in the basin and
limited data assimilation. Wong et al. (2017) also intercom-
pared gridded precipitation datasets derived from different
data sources over Canada. Few studies have attempted to in-
corporate spatially varied performance measures of various
climate datasets to produce a complete long-term historical
climate dataset for a study region (Faramarzi et al., 2015;
R. R. Shrestha et al., 2017). In addition, no systematic frame-
work has been developed yet that could be employed by cli-
matic and hydrologic studies.

Therefore, this study provides a framework, called the
REFerence Reliability Evaluation System (REFRES), to
systematically determine the ranking of multiple climate
datasets based on their performance and generate a hybrid
climate dataset for a study region by extracting the best can-
didate (based on the ranking) from multiple climate datasets
available in a repository. Several performance measures were
identified and calculated by comparing this to the Adjusted
and Homogenized Canadian Climate Data (AHCCD) over
western Canada. Based on the performance measures, the
climate datasets were ranked to generate a hybrid climate
dataset for the area of interest (target area). A hybrid dataset
for two climate variables, precipitation and temperature, key
forcing for hydrological modelling, was produced for a pe-
riod of the record that is fully covered by the multiple cli-
mate datasets. To validate the applicability of the hybrid cli-
mate dataset, a proxy validation approach was employed by
comparing simulated streamflows derived from the gener-
ated hybrid climate data and other available climate datasets
to recorded streamflows at various hydrometric stations in
the Athabasca River basin. Streamflows were simulated us-
ing a hydrologic model (Variable Infiltration Capacity; VIC)
calibrated and forced by individual climate datasets and the
generated hybrid climate dataset. Therefore, the aims of this
study are (1) to develop a methodology (i.e., REFRES) to
compare and rank multiple gridded climate datasets based
on the proposed performance measures and to generate the
hybrid climate dataset and (2) to validate the hybrid cli-
mate dataset using the proxy validation approach for the
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Athabasca River basin as a case study to confirm the applica-
bility of the hybrid climate dataset to hydrologic simulations.

2 Climate data

2.1 Adjusted and Homogenized Canadian Climate
Data (AHCCD)

Climate station observations in Canada are available from
the national climate data and information archive of Envi-
ronment and Climate Change Canada (ECCC, http://climate.
weather.gc.ca/, last access: 11 December 2019). Besides the
variable number of observations due to frequent changes in
operations including the discontinuation of stations, the ob-
servations are also subject to various errors from the under-
catch of solid precipitation, orographic effects, and malfunc-
tions while taking measurements (Mekis and Hogg, 1999;
Rinke et al., 2004).

Mekis and Vincent (2011) adjusted daily rainfall and
snowfall data, considering wind undercatch, evaporation,
and wetting losses corresponding to the types of gauges
for 450 stations in Canada. The most recent version re-
leased in 2016 provides the adjusted precipitation obser-
vations, expanded to 464 precipitation stations. Vincent
et al. (2012) produced the second generation of homoge-
nized daily temperature data by adjusting the time series at
120 synoptic stations to account for a nation-wide change
in observing time and homogenizing discontinuities over
338 temperature (daily minimum and maximum) stations
in Canada. The adjusted and homogenized Canadian Cli-
mate Data (AHCCD) are available through Environment
and Climate Change Canada (https://open.canada.ca/data/
en/dataset/9c4ebc00-3ea4-4fe0-8bf2-66cfe1cddd1d, last ac-
cess: 11 December 2019).

Considering that archived raw station data were used to
produce the historical gridded climate datasets used in our
study, the evaluation of performance at the AHCCD stations
is more meaningful because the AHCCD data were adjusted
to account for the known measurement issues in the raw sta-
tion data. For example, the adjusted precipitation data are
higher by 5 % to 20 %, varying with topographic character-
istics (Mekis and Vincent, 2011). Therefore, the AHCCD
dataset is recognized as the best estimate of actual climate
variables in Canada, and consequently it is used in a num-
ber of climate-related studies (Asong et al., 2015; Eum et al.,
2014a; Shook and Pomeroy, 2012; Wong et al., 2017). As
large-scale watersheds in Alberta cross the province, e.g., the
Peace River and Athabasca River basins, this study evaluated
the performance of the historical gridded climate datasets
at the AHCCD stations within British Columbia (BC), Al-
berta (AB), and Saskatchewan (SK) (190 and 129 stations for
precipitation and temperature, respectively, in Fig. 1). The
AHCCD stations have different record lengths. For exam-
ple, the longest record period is from 1840 to 2016, while

the shortest period is from 1967 to 2004. As the data lengths
are different at each AHCCD station, we selected a common
period between each AHCCD station and climate dataset to
estimate performance measures.

2.2 Historical gridded climate datasets

In general, the available historical gridded climate dataset
can be divided into three categories: (1) station-based,
(2) multi-source-based, and (3) reanalysis-based. In this
study, five high-resolution gridded climate datasets available
for Alberta were selected (Table 1) to evaluate their per-
formance and include in the generation of a hybrid climate
dataset for Alberta.

2.2.1 Station-based datasets

Hutchinson et al. (2009) produced a Canada-wide daily cli-
mate dataset at 10 km resolution from 1961 to 2003 by us-
ing the Australia National University trivariate thin-plate
smoothing spline technique to model the complex spatial pat-
terns (e.g., large variations in ground elevation and station
density over Canada) of daily weather data. Hopkinson et
al. (2011) updated the existing ANUSPLIN dataset by re-
ducing residuals and extended the daily weather data from
1950 to 2011. Recently, ANUSPLIN data were extended un-
til 2015 for three climate variables, i.e., daily precipitation
and minimum and maximum air temperature, which were
interpolated with 7514 surface-based observations (archive
data) of Environment Canada. However, the numbers of sta-
tions included in interpolation varied year to year, ranging
from 2000 to 3000 for precipitation and from 1500 to 3000
for air temperature. The ANUSPLIN data generated by Nat-
ural Resource Canada (NRCan) have been used as the source
data to compare climate products (Eum et al., 2014a; Wong
et al., 2017), evaluate the accuracy of regional climate mod-
els (Eum et al., 2012), and model hydrologic regimes (Islam
and Déry, 2017; Eum et al., 2017; Dibike et al., 2018).

Similar to the ANUSPLIN dataset, the Pacific Climate
Impacts Consortium also generated data for daily pre-
cipitation, minimum and maximum air temperature, and
wind speed from 1945 to 2012 at 1/16◦ (6–7 km) reso-
lution using a thin-plate smoothing spline technique over
northwestern North America called the PCIC NorthWest
North America meteorological (PNWNAmet, Werner et al.,
2019) dataset (https://data.pacificclimate.org/portal/gridded_
observations/map/, last access: 11 December 2019). While
ANUSPLIN utilized a varying number of gauge stations de-
pending on availability of observations in a given year, PN-
WNAmet set a common period from 1945 to 2012 for all sta-
tions included in the interpolation over regularly spaced grid
cells within the domain. The PNWNAmet dataset was devel-
oped to produce forcing data for an updated version of the
Variable Infiltration Capacity model with glaciers (VIC-GL).
In addition to precipitation and minimum and maximum tem-
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Figure 1. AHCCD stations within the provinces of BC, AB, and SK.

perature, PNWNAmet includes wind speed, which consider-
ably affects vital hydrologic processes, especially evapotran-
spiration, sublimation, and snow transport (i.e., snow blow-
ing). Because the AHCCD dataset provides only daily pre-
cipitation and temperature, wind speed was excluded in this
study.

Alberta Agriculture and Forestry (AF) produced the
Alberta Township data (http://agriculture.alberta.ca/acis/
township-data-viewer.jsp, last access: 11 December 2019)
from 1961 to 2016 at approximately 10 km (Alberta Town-
ship grid) resolution using a hybrid inverse distance weight-
ing (IDW) process (Shen et al., 2001) for daily precipita-
tion, minimum and maximum temperature, relative humid-
ity, wind speed, and solar radiation. The archive (raw) sta-
tion data collected by ECCC, Alberta Environment and Parks
(AEP), and AF over Alberta were used in producing the
Township dataset. The Township data used various effec-
tive radiuses (60 to 200 km) to ensure a sufficient number
of gauge stations in the IDW process. When there is no sta-
tion within 200 km, it is assumed that the nearest station
represents the climate conditions of the Township center.
The Township data domain covers most of Alberta except
the mountainous regions, while both ANUSPLIN and PN-
WNAmet cover all of western Canada (refer to Table 1).
Therefore, one of the limitations of the Township dataset
is its application to a large watershed spanning Alberta and
other neighbouring provinces.

2.2.2 Multi-source-based dataset

As an operational system, the Meteorological Service of
Canada initiated the Canadian Precipitation Analysis (CaPA)
in 2003 to produce superior gridded precipitation data over

North America at 10 km resolution (Lespinas et al., 2015),
especially for regions with poor observational networks
(Mahfouf et al., 2007). CaPA employs an optimum inter-
polation technique that requires properties of error statistics
among observations and a first guess, i.e., the background
field (Garand and Grassotti, 1995). A short-term forecast of
6 h accumulated precipitation from the Canadian Meteoro-
logical Centre (CMC) regional Global Environmental Multi-
scale (GEM) model (Côté et al., 1998a, b) is used in CaPA
as the background field. The assimilated precipitation from
the Canadian weather radar network, and 33 US radars near
the border are used as additional observations to generate
analysis error among multiple sources of observations and
the background precipitation. Zhao (2013) tested the appli-
cability of CaPA for hydrologic modelling in the Canadian
Prairies and proved its usefulness in data-sparse regions and
the winter season. In addition, CaPA has been widely used in
agricultural and hydrologic applications (Deacu et al., 2012;
NIDIS, 2015). Eum et al. (2014a) further addressed some
of the limitations of CaPA, i.e., the lack of air temperature
which is one of the primary drivers in hydrologic modelling
and shorter data length (only from 2002 to 2017), for model
calibration and validation. Using 6 h accumulated precipita-
tion CaPA products, in this study, daily accumulated precip-
itation was generated over western Canada by adjusting the
time zone from coordinated universal time (UTC) to moun-
tain time (MT).

2.2.3 Reanalysis-based dataset

Reanalysis products are another common type of gridded
dataset used in climate and hydrologic studies. The WA-
Ter and global CHange (WATCH) Forcing Data method-
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ology applied to the ERA-Interim (WFDEI) dataset pro-
vides reanalysis data from 1979 to 2016 globally at 0.5◦

( ∼ 50 km), which are bias-corrected by the Climatic Re-
search Unit (CRU) and the Global Precipitation Climatol-
ogy Centre (GPCC) monthly precipitation data (Weedon et
al., 2014). Another representative reanalysis dataset in the
North America is the North American Regional Reanalysis
(NARR) that has been developed to create a long-term set
of dynamically consistent 3-hourly climate data from 1979
to 2003 at a regional scale (0.3◦ =∼ 32 km) for the North
American domain (Mesinger et al., 2006). By utilizing ad-
vanced land surface modelling and data assimilation through
the Eta Data Assimilation System (EDAS), NARR improved
the National Centers for Environmental Prediction/National
Center for Atmospheric Research (NCEP/NCAR) global re-
analysis data. NARR cycled every 3 h to produce a climate
dataset from 1979 to present. Choi et al. (2009) tested the
applicability of NARR for hydrologic modelling in Manitoba
for a region with poor monitoring network density. However,
the NARR dataset after 2004 is not consistent with that of
prior years (i.e., 1979 to 2003) because assimilation of pre-
cipitation observations was discontinued in 2003 (Eum et al.,
2014a). Wong et al. (2017) found that WFDEI performed
better than NARR over Canada. However, their study fo-
cused on only precipitation at the Canada-wide scale. In ad-
dition, WFDEI is not an operational system but is updated
when GPCC and CRU are available for the bias correction
of monthly values. Furthermore, WFDEI provides rain and
snow separately, which requires another process to obtain to-
tal precipitation. On the contrary, the NARR data provide to-
tal precipitation rate and are available from 1979 to the cur-
rent with a delay of half a month as an operating system.
In other words, NARR is operationally updated every half
month. Therefore, this study selected NARR to provide a
more recent climate dataset through the REFRES. Using the
3 h NARR climate data, daily precipitation and minimum and
maximum temperature were calculated by adjusting the time
zone to MT from the original NARR dataset (UTC zone).

3 Methodology

3.1 REFerence Reliability Evaluation System
(REFRES)

This study suggests a REFerence Reliability Evaluation Sys-
tem that consists of three main modules (refer to Fig. 2):
(1) a performance measure module (PMM) to evaluate var-
ious performance measures for each climate dataset, (2) a
ranking module (RM) to identify the most reliable climate
data for a target grid cell using a multi-criteria decision-
making technique based on the performance measures pro-
vided by PMM, and (3) a data generation module (DGM) to
produce a hybrid climate dataset by selecting the most re-
liable climate dataset based on the ranking provided by the
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RM. These three modules are seamlessly integrated and ex-
change the required data and information to generate a hybrid
climate dataset. The next section provides further details on
each module.

3.1.1 Performance measure module (PMM)

AHCCD is a point (station) dataset, while the other climate
datasets used in this study (refer to Table 1) are regularly
spaced gridded datasets with varying time periods, spatial
resolution, and coverage (i.e., domain). Therefore, the in-
verse distance-squared weighting method was applied to ob-
tain the values at the AHCCD stations from all the gridded
climate datasets. Then, performance measures were calcu-
lated by comparing the interpolated values with the data col-
lected at AHCCD stations. The choice of the performance
measures is vital in REFRES, as the ranking of climate
datasets entirely depends on included performance measures.
In this study, performance measures were selected based on
three criteria: (1) distribution, (2) sequencing, and (3) spa-
tial pattern. Distribution-related performance is assessed by
the Kolmogorov–Smirnov D statistic (DKS) and standard
deviation ratio (σratio). Sequence-related performance is as-
sessed by the percentage of bias (Pbias), root mean square
error (RMSE), and temporal correlation coefficient (TCC).
Spatial-pattern-related performance is evaluated by the pat-
tern correlation coefficient (PCC) as shown in Eqs. (1) to (5).
The equations of TCC and PCC are identical, but TCC is
calculated with the daily time series of climate variables, and
PCC is obtained by the mean annual precipitation and tem-
perature of the AHCCD stations over a target domain. There-
fore, PCC varies with the user-specified target domain.

DKS = sup|FG (x)−FO (x) | (1)
σratio = {(σG/σO)− 1} (2)

Pbias =

N∑
i=1
(Gi−Oi)

N∑
i=1
Oi

× 100 (3)

RMSE=

√√√√√ N∑
i=1
(Gi −Oi)

2

N
(4)

TCC, PCC=

N∑
i=1

(
Gi −G

)(
Oi −O

)
√

N∑
i=1

(
Gi −G

)2√ N∑
i=1

(
Oi −O

)2 , (5)

where σG and σO are the standard deviation of gridded and
observed climate datasets; Gi and Oi represent gridded and
observed climate datasets at an ith time step, respectively; F
is the empirical distribution function of a climate dataset; σ
is standard deviation;G andO represent the mean of gridded

and observed climate datasets, respectively; and N is a total
number of data points. These six performance measures were
calculated for all the selected climate datasets and variables
at each AHCCD station. Figure 2 (blue box in the PMM)
shows an example of six PMs (performance measures) cal-
culated for the precipitation variable using the ANUSPLIN
gridded data. Thus, 15 tables (five climate datasets with three
variables) were generated by the PMM and transferred to the
RM.

3.1.2 Ranking module (RM)

The function of the ranking module is to select the appro-
priate AHCCD stations for a given target grid cell and to
rank all the gridded datasets based on the six performance
measures calculated in the previous module. For a given tar-
get cell, AHCCD stations are selected based on two criteria:
distance and elevation. Firstly, 20 % of all AHCCD stations
are selected based on the nearest-distance criteria, which
are then again reduced by the five nearest stations based on
the minimum-elevation-difference criteria. Then the perfor-
mance measures are averaged over the selected AHCCD sta-
tions to represent the skill of each climate dataset for the
given target grid cell.

As multiple performance measures are employed in this
study, there are situations when a climate dataset may per-
form well for some measures but not for others. Therefore,
a multi-criteria decision-making (MCDM) technique is re-
quired to systematically rank all of the climate datasets while
considering multiple performance measures. This study ap-
plied a multi-criteria decision-making technique called the
Technique for Order of Preference by Similarity to Ideal So-
lution (TOPSIS; Hwang and Yoon, 1981) to systematically
determine the order of preference for all climate datasets at
each target grid cell. TOPSIS calculates the geometric dis-
tance between alternatives and an ideal solution defined by
the best performance on each criterion from the alternatives,
and it then determines the best and worst alternatives based
on the distance. TOPSIS has been successfully applied to wa-
tershed management for multi-criteria problems (Jun et al.,
2013; Lee et al., 2013). TOPSIS starts with the averaged per-
formance measures, (xij )m×n for the ith alternative (climate
dataset in this study) and j th criterion (i.e., a performance
measure). A weighted normalized decision matrix, (tij )m×n,
is given by(
tij
)
m×n
=
(
wjnij

)
m×n

,

i = 1,2, . . .,m; j = 1,2, . . .,n (6)

nij =
xij
m∑
i=1
x2
ij

, (7)

where m and n are the total number of alternatives and crite-
ria, respectively, nij is the matrix normalized by Eq. (7), and
wj represents weighting on the j th criterion. Under the as-
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Figure 2. Structure of REFRES comprised of three modules: (1) performance measure module (PMM), (2) ranking module (RM), and
(3) data generation module (DGM). Lat: latitude; Lon: longitude; Ele: elevation. ANU: ANUSPLIN; Town: Alberta Township. KS-D:
Kolmogorov-Smirnov D statistic; NC: NetCDF.

sumption that all performance measures are important, this
study used an equal weighting. Then, Euclidean distances
(dib and diw) of climate datasets from the best (Ab) and worst
(Aw) conditions were calculated respectively by Eqs. (8) to
(11).

Aw =
{〈

max
(
tij |i = 1,2, . . .,m

)
|j ∈ J−

〉
,〈

min
(
tij |i = 1,2, . . .,m

)
|j ∈ J+

〉}
≡
{
twj |j = 1,2, . . .,n

}
(8)

Ab =
{〈

min
(
tij |i = 1,2, . . .,m

)
|j ∈ J−

〉
,〈

max
(
tij |i = 1,2, . . .,m

)
|j ∈ J+

〉}
≡
{
tbj |j = 1,2, . . .,n

}
(9)

diw =

√√√√ n∑
j=1

(
tij − twj

)2
i = 1,2, . . .,m (10)

dib =

√√√√ n∑
j=1

(
tij − tbj

)2
i = 1,2, . . .,m, (11)

where tbj and twj are the best and worst decision matrices
determined by Eqs. (8) and (9), respectively, and J+ and J−
represent criteria that have a positive and a negative impact
on performance. For example, TCC and PCC are in J+, while
DKS , σratio, Pbias, and RMSE are in J−. Using the Euclidean
distances, the order of preference for all climate datasets was
determined by the similarity (Siw) to the worst condition in
Eq. (12).

siw =
diw

diw+ dib
, 0≤ siw ≤ 1, i = 1,2, . . .,m (12)

siw = 1 when the alternative is equal to the best condition
(Ab), and siw = 0 if the alternative is equal to the worst con-
dition (Aw). In other words, a higher siw represents higher
preference among alternatives. As we evaluate the perfor-
mance measures (criteria) for individual climate variables,
TOPSIS can be applied to decide the preference of climate
datasets considering the performance measures for either in-
dividual or multiple variables. In this study, TOPSIS provides
two types of ranking information by using performance mea-
sures from (i) individual climate variables and (ii) all cli-
mate variables. That is, one is the ranking for precipitation
and temperature separately (Rind), and the other is the rank-
ing for multiple variables (Rmul). For example, in this study,
Rind was determined by a 5× 6 decision matrix (five climate
datasets and six performance measures) for precipitation and
temperature individually, while Rmul was determined by a
4×18 decision matrix (four climate datasets excluding CaPA
that provides only precipitation and 18 performance mea-
sures from three variables). To alleviate the erroneous output
that minimum temperature is higher than maximum temper-
ature on a certain day when producing the hybrid climate
dataset by the ranking of temperature values individually, the
performance measures of both minimum and maximum tem-
perature are employed together to rank the climate datasets
for temperature.

3.1.3 Data generation module (DGM)

The DGM extracts the most reliable climate data for a user-
specified target region based on the ranking information ob-
tained from the RM. The tool is flexible enough to provide
output in various common formats, i.e., NetCDF (Network
Common Data Form), ASCII (American Standard Code for
Information Interchange; text), or in the specific format of
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a numerical model. As all of the historical gridded climate
datasets have been tested and employed in numerous climatic
and hydrologic studies, an assumption was made in generat-
ing the hybrid climate dataset that all of the climate datasets
are equally qualified for inclusion, but the final selection can
be determined by the proven superiority evaluated through
the performance measures. Under this assumption, the avail-
able datasets can be combined systematically based on the
rank (performance) of each dataset at target grid cells. As
each climate dataset has different data periods shown in Ta-
ble 1, the first-ranked dataset cannot fully cover a whole tar-
get period to be extracted from a set of climate data candi-
dates. The DGM provides a systematic procedure to identify
the most reliable dataset for a target region and extracts the
data from the inventory of climate datasets considering the
ranking and availability of each dataset for a desired period.
For instance, if CaPA and ANUSPLIN ranked first and sec-
ond for precipitation and the desired period is 1950 to 2016,
the DGM would start searching for the availability of precip-
itation in 1950. As CaPA is only available from 2002 to 2016,
the DGM reorders the rank to select ANUSPLIN as the best
climate dataset available in 1950. In this way, a hybrid dataset
over the period 1950 to 2016 is generated by extracting from
ANUSPLIN from 1950 to 2001 and CaPA from 2002 to 2016
in this particular case. Once the best climate datasets are
extracted over all the target grid cells (study domain), the
hybrid climate dataset is produced in a user-defined format.
This study generated the hybrid climate datasets in the form
of the VIC forcing input format to be directly employed into
the hydrologic model.

3.2 Proxy validation

Although the AHCCD dataset has been adjusted to pro-
vide better estimates of actual precipitation and temperature,
it contains statistical artifacts that include inevitable errors
from sequential data processes that can be propagated in the
derived hybrid climate dataset. Given that the AHCCD sta-
tions, the reference dataset for the performance measures, are
not regularly distributed and have an especially poor density
in the northern parts of the study area (refer to Fig. 1), it
is questionable if the hybrid climate dataset can represent
a historical climate better than the individual gridded cli-
mate dataset. Utilizing a proxy validation approach (Klysze-
jko, 2007), this study applied streamflow records to validate
the utility of the derived hybrid climate dataset over other
existing climate datasets in hydrologic simulations. In this
study, the proxy validation was conducted using an exist-
ing hydrologic model (Eum et al., 2017), Variable Infiltra-
tion Capacity (Liang et al., 1994), for the Athabasca River
basin. The VIC model was further refined at 1/32◦ (2–3 km)
for a finer spatial resolution and to better simulate the com-
plex river network in the Lower Athabasca River basin. Five
of the catchment areas listed in Table 2 were selected for
the proxy validation based on three criteria: (i) hydromet-

Table 2. Characteristics of hydrometric stations selected in this
study.

Station name Station ID Record Drainage Reach
length (km2)

Hinton 07AD002 1961–2016 9760 Upper
Pembina 07BC002 1957–2016 13 100 Middle
Christina S29 (07CE002) 1982–2016 4836 Lower
Clearwater above S42 (07CD005) 1966–2016 18 061 Lower
Christina
Firebag S27 (07DC001) 1971–2016 5980 Lower

Figure 3. Geographical information on the five sub-basins (red line)
selected in the Athabasca River basin for the proxy validation.

ric record length, (ii) location defined by upper, middle, and
lower reaches (refer to http://www.ramp-alberta.org/river/
geography/basin+landscape.aspx, last access: 11 December
2019), and (iii) the number of gridded climate datasets used
to generate a hybrid climate dataset for the catchment area
of the selected hydrometric station. In other words, a higher
number of gridded climate datasets contributing to the hy-
brid climate dataset within a catchment was selected to eval-
uate the utility of the hybrid climate data relative to the exist-
ing gridded climate datasets. Figure 3 shows the geographi-
cal information on the selected five sub-basins. Hinton is lo-
cated near the headwaters of the ARB, which are character-
ized by mountainous topography and snowmelt- and glacier-
ice-melt-dominated hydrologic regimes. Pembina is one of
the major rivers in the middle reach. The other three stations
(Christina, Clearwater above Christina, and Firebag) are lo-
cated in the lower reach, which is a water-limited (dry) region
due to a higher amount of evapotranspiration (Eum et al.,
2014b). The sub-basins of Hinton, Firebag, and Clearwater
include a partial area outside of the Township data domain,
thus inducing a higher or lower number of climate datasets
in the derived hybrid dataset.

A total of seven climate datasets (five individual and two
hybrid climate datasets from Rind and Rmul) are available to
calibrate the VIC hydrologic model parameter set related to
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soil properties and routing. The calibration period is 1985–
1997 as in Eum et al. (2017), except for CaPA that uses the
period of 2003–2009 for calibration, as CaPA covers the pe-
riod from 2002 to 2016. The remaining period of total record
length for each climate dataset is used for validation. More
details on calibration can be found in Eum et al. (2017).
Under the assumption of REFRES that all of the existing
climate datasets are of equal quality for hydrologic simu-
lations, all of the calibrated parameter sets can be consid-
ered as mostly plausible parameter sets for the selected sub-
basins. However, as mentioned above, intrinsic biases exist
temporally and spatially in all of the gridded climate datasets,
e.g., discrepancies in the amount and spatial distribution of
precipitation between the gridded climate datasets and ob-
servations. Therefore, the similarity of the gridded climate
datasets in terms of magnitude, sequence, and spatial distri-
bution of climate events relative to observations is crucial
to reproduce historically observed streamflows. In addition
to climate forcings, streamflows are mainly affected by geo-
graphic characteristics and physical land surface processes
(e.g., infiltration and evapotranspiration), which are repre-
sented by model parametrization related to infiltration and
soil properties (Demaria et al., 2007). In a hydrologic simu-
lation, the biases in climate datasets can be compromised by
model parameters that adjust hydrologic processes to obser-
vations (Harpold et al., 2017; Kirchner, 2006). That is, a cal-
ibrated parameter set may imply biases in a climate dataset.
Under the assumption that the calibrated parameter sets are
suitable for hydrologic simulations in each sub-basin, this
study applied a multiset-parameter hydrologic-simulation
approach that employs all parameter sets calibrated by the
seven climate datasets and the same climate dataset as forc-
ing input data to assess the sensitivity of the climate dataset to
all feasible parameter sets. From the multiset-parameter hy-
drologic simulations, the bias in a climate dataset can be esti-
mated indirectly by quantifying the variability in hydrologic
simulations derived from the feasible calibrated parameter
sets under a climate forcing dataset. In other words, lower
variability in the hydrologic simulations indicates higher re-
liability in the climate forcing dataset. The suitability of the
hybrid climate dataset for improving historical hydrologic
simulations was also tested by directly comparing the perfor-
mances of calibration and validation for each climate dataset.
Proxy validations were carried out by conducting 49 hydro-
logic simulations (seven climate forcing and seven param-
eter sets) for the Pembina and Christina catchment areas,
whereas only 36 simulation runs were possible for the Hin-
ton, Firebag, and Clearwater sub-basins, as one of the grid-
ded datasets (i.e., Township) did not cover the entire catch-
ment areas of these three hydrometric stations.

4 Results

4.1 Precipitation performance measures in Alberta

Although the performance measures were calculated for 190
AHCCD stations in western Canada, the target area of this
study is in Alberta, where only 45 stations are located. There-
fore, the results for the 45 AHCCD stations are given in
this study. Table 3 shows spatially averaged performance
measures for precipitation. The Township data outperformed
other climate datasets for all performance measures except
Pbias. ANUSPLIN is the second-best climate dataset for Al-
berta. All climate datasets underestimate the standard devi-
ation of observed daily precipitation (i.e., negative σratio),
especially PNWNAmet and CaPA, which underestimated it
by 34 % and 39 %, respectively. Interestingly, two station-
based gridded climate datasets, ANUSPLIN and Township,
show negative Pbias, while PNWNAmet, CaPA, and NARR
datasets have positive Pbias. This indicates that ANUSPLIN
and Township may underestimate extreme precipitation, as
they employed the raw station data instead of the adjusted
precipitation data which are higher than the raw station data
by 5 %–20 %. In contrast, other climate datasets (especially
multiple sources and reanalysis data) overestimate extreme
precipitation. These results are consistent with findings in
Eum et al. (2014a) that CaPA and NARR overestimate ex-
treme precipitation events by overly reflecting the orographic
effects on precipitation in western Alberta.

Figure 4 shows the temporal correlation coefficient data
averaged over the AHCCD stations in Alberta in order to
investigate the similarity between historical precipitation
datasets employed in this study. As expected, station-based
climate datasets (i.e., ANUSPLIN, PNWNAmet, and Town-
ship) showed better TCCs than CaPA and NARR. The TCC
between ANUSPLIN and Township was the highest among
climate datasets except for the observations (i.e., OBS), even
though they incorporated different interpolation techniques.
PNWNAmet showed the highest TCC with ANUSPLIN be-
cause they both are based on thin-plate spline interpolation.
TCCs between CaPA and other climate datasets are similar,
as CaPA is produced from multiple sources such as GEM’s
outputs and weather radar networks in Canada and the US.
NARR, the reanalysis-based climate dataset, showed a higher
TCC value with CaPA than with other datasets, as it is assim-
ilated with multiple sources of observations.

Maps of each performance measure are shown in Fig. 5. It
is evident from the spatial variability that the ANUSPLIN
and Township datasets outperformed the other datasets in
DKS throughout Alberta. In the mountainous region of south-
west Alberta, most of the climate datasets performed poorly
in Pbias, σratio, RMSE, and PCC, resulting mainly from the
sparse observation network and inconsistent observations
near the Canada–US border. PNWNAmet highly overesti-
mates the mean annual precipitation in the mountainous
area (e.g., 300 mm yr−1 higher than that observed at sta-
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Table 3. Performance measures averaged over AHCCD stations in Alberta for precipitation.

Performance Climate Dataset

measure ANUSPLIN PNWNAmet CaPA NARR Township

DKS 0.09 0.62 0.60 0.42 0.09
σratio −0.17 −0.34 −0.39 −0.28 −0.03
Pbias −7.05 5.80 3.02 2.43 −6.73
RMSE 2.02 2.50 2.59 3.53 1.07
TCC 0.87 0.81 0.77 0.53 0.95
PCC 0.87 0.80 0.73 0.74 0.93

Figure 4. Temporal correlation coefficient (TCC) between histori-
cal precipitation data. ∗ AHCCD data.

tion ID 3050519), which may considerably affect simulated
streamflows originating in mountainous headwaters and fur-
ther downstream.

4.2 Air temperature performance measures in Alberta

The performance measures for air temperature averaged over
37 AHCCD stations in Alberta are presented in Table 4. As
CaPA provides only precipitation, it was excluded in the as-
sessment for temperature. All of the performance measures
for temperature are better than those for precipitation except
Pbias. NARR is highly biased as it underestimates minimum
and maximum temperatures, which might be an attribute
of the discontinuation of the observation assimilation since
2003 (Eum et al., 2014a). ANUSPLIN and Township showed
an almost perfect linear relationship (TCC) with the observa-
tions (i.e., > 0.97 for all of the climate datasets). The perfor-
mance measures for maximum temperature are better than
those for minimum temperature, as maximum temperature
is dominated by mainly large-scale heat waves, while min-

imum temperature is affected by local physical processes,
e.g., topography and surface conditions (Eum et al., 2012).
NARR showed less skill in capturing these local effects
due to the coarse spatial resolution (∼ 32 km) compared to
other station-based climate datasets. As with precipitation,
the maps of performance measures for minimum and maxi-
mum temperature presented in Figs. 6 and 7 showed that data
from the mountainous areas performed poorly in most of the
performance measures. NARR showed positive and negative
Pbias for minimum and maximum temperature, respectively,
in the mountainous region, indicating that NARR has a warm
bias in extreme cold temperatures and a cold bias in extreme
warm temperatures.

4.3 Ranking of climate datasets in the ARB

The geospatial information (i.e., latitude, longitude, and
elevation) of 22 372 grid cells within the ARB was ex-
tracted from the Canadian digital elevation data provided by
Natural Resources Canada (refer to https://open.canada.ca/
data/dataset/7f245e4d-76c2-4caa-951a-45d1d2051333, last
access: 11 December 2019). Using this information, the RM
in REFRES ranked the five climate datasets by TOPSIS for
each grid cell. Table 5 presents the first-ranked number of
grid cells and their percentage for each climate dataset ac-
cording to the performance measures of individual variables
(Case A and Case B) and multi-variables (Case C), i.e., pre-
cipitation and (minimum and maximum) temperature in this
study.

For precipitation, the Alberta Township dataset was ranked
first in most of the grid cells within the basin (78 %) for the
whole ARB, followed by ANUSPLIN (13 %), PNWNAmet
(3 %), CaPA (3 %), and NARR (2 %). However, the Township
data domain covers only 83 % of the ARB within Alberta;
the remaining 17 % of the watershed area that lies outside
the province is not covered (Fig. 8). The Township dataset
was ranked first for almost 95 % of grid cells within its do-
main, indicating that the Township dataset overwhelmingly
outperformed other climate datasets for precipitation. Town-
ship was dominantly ranked first for the sub-basins (Pembina
and Christina) within the Township domain.
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Figure 5. Maps of performance measures for AHCCD precipitation stations in Alberta. (a) DKS, (b) Pbias, (c) σratio, (d) RMSE, (e) TCC,
(f) mean annual precipitation.
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Figure 6. Maps of performance measures for minimum temperature over the AHCCD stations in Alberta. (a) DKS, (b) Pbias, (c) σratio,
(d) RMSE, (e) TCC, (f) mean annual minimum temperature.
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Figure 7. Maps of performance measures for maximum temperature over the AHCCD stations in Alberta. (a) DKS, (b) Pbias, (c) σratio,
(d) RMSE, (e) TCC, (f) mean annual maximum temperature.
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Table 4. Performance measures averaged over the AHCCD stations in Alberta for minimum and maximum temperature.

Performance Climate dataset

measure ANUSPLIN PNWNAmet NARR Township

Tmin Tmax Tmin Tmax Tmin Tmax Tmin Tmax

DKS 0.03 0.02 0.05 0.04 0.12 0.08 0.03 0.02
σratio −0.01 −0.01 −0.03 −0.03 −0.03 −0.03 −0.01 −0.02
Pbias −0.43 −0.28 22.90 −3.89 −306.52 −14.09 7.33 −0.86
RMSE 1.48 1.25 1.97 1.82 4.40 3.47 1.31 0.97
TCC 0.99 0.99 0.98 0.99 0.96 0.97 0.99 0.99
PCC 0.91 0.98 0.87 0.95 0.71 0.78 0.93 0.98

Table 5. First-ranked number of grid cells in the five sub-basins and the whole Athabasca River basin (ARB) and their percentages for
each climate dataset, considering the performance measures of the cases with individual (Case A and B) and multi-variables (Case C, i.e.,
precipitation and temperature in this study). Total number of grid cells is 22 372 at 1/32◦ (2–3 km).

Criteria Basin Climate dataset

ANUSPLIN Township PNWNAmet NARR CaPA

(A) Precipitation ARB 2985 (13 %) 17 515 (78 %) 691 (3 %) 499 (2 %) 682 (3 %)
Hinton 1271 (91 %) 126 (9 %) 0 (0 %) 0 (0 %) 0 (0 %)
Pembina 0 (0 %) 1791 (100 %) 0 (0 %) 0 (0 %) 0 (0 %)
Christina 0 (0 %) 658 (99.5 %) 3 (0.5 %) 0 (0 %) 0 (0 %)
Clearwater 1474 (56 %) 252 (9.6 %) 10 (0.4 %) 682 (26 %) 215 (8 %)
Firebag 129 (14 %) 750 (79 %) 9 (1 %) 0 (0 %) 64 (6 %)

(B) Temperature ARB 13 809 (62 %) 6924 (31 %) 1639 (7 %) 0 (0 %) –
(minimum and maximum temperature) Hinton 63 (5 %) 77 (6 %) 1257 (89 %) 0 (0 %) –

Pembina 486 (27 %) 1305 (73 %) 0 (0 %) 0 (0 %)
Christina 492 (74 %) 169 (26 %) 0 (0 %) 0 (0 %) –
Clearwater 2593 (98 %) 40 (2 %) 0 (0 %) 0 (0 %) –
Firebag 924 (97 %) 28 (3 %) 0 (0 %) 0 (0 %) –

(C) Multi-variables ARB 8049 (36 %) 14 323 (64 %) 0 (0 %) 0 (0 %) –
Hinton 1271 (91 %) 126 (9 %) 0 (0 %) 0 (0 %) –
Pembina 0 (0 %) 1791 (100 %) 0 (0 %) 0 (0 %) –
Christina 109 (16 %) 552 (84 %) 0 (0 %) 0 (0 %) –
Clearwater 2574 (98 %) 59 (2 %) 0 (0 %) 0 (0 %) –
Firebag 536 (56 %) 416 (44 %) 0 (0 %) 0 (0 %) –

For temperature, ANUSPLIN was ranked first (in 62 %
grid cells) for the whole ARB, followed by Township (31 %)
and PNWNAmet (7 %). In the upper and middle reaches,
i.e., Hinton and Pembina, PNWNAmet and Township were
mostly ranked first, respectively, while ANUSPLIN outper-
formed other climate datasets for the sub-basins in the lower
reach. When considering the performance measures for mul-
tiple variables simultaneously, the Township dataset was
ranked first, followed by ANUSPLIN for 64 % and 36 % of
the grid cells for the whole ARB. Figure 9 shows maps of
the first-ranked climate datasets for each case in Table 5, i.e.,
cases with individual (Case A and B) and multi-variables
(Case C). Due to the limited spatial coverage of the Town-
ship dataset, other climate datasets were ranked first in the
headwaters of the ARB and the area of the river basin in

Saskatchewan. For instance, ANUSPLIN and PNWNAmet
were ranked first in the headwaters, while no specific climate
dataset dominated in Saskatchewan for precipitation (refer
to Fig. 9a). For temperature, ANUSPLIN outperformed in
the northern part (middle and lower reaches of the ARB)
due to the outstanding performance of the Pbias performance
measure for minimum temperature as shown in Table 4 and
Fig. 6b. For multi-variables, Township was mostly ranked
first within its domain, and ANUSPLIN was ranked first out-
side the Township dataset domain and also for a small part of
the lower reach area in the ARB.

Figure 10 shows the percentage of each climate dataset at
each rank for the three cases (e.g., A, B, and C in Table 5).
For precipitation (Case A), Township overwhelmed other cli-
mate datasets. The second alternative was ANUSPLIN in the
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Figure 8. Domain of the Township dataset (blue line) and the boundary of the Athabasca River basin (red line).

Figure 9. Maps of the first-ranked climate datasets in the ARB for the individual variable (a, b) and multi-variables (c).

majority of grid cells in the ARB. PNWNAmet, NARR, and
CaPA were mostly ranked third, fourth, and fifth, respec-
tively. For temperature (Case B), ANUSPLIN was ranked
mostly first, and Township was a distinct second choice in the
majority of grid cells, followed by PNWNAmet and NARR.
For multi-variables (Case C), Township and ANUSPLIN
were the first and second choices in the majority of grid cells
in the ARB, respectively.

As two different hybrid climate datasets were gener-
ated using the ranking information from single- and multi-
variable approaches, i.e., Hybrid(Rind) and Hybrid(Rmul),
further investigation is required to identify which hybrid cli-
mate dataset may provide better performance and conse-
quently will be recommended for future climate-related stud-
ies. A proxy validation approach was applied using both gen-
erated hybrid climate datasets to validate the utility of one
dataset over the other.

4.4 Proxy validation of generated hybrid climate
datasets

In addition to the five gridded climate datasets, the two hy-
brid climate datasets were implemented for proxy validation
using the VIC model. In contrast to the station-based cli-

mate datasets, both CaPA and NARR were produced from
climate models and multiple sources of observations, con-
sequently showing a higher correlation with each other as
shown in Fig. 4. Since CaPA also provides only precipitation,
this study combined precipitation of CaPA with the NARR
temperature to prepare the CaPA climate forcing dataset for
the proxy validation. Table 6 presents the Nash–Sutcliffe effi-
ciency (NSE) for the calibration and validation periods at the
selected hydrometric stations (Hinton, Pembina, Christina,
Clearwater, and Firebag) in the ARB to assess the suitabil-
ity of each climate dataset as climate forcing input data for
hydrologic simulations. Over the five hydrometric stations,
most of the climate datasets performed well with the excep-
tion of NARR in the Pembina catchment. Most of the NSE
values in calibration for Christina and Firebag were above
0.50, which was considered as a threshold of satisfactory per-
formance in hydrologic models as suggested by Moriasi et
al. (2007). However, model performance is not satisfactory
for Christina and Firebag during the validation period. Such
an underperformance at the lower reach of the Athabasca
River basin may be attributed to (1) relatively poor forcing
datasets within the drainage area of each hydrometric sta-
tion, caused by the lack of observational stations in the north-
ern part of Alberta (refer to Fig. 1) and (2) anthropogenic

www.hydrol-earth-syst-sci.net/23/5151/2019/ Hydrol. Earth Syst. Sci., 23, 5151–5173, 2019



5166 H.-I. Eum and A. Gupta: Hybrid climate datasets and their impacts on hydrologic simulations

Figure 10. Percentage of climate datasets on each rank for Rind and Rmul. (a) Precipitation, (b) temperature, (c) multi-variables.

activities that were not reflected in the VIC model simula-
tions especially during the validation period when land cover
changes and water withdrawals mainly induced by oil-sand
development have occurred. Table 7 shows the NSE values
of hydrologic models applied for the Athabasca River basin
in the literature. All of the NSE values were obtained from
the simulations for calibration and validation periods. The
NSE values of the current study were obtained from the VIC

simulation forced by Hybrid(Rind) for comparison to the lit-
erature. It needs to be noted that the VIC model was cali-
brated for the entire ARB watershed to simulate historical
flow over the ARB. The results of the VIC simulation for
the entire Athabasca River basin were included in the Dis-
cussion section. The VIC model’s performance in this study
was better than or comparable to the literature for all stations
in the ARB. In particular, this study considerably improved
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the performance of streamflow simulation for the Firebag
catchment. Comparing to the NSE values presented in Ta-
ble 6, in addition, the NSE values of all cases for Firebag and
Christina were better than (or comparable to) those of the lit-
erature. Overall, the quality of hydrologic simulations in this
study was considerably improved (or comparable) compared
to the results of the literature. Consequently, the VIC model
performance is acceptable at all of the hydrometric stations
for the proxy validation. The two hybrid climate datasets per-
formed well, with comparably good and better NSE values
than other climate datasets, especially at Pembina, Clearwa-
ter, and Firebag, located in the middle and lower reaches.

Figure 11 presents the boxplots of NSEs obtained through
the multiset-parameter VIC simulations. The NSE ranges
were obtained from multiple VIC simulations, with each cli-
mate dataset used as climate forcing for all the plausible
model parameter sets, which were calibrated with seven cli-
mate datasets, individually. The values above each boxplot
represent the averaged value of the NSEs over the multiset-
parameter hydrologic simulations. A narrower range of NSE
values represents a higher precision for a climate dataset, and
a higher averaged NSE value means higher accuracy. There-
fore, a climate dataset showing both a higher averaged NSE
and a narrow range of NSEs indicates that it is a relatively
more appropriate and reliable climate forcing dataset for hy-
drologic simulations.

At Hinton, all of the climate datasets showed satisfactory
NSE values for accuracy, while ANUSPLIN, Hybrid(Rind),
and Hybrid(Rmul) showed better precision. The validation
period of CaPA is only 6 years from 2010 to 2016, as
CaPA data are only available between 2002 and 2016. This
might be a reason why CaPA produced the highest NSE
(accuracy) among the climate datasets used in this study.
Therefore, the results of CaPA need to be considered care-
fully; otherwise they might be misleading. In this context,
the CaPA dataset was excluded from further assessment
of the precision and accuracy even though all of the re-
sults of CaPA were included in Fig. 11 for reference only.
Hybrid(Rmul) and ANUSPLIN showed the highest accu-
racy as forcing data, followed by Hybrid(Rind), PNWNAmet,
and NARR. In the Pembina and Christina catchments, the
Hybrid(Rind), Hybrid(Rmul), and Township datasets had the
highest precision and accuracy. NARR produced negative
NSEs at Pembina, indicating it is not reliable or suitable
as a forcing dataset. For Clearwater, Hybrid(Rind) is the
top performer, followed by Hybrid(Rmul), ANUSPLIN, PN-
WNAmet, and NARR. Clearwater had the highest number
of climate datasets combined in the hybrid climate dataset
within the basin for precipitation as shown in Fig. 9. Interest-
ingly, the precision of NARR is similar to that of CaPA be-
cause they shared the temperature data from NARR. For Fire-
bag, Hybrid(Rind) also showed top performance in both pre-
cision and accuracy, followed by Hybrid(Rmul), ANUSPLIN,
PNWNAmet, and NARR. Overall, Hybrid(Rind) showed the
best accuracy and precision at all hydrometric stations, indi-

Figure 11. Boxplots of the NSEs of the proxy validation at the five
sub-basins in the ARB. The values above each boxplot represent the
average over NSEs of the proxy validation.

cating that it has the potential not only to improve historical
hydrologic simulations but also to be used as reference data
for statistical downscaling of climate change projections in
the province.

5 Discussion

Among the station-based gridded climate datasets, the Town-
ship dataset outperformed other station-based gridded cli-
mate datasets. As PNWNAmet set a common period from
1945 to 2012 for all stations included in the interpola-
tion, many stations might be left out in the data genera-
tion processes. While ANUSPLIN used the Canada-wide
archive (raw) station data collected only by ECCC, the Al-
berta Township data have been produced on the basis of
the archive (raw) station data collected by ECCC, AEP, and
AF over Alberta. Therefore, one of the possible reasons for
the Township dataset outperforming the others might be the
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Table 6. Nash–Sutcliffe efficiency (NSE) for the calibration (“Cal.”) and validation (“Val.”) periods at five sub-basins in the ARB for the
climate datasets investigated in this study.

Climate Hinton Pembina Christina Clearwater Firebag

forcing Cal. Val. Cal. Val. Cal. Val. Cal. Val. Cal. Val.

ANUSPLIN 0.88 0.83 0.61 0.64 0.52 0.46 0.76 0.54 0.61 0.49
Township – – 0.62 0.66 0.54 0.49 – – – –
PNWNAmet 0.82 0.81 0.53 0.54 0.40 0.35 0.73 0.59 0.65 0.48
CaPA 0.89 0.90 0.53 0.61 0.55 0.44 0.74 0.74 0.51 0.53
NARR 0.84 0.79 0.50 −0.14 0.39 0.34 0.75 0.42 0.44 0.32
Hybrid(Rind) 0.82 0.78 0.61 0.66 0.55 0.49 0.78 0.67 0.60 0.52
Hybrid(Rmul) 0.89 0.83 0.61 0.65 0.54 0.48 0.77 0.53 0.59 0.47

Table 7. NSE values between the current study and literature for the Athabasca River basin. The NSE values were obtained for calibration
and validation periods. For comparison of the current study to the literature, the NSE values of the current study were obtained from the VIC
simulation for the hybrid climate dataset (Rind).

Stations Current Literature/Hydrologic model

study/VICa N. K. Shrestha et Faramarzi et al. Faramarzi et al. Betrie et al. Leong and Donner
al. (2017)/SWATb (2017)/SWAT (2015)/SWAT (2015)/SWAT (2015)/IBIS-THMBc

Hinton 0.80 0.87 – – – –
Pembina 0.64 0.69 – – – –
Athabasca 0.78 0.90 – – 0.50
Fort McMurray 0.77 0.89 – – 0.41 0.35
Christina 0.52 0.49 – – – –
Firebag 0.56 0.28 – – – –
Average for all stations 0.58 0.57 0.21 0.11 – –

a Variable Infiltration Capacity. b Soil and Water Assessment Tool (SWAT). c Integrated BIosphere Simulator – Terrestrial Hydrology Model with Biogeochemistry (IBIS-THMB).

difference in the numbers of stations (i.e., station density)
employed to produce the gridded climate datasets. In ad-
dition, PNWNAmet showed a positive Pbias for precipita-
tion, especially in the mountainous areas, while ANUSPLIN,
which employs similar thin-plate spline interpolation, gener-
ated negative Pbias. PNWNAmet overestimated precipitation
over the mountainous area, which considerably affects sim-
ulated low flows at Hinton in the ARB. Figure 12 shows the
observed and simulated hydrographs from gridded climate
datasets at (a) Hinton and (b) Pembina. It clearly shows that
PNWNAmet highly overestimated the low and high, which
is caused by overestimated precipitation in the drainage area
of the sub-basins. As with PNWNAmet, NARR also over-
estimated the low and high flows, which is induced by the
combined effects of overestimating precipitation and warm
biases in cold temperatures. The temperature bias of NARR
is thus further confirmed and is consistent with the earlier
finding of Eum et al. (2014a) and Islam and Déry (2017).

In Fig. 12, the hybrid climate datasets underestimated the
peak flows (in 2009, 2010, 2014, and 2015) at Hinton, and
the hydrograph is similar to the hydrograph produced by
the ANUSPLIN dataset that dominantly ranked first in this
watershed. On the contrary, the hydrograph of the hybrid

climate datasets at Pembina is similar to that of Township,
which is dominantly ranked first in Pembina (refer to Ta-
ble 5). These results indicate that the hybrid climate dataset
has the intrinsic limitation that the performance of the hybrid
dataset for a basin may closely resemble that of the climate
dataset that is dominantly ranked first for the basin. How-
ever, the utility of the hybrid climate dataset can be clearly
found at a whole-basin scale for a large watershed, as the
added values of the hybrid climate dataset in sub-basins can
be cumulated to the main stem downstream in the watershed.
To further validate the utility of the hybrid climate dataset,
the VIC model was calibrated for the entire ARB to produce
a long-term historical hydrologic simulation for the ARB.
Table 8 presents the NSE values of hydrologic simulations
forced by ANUSPLIN and Hybrid(Rind) at the hydrometric
stations in the main stream of the ARB. The result shows
that as the size of the watershed increases, the hybrid cli-
mate dataset starts performing better than ANUSPLIN used
in Eum et al. (2017). In other words, the hybrid climate
dataset improved the historical hydrologic simulation for the
ARB. This is mainly due to the fact that as the watershed
area increases, the derived hybrid climate dataset is no longer
dominated by a single gridded climate dataset.
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Table 8. Comparison of NSE values for hydrologic simulations forced by ANUSPLIN and the hybrid climate datasets at the main stream of
the ARB.

No Station name/ID Drainage area ANUSPLIN Hybrid

(km2) Calibration Validation Calibration Validation

1 Hinton/07AD002 9760 0.85 0.82 0.83 0.76
2 Windfall/07AE001 19 600 0.80 0.72 0.80 0.76
3 Athabasca/07BE001 74 600 0.78 0.69 0.77 0.78
4 Fort McMurray/M07DA001 133 000 0.77 0.66 0.78 0.75
5 Eymundson/S24 147 086 0.77 0.67 0.79 0.75

Figure 12. Monthly observed and simulated hydrographs from the
gridded climate datasets at (a) Hinton and (b) Pembina.

Among the station-based gridded climate datasets,
ANUSPLIN and Township employed a different number of
stations depending on their periods of record. Therefore,
there is an inconsistency in these climate datasets over time.
For example, the Township dataset employed only 300–400
stations in the 1960s, but that has increased to 400–500 since
1970. A change-point analysis of these datasets may provide
some useful information to end users with respect to when

and where changes occurred, which will help in establish-
ing spatial and temporal accuracies of these datasets (Eum et
al., 2014a). Further, PNWNAmet employed the same number
of stations over time to avoid the abovementioned inconsis-
tency, but this study found that it induced the overestimation
of precipitation in data-poor regions such as mountainous re-
gions in Alberta. As the hybrid climate datasets are generated
from the multiple historical gridded datasets, they may also
have the same inconsistencies identified in other datasets.
The proxy validation, however, demonstrated that the gen-
erated hybrid climate datasets can improve the performance
of hydrologic simulations.

This study identified the preference order of all gridded
climate datasets based on the performance measures evalu-
ated at the AHCCD stations, therefore the ranking somewhat
relies on the spatial distribution of the AHCCD stations. As
shown in Fig. 1, the density of AHCCD stations varies across
western Canada, and it is low in the cold climates of moun-
tainous and northern areas. Therefore, the ranking could fur-
ther be improved with a more uniform density of AHCCD
stations over western Canada.

The literature has demonstrated that NARR, a reanalysis-
based climate dataset, can be an alternative as a climate forc-
ing dataset for hydrologic simulations in data-sparse regions
(Choi et al., 2009; Praskievicz and Bartlein, 2014; Islam
and Déry, 2017). In this study, the NARR dataset performed
quite well in high-elevation regions (Hinton in this study),
while it did not perform so well in the middle and lower
reaches, i.e., lower-elevation watersheds. NARR performed
especially poorly in the Pembina sub-basin, a region where
hydrologic simulations are highly sensitive to model param-
eters (Eum et al., 2014b). In Fig. 11b, however, the NARR
parameter set produced fair NSE values in hydrologic simu-
lations forced by the other climate datasets except for CaPA
and PNWNAmet. Such result indicates that (1) all of the pa-
rameter sets used in this study were calibrated reasonably
and (2) climate forcing input data play a more crucial role in
hydrologic simulations, as no parameter sets produced a fair
NSE value from NARR in Pembina. CaPA was more suit-
able than NARR for the selected sub-basins in this study,
which indicates that CaPA might be a better alternative in
low station-density regions such as the ARB. However, since
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the validation period in this study is only 7 years from 2010
to 2016, a longer data period is necessary to validate the suit-
ability of CaPA as indicated in Eum et al. (2014a) and Wong
et al. (2017).

In the proxy validation, Hybrid(Rind) performed well in
the Clearwater sub-basin, where the highest number of cli-
mate datasets were combined in the generated hybrid climate
datasets. The Township dataset, which mostly ranked first
within its spatial domain, partially covers the drainage area
of Clearwater so that the generated hybrid climate dataset,
Hybrid(Rind), is composed of many climate datasets in this
sub-basin. In a traditional approach to hydrological mod-
elling for Clearwater, either the Township dataset might be
completely excluded (as it does not cover the entire Clear-
water watershed) or potentially combined with other grid-
ded climate datasets to cover the entire watershed. How-
ever, combining different climate datasets to construct the
climate forcing for a larger region requires an evaluation of
the datasets to identify the order of preference for such aggre-
gation when multiple choices are available. Therefore, this
study suggested the REFRES methodology to systematically
compare all available climate datasets for a region to produce
a hybrid climate dataset that covers a desired period of the
record and spatial domain by considering the order of pref-
erence for combining various climate datasets at each grid
cell. The proxy validation approach also confirmed the util-
ity of a generated hybrid climate dataset over other datasets,
especially in hydrologic simulations.

6 Summary and concluding remarks

This study suggested a framework called the REFerence
Reliability Evaluation System to systematically generate a
performance-based hybrid climate dataset from multiple cli-
mate datasets for a region. The hybrid dataset was found
to more reliable for hydrological modelling. The REFRES
is composed of three modules: (1) performance measures,
(2) ranking, and (3) data generation. The suggested frame-
work was applied to the ARB as a test bed and generated
two hybrid climate datasets from single- (Rind) and multi-
variable (Rmul) approaches by evaluating the performance of
five available gridded climate datasets: station-based grid-
ded climate datasets (i.e., ANUSPLIN, Alberta Township,
and PNWNAmet), a multi-source dataset (CaPA), and a
reanalysis-based dataset (NARR). A hydrologic-modelling-
based proxy validation approach was applied to demonstrate
the applicability of the hybrid climate dataset generated for
the five sub-basins in the ARB. The results showed the fol-
lowing:

– Among the five climate datasets, the station-based cli-
mate datasets performed better than multi-source- and
reanalysis-based datasets. The Township dataset, in par-
ticular, outperformed other climate datasets in the se-
lected performance measures over northern Alberta.

– Most of the climate datasets performed poorly in the
mountainous areas of southwest Alberta, due to a sparse
observation network, orographic effects, topographic
complexity, and inconsistencies in observation between
Canada and the US.

– As a result of REFRES’ application for the ARB, the
Township and ANUSPLIN datasets are mostly ranked
the highest among the five climate datasets for precipi-
tation and temperature, respectively.

– In the proxy validation, two hybrid climate datasets,
Hybrid(Rind) and Hybrid(Rmul), performed better in
terms of precision and accuracy as forcing data for hy-
drologic simulations.

– Hybrid(Rind) especially outperformed other climate
datasets in the Clearwater sub-basin where the highest
number of climate datasets were combined in generat-
ing Hybrid(Rind) for precipitation. This indicates that
the hybrid climate dataset generated by REFRES may
lead to more reliable hydrologic simulations, resulting
in improved hydrologic predictions.

This study provided the preference order of climate
datasets available in Alberta, which may be useful for mod-
ellers and decision-makers as to which climate dataset is
the most suitable for their studies and projects. Furthermore,
this study demonstrated that the hybrid climate dataset pro-
duced by REFRES is more representative of historical cli-
matic conditions. Therefore, the hybrid climate dataset is
recommended to be used as a reference dataset for statisti-
cal downscaling and hydrologic-model forcing, resulting in
more reliable high-resolution climatic and hydrologic pro-
jections.

Code availability. The REFRES package is available upon request
by contacting hyung.eum@gov.ab.ca. The Variable Infiltration Ca-
pacity (VIC) model is also freely available at https://github.com/
UW-Hydro/VIC (Liang et al., 1994).

Data availability. ANUSPLIN can be accessed at ftp://ftp.nrcan.
gc.ca/pub/outgoing/canada_daily_grids (Hopkinson et al., 2011),
and PNWNAmet is available at https://data.pacificclimate.org/
portal/gridded_observations/map/ (Werner et al., 2019). The Al-
berta Township data can be downloaded from http://agriculture.
alberta.ca/acis/township-data-viewer.jsp (Shen et al., 2001; Alberta
Agriculture and Forestry, contact Ralph Wright at +1 (780) 427-
3556 for details). The archives of CaPA can be accessed at http:
//collaboration.cmc.ec.gc.ca/science/outgoing/capa.grib/ (Lespinas
et al., 2015) and http://collaboration.cmc.ec.gc.ca/science/outgoing/
capa.grib/hindcast/ (Lespinas et al., 2015), and the last 30 d of
CaPA data are available at http://dd.weather.gc.ca/analysis/precip/
rdpa/grib2/polar_stereographic (Lespinas et al., 2015). The NARR
dataset is available at https://www.esrl.noaa.gov/psd/data/gridded/
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data.narr.monolevel.html (Mesinger et al., 2006). The hybrid cli-
mate dataset for Alberta is also available upon request by contacting
hyung.eum@gov.ab.ca.
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