Articles | Volume 22, issue 8
https://doi.org/10.5194/hess-22-4201-2018
https://doi.org/10.5194/hess-22-4201-2018
Research article
 | 
07 Aug 2018
Research article |  | 07 Aug 2018

Extending seasonal predictability of Yangtze River summer floods

Shanshan Wang and Xing Yuan

Related authors

Technical note: A stochastic framework for identification and evaluation of flash drought
Yuxin Li, Sisi Chen, Jun Yin, and Xing Yuan
Hydrol. Earth Syst. Sci., 27, 1077–1087, https://doi.org/10.5194/hess-27-1077-2023,https://doi.org/10.5194/hess-27-1077-2023, 2023
Short summary
Ensemble streamflow forecasting over a cascade reservoir catchment with integrated hydrometeorological modeling and machine learning
Junjiang Liu, Xing Yuan, Junhan Zeng, Yang Jiao, Yong Li, Lihua Zhong, and Ling Yao
Hydrol. Earth Syst. Sci., 26, 265–278, https://doi.org/10.5194/hess-26-265-2022,https://doi.org/10.5194/hess-26-265-2022, 2022
Short summary
Rapid reduction in ecosystem productivity caused by flash droughts based on decade-long FLUXNET observations
Miao Zhang and Xing Yuan
Hydrol. Earth Syst. Sci., 24, 5579–5593, https://doi.org/10.5194/hess-24-5579-2020,https://doi.org/10.5194/hess-24-5579-2020, 2020
Short summary
Accelerated hydrological cycle over the Sanjiangyuan region induces more streamflow extremes at different global warming levels
Peng Ji, Xing Yuan, Feng Ma, and Ming Pan
Hydrol. Earth Syst. Sci., 24, 5439–5451, https://doi.org/10.5194/hess-24-5439-2020,https://doi.org/10.5194/hess-24-5439-2020, 2020
Short summary
More severe hydrological drought events emerge at different warming levels over the Wudinghe watershed in northern China
Yang Jiao and Xing Yuan
Hydrol. Earth Syst. Sci., 23, 621–635, https://doi.org/10.5194/hess-23-621-2019,https://doi.org/10.5194/hess-23-621-2019, 2019
Short summary

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Modelling approaches
On the combined use of rain gauges and GPM IMERG satellite rainfall products for hydrological modelling: impact assessment of the cellular-automata-based methodology in the Tanaro River basin in Italy
Annalina Lombardi, Barbara Tomassetti, Valentina Colaiuda, Ludovico Di Antonio, Paolo Tuccella, Mario Montopoli, Giovanni Ravazzani, Frank Silvio Marzano, Raffaele Lidori, and Giulia Panegrossi
Hydrol. Earth Syst. Sci., 28, 3777–3797, https://doi.org/10.5194/hess-28-3777-2024,https://doi.org/10.5194/hess-28-3777-2024, 2024
Short summary
An increase in the spatial extent of European floods over the last 70 years
Beijing Fang, Emanuele Bevacqua, Oldrich Rakovec, and Jakob Zscheischler
Hydrol. Earth Syst. Sci., 28, 3755–3775, https://doi.org/10.5194/hess-28-3755-2024,https://doi.org/10.5194/hess-28-3755-2024, 2024
Short summary
140-year daily ensemble streamflow reconstructions over 661 catchments in France
Alexandre Devers, Jean-Philippe Vidal, Claire Lauvernet, Olivier Vannier, and Laurie Caillouet
Hydrol. Earth Syst. Sci., 28, 3457–3474, https://doi.org/10.5194/hess-28-3457-2024,https://doi.org/10.5194/hess-28-3457-2024, 2024
Short summary
The agricultural expansion in South America's Dry Chaco: regional hydroclimate effects
María Agostina Bracalenti, Omar V. Müller, Miguel A. Lovino, and Ernesto Hugo Berbery
Hydrol. Earth Syst. Sci., 28, 3281–3303, https://doi.org/10.5194/hess-28-3281-2024,https://doi.org/10.5194/hess-28-3281-2024, 2024
Short summary
Machine-learning-constrained projection of bivariate hydrological drought magnitudes and socioeconomic risks over China
Rutong Liu, Jiabo Yin, Louise Slater, Shengyu Kang, Yuanhang Yang, Pan Liu, Jiali Guo, Xihui Gu, Xiang Zhang, and Aliaksandr Volchak
Hydrol. Earth Syst. Sci., 28, 3305–3326, https://doi.org/10.5194/hess-28-3305-2024,https://doi.org/10.5194/hess-28-3305-2024, 2024
Short summary

Cited articles

Alfieri, L., Burek, P., Dutra, E., Krzeminski, B., Muraro, D., Thielen, J., and Pappenberger, F.: GloFAS – global ensemble streamflow forecasting and flood early warning, Hydrol. Earth Syst. Sci., 17, 1161–1175, https://doi.org/10.5194/hess-17-1161-2013, 2013. 
Banacos, P. C. and Schultz, D. M.: The use of moisture flux convergence in forecasting convective initiation: Historical and operational perspectives, Weather Forecast., 20, 351–366, 2005. 
Barnston, A. G., Tippett, M. K., L'Heureux, M. L., Li, S., and DeWitt, D. G.: Skill of real-time seasonal ENSO model predictions during 2002–11: Is our capability increasing?, B. Am. Meteorol. Soc., 93, 631–651, https://doi.org/10.1175/BAMS-D-11-00111.1, 2012. 
Becker, E. J., van den Dool, H. M., and Pena, M.: Short-termclimate extremes: Prediction skill and predictability, J. Climate, 26, 512–531, https://doi.org/10.1175/JCLI-D-12-00177.1, 2013. 
Boer, G. J., Kharin, V. V., and Merryfield, W. J.: Decadal predictability and forecast skill, Clim. Dynam., 41, 1817–1833, https://doi.org/10.1007/s00382-013-1705-0, 2013. 
Download
Short summary
Long-range flood forecast is very challenging over monsoonal regions. We investigate the potential of extending seasonal predictability of Yangtze River summer floods by using atmospheric moisture flux prediction with a perfect model assumption. The finding suggests a potential to use atmospheric moisture flux which is more predictable than precipitation at the seasonal timescale, to improve flood forecasting and early warning, especially during post-El Niño summers.