Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 5.153 IF 5.153
  • IF 5-year value: 5.460 IF 5-year
    5.460
  • CiteScore value: 7.8 CiteScore
    7.8
  • SNIP value: 1.623 SNIP 1.623
  • IPP value: 4.91 IPP 4.91
  • SJR value: 2.092 SJR 2.092
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 123 Scimago H
    index 123
  • h5-index value: 65 h5-index 65
Volume 22, issue 12
Hydrol. Earth Syst. Sci., 22, 6415–6434, 2018
https://doi.org/10.5194/hess-22-6415-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Hydrol. Earth Syst. Sci., 22, 6415–6434, 2018
https://doi.org/10.5194/hess-22-6415-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 10 Dec 2018

Research article | 10 Dec 2018

Redressing the balance: quantifying net intercatchment groundwater flows

Laurène Bouaziz et al.

Related authors

Looking beyond general metrics for model comparison – lessons from an international model intercomparison study
Tanja de Boer-Euser, Laurène Bouaziz, Jan De Niel, Claudia Brauer, Benjamin Dewals, Gilles Drogue, Fabrizio Fenicia, Benjamin Grelier, Jiri Nossent, Fernando Pereira, Hubert Savenije, Guillaume Thirel, and Patrick Willems
Hydrol. Earth Syst. Sci., 21, 423–440, https://doi.org/10.5194/hess-21-423-2017,https://doi.org/10.5194/hess-21-423-2017, 2017
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Risks and opportunities for a Swiss hydroelectricity company in a changing climate
Kirsti Hakala, Nans Addor, Thibault Gobbe, Johann Ruffieux, and Jan Seibert
Hydrol. Earth Syst. Sci., 24, 3815–3833, https://doi.org/10.5194/hess-24-3815-2020,https://doi.org/10.5194/hess-24-3815-2020, 2020
Short summary
Survival of the Qaidam mega-lake system under mid-Pliocene climates and its restoration under future climates
Dieter Scherer
Hydrol. Earth Syst. Sci., 24, 3835–3850, https://doi.org/10.5194/hess-24-3835-2020,https://doi.org/10.5194/hess-24-3835-2020, 2020
Short summary
Hydrological evaluation of open-access precipitation data using SWAT at multiple temporal and spatial scales
Jianzhuang Pang, Huilan Zhang, Quanxi Xu, Yujie Wang, Yunqi Wang, Ouyang Zhang, and Jiaxin Hao
Hydrol. Earth Syst. Sci., 24, 3603–3626, https://doi.org/10.5194/hess-24-3603-2020,https://doi.org/10.5194/hess-24-3603-2020, 2020
Short summary
Understanding coastal wetland conditions and futures by closing their hydrologic balance: the case of the Gialova lagoon, Greece
Stefano Manzoni, Giorgos Maneas, Anna Scaini, Basil E. Psiloglou, Georgia Destouni, and Steve W. Lyon
Hydrol. Earth Syst. Sci., 24, 3557–3571, https://doi.org/10.5194/hess-24-3557-2020,https://doi.org/10.5194/hess-24-3557-2020, 2020
Short summary
Why does a conceptual hydrological model fail to correctly predict discharge changes in response to climate change?
Doris Duethmann, Günter Blöschl, and Juraj Parajka
Hydrol. Earth Syst. Sci., 24, 3493–3511, https://doi.org/10.5194/hess-24-3493-2020,https://doi.org/10.5194/hess-24-3493-2020, 2020
Short summary

Cited articles

Ajami, H., Troch, P. A., Maddock, T., Meixner, T., and Eastoe, C.: Quantifying mountain block recharge by means of catchment-scale storage-discharge relationships, Water Resour. Res., 47, W04504, https://doi.org/10.1029/2010WR009598., 2011.
Ameli, A., Gabrielli, C., Morgenstern, U., and McDonnell, J.: Groundwater subsidy from headwaters to their parent water watershed: A combined field-modeling approach, Water Resour. Res., 54, 5110–5125, https://doi.org/10.1029/2017WR022356, 2018.
Ameli, A. A., Beven, K., Erlandsson, M., Creed, I. F., McDonnell, J. J., and Bishop, K.: Primary weathering rates, water transit times, and concentration-discharge relations: A theoretical analysis for the critical zone, Water Resour. Res., 53, 942–960, 2017.
Andréassian, V. and Perrin, C.: On the ambiguous interpretation of the Turc-Budyko nondimensional graph, Water Resour. Res., 48, W10601, https://doi.org/10.1029/2012WR012532, 2012.
Banque Hydro: ©Ministère de l'Ecologie, du Développement Durable et de l'Energie, available at: http://hydro.eaufrance.fr/ (last access: 15 May 2017), 2015.
Publications Copernicus
Download
Short summary
We quantify net intercatchment groundwater flows in the Meuse basin in a complementary three-step approach through (1) water budget accounting, (2) testing a set of conceptual hydrological models and (3) evaluating against remote sensing actual evaporation data. We show that net intercatchment groundwater flows can make up as much as 25 % of mean annual precipitation in the headwaters and should therefore be accounted for in conceptual models to prevent overestimating actual evaporation rates.
We quantify net intercatchment groundwater flows in the Meuse basin in a complementary...
Citation