Articles | Volume 21, issue 2
https://doi.org/10.5194/hess-21-735-2017
https://doi.org/10.5194/hess-21-735-2017
Research article
 | 
03 Feb 2017
Research article |  | 03 Feb 2017

Large-watershed flood forecasting with high-resolution distributed hydrological model

Yangbo Chen, Ji Li, Huanyu Wang, Jianming Qin, and Liming Dong

Related authors

Parameter dynamics of distributed hydrological model in simulating or forecasting flood processes of urbanizing watersheds
Yangbo Chen, Jun Liu, and Liming Dong
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-233,https://doi.org/10.5194/hess-2023-233, 2023
Manuscript not accepted for further review
Short summary
Predicting floods in a large karst river basin by coupling PERSIANN-CCS QPEs with a physically based distributed hydrological model
Ji Li, Daoxian Yuan, Jiao Liu, Yongjun Jiang, Yangbo Chen, Kuo Lin Hsu, and Soroosh Sorooshian
Hydrol. Earth Syst. Sci., 23, 1505–1532, https://doi.org/10.5194/hess-23-1505-2019,https://doi.org/10.5194/hess-23-1505-2019, 2019
Short summary
Impact of urbanization on flood of Shigu creek in Dongguan city
Luying Pan, Yangbo Chen, and Tao Zhang
Proc. IAHS, 379, 55–60, https://doi.org/10.5194/piahs-379-55-2018,https://doi.org/10.5194/piahs-379-55-2018, 2018
Short summary
Preface: Innovative Water Resources Management in a Changing Environment – Understanding and Balancing Interactions between Humankind and Nature
Zongxue Xu, Dingzhi Peng, Wenchao Sun, Bo Pang, Depeng Zuo, Andreas Schumann, and Yangbo Chen
Proc. IAHS, 379, 463–464, https://doi.org/10.5194/piahs-379-463-2018,https://doi.org/10.5194/piahs-379-463-2018, 2018
Extending flood forecasting lead time in a large watershed by coupling WRF QPF with a distributed hydrological model
Ji Li, Yangbo Chen, Huanyu Wang, Jianming Qin, Jie Li, and Sen Chiao
Hydrol. Earth Syst. Sci., 21, 1279–1294, https://doi.org/10.5194/hess-21-1279-2017,https://doi.org/10.5194/hess-21-1279-2017, 2017
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Evaluation of hydrological models on small mountainous catchments: impact of the meteorological forcings
Guillaume Evin, Matthieu Le Lay, Catherine Fouchier, David Penot, Francois Colleoni, Alexandre Mas, Pierre-André Garambois, and Olivier Laurantin
Hydrol. Earth Syst. Sci., 28, 261–281, https://doi.org/10.5194/hess-28-261-2024,https://doi.org/10.5194/hess-28-261-2024, 2024
Short summary
Projecting sediment export from two highly glacierized alpine catchments under climate change: exploring non-parametric regression as an analysis tool
Lena Katharina Schmidt, Till Francke, Peter Martin Grosse, and Axel Bronstert
Hydrol. Earth Syst. Sci., 28, 139–161, https://doi.org/10.5194/hess-28-139-2024,https://doi.org/10.5194/hess-28-139-2024, 2024
Short summary
A framework for parameter estimation, sensitivity analysis, and uncertainty analysis for holistic hydrologic modeling using SWAT+
Salam A. Abbas, Ryan T. Bailey, Jeremy T. White, Jeffrey G. Arnold, Michael J. White, Natalja Čerkasova, and Jungang Gao
Hydrol. Earth Syst. Sci., 28, 21–48, https://doi.org/10.5194/hess-28-21-2024,https://doi.org/10.5194/hess-28-21-2024, 2024
Short summary
On understanding mountainous carbonate basins of the Mediterranean using parsimonious modeling solutions
Shima Azimi, Christian Massari, Giuseppe Formetta, Silvia Barbetta, Alberto Tazioli, Davide Fronzi, Sara Modanesi, Angelica Tarpanelli, and Riccardo Rigon
Hydrol. Earth Syst. Sci., 27, 4485–4503, https://doi.org/10.5194/hess-27-4485-2023,https://doi.org/10.5194/hess-27-4485-2023, 2023
Short summary
Comparing quantile regression forest and mixture density long short-term memory models for probabilistic post-processing of satellite precipitation-driven streamflow simulations
Yuhang Zhang, Aizhong Ye, Bita Analui, Phu Nguyen, Soroosh Sorooshian, Kuolin Hsu, and Yuxuan Wang
Hydrol. Earth Syst. Sci., 27, 4529–4550, https://doi.org/10.5194/hess-27-4529-2023,https://doi.org/10.5194/hess-27-4529-2023, 2023
Short summary

Cited articles

Abbott, M. B., Bathurst, J. C., Cunge, J. A., O'Connell, P. E., and Rasmussen, J.: An Introduction to the European Hydrologic System-System Hydrologue Europeen, “SHE”, a: History and Philosophy of a Physically-based, Distributed Modelling System, J. Hydrol., 87, 45–59, 1986a.
Abbott, M. B., Bathurst, J. C., Cunge, J. A., O'Connell, P. E., and Rasmussen, J.: An Introduction to the European Hydrologic System-System Hydrologue Europeen, “SHE”, b: Structure of a Physically based, distributed modeling System, J. Hydrol., 87, 61–77, 1986b.
Ambroise, B., Beven, K., and Freer, J.: Toward a generalization of the TOPMODEL concepts: Topographic indices of hydrologic similarity, Water Resour. Res., 32, 2135–2145, 1996.
Anderson, A. N., McBratney, A. B., and FitzPatric, K. E.: A soil mass, surface and spectral fractal dimensions estimated from thin section photographs, Soil Sci. Soc. Am. J., 60, 962–969, 1996.
Arya, L. M. and Paris, J. F.: A physioempirical model to predict the soil moisture characteristic from particle-size distribution and bulk density data, Soil Sci. Soc. Am. J., 45, 1023–1030, 1981.
Download
Short summary
The distributed hydrological model has not yet been applied in large watershed flood forecasting due to some limitations. By proposing a method for estimating channel cross section size with remote sensing data, employing the PSO algorithm optimize model parameters and running the model on high-performance supercomputer with parallel computation technique, this article successfully applied the Liuxihe model in a larger watershed flood forecasting in southern China at high resolution.