Articles | Volume 21, issue 2
https://doi.org/10.5194/hess-21-735-2017
https://doi.org/10.5194/hess-21-735-2017
Research article
 | 
03 Feb 2017
Research article |  | 03 Feb 2017

Large-watershed flood forecasting with high-resolution distributed hydrological model

Yangbo Chen, Ji Li, Huanyu Wang, Jianming Qin, and Liming Dong

Related authors

Parameter dynamics of distributed hydrological model in simulating or forecasting flood processes of urbanizing watersheds
Yangbo Chen, Jun Liu, and Liming Dong
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-233,https://doi.org/10.5194/hess-2023-233, 2023
Manuscript not accepted for further review
Short summary
Predicting floods in a large karst river basin by coupling PERSIANN-CCS QPEs with a physically based distributed hydrological model
Ji Li, Daoxian Yuan, Jiao Liu, Yongjun Jiang, Yangbo Chen, Kuo Lin Hsu, and Soroosh Sorooshian
Hydrol. Earth Syst. Sci., 23, 1505–1532, https://doi.org/10.5194/hess-23-1505-2019,https://doi.org/10.5194/hess-23-1505-2019, 2019
Short summary
Impact of urbanization on flood of Shigu creek in Dongguan city
Luying Pan, Yangbo Chen, and Tao Zhang
Proc. IAHS, 379, 55–60, https://doi.org/10.5194/piahs-379-55-2018,https://doi.org/10.5194/piahs-379-55-2018, 2018
Short summary
Preface: Innovative Water Resources Management in a Changing Environment – Understanding and Balancing Interactions between Humankind and Nature
Zongxue Xu, Dingzhi Peng, Wenchao Sun, Bo Pang, Depeng Zuo, Andreas Schumann, and Yangbo Chen
Proc. IAHS, 379, 463–464, https://doi.org/10.5194/piahs-379-463-2018,https://doi.org/10.5194/piahs-379-463-2018, 2018
Extending flood forecasting lead time in a large watershed by coupling WRF QPF with a distributed hydrological model
Ji Li, Yangbo Chen, Huanyu Wang, Jianming Qin, Jie Li, and Sen Chiao
Hydrol. Earth Syst. Sci., 21, 1279–1294, https://doi.org/10.5194/hess-21-1279-2017,https://doi.org/10.5194/hess-21-1279-2017, 2017
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Multi-decadal fluctuations in root zone storage capacity through vegetation adaptation to hydro-climatic variability have minor effects on the hydrological response in the Neckar River basin, Germany
Siyuan Wang, Markus Hrachowitz, and Gerrit Schoups
Hydrol. Earth Syst. Sci., 28, 4011–4033, https://doi.org/10.5194/hess-28-4011-2024,https://doi.org/10.5194/hess-28-4011-2024, 2024
Short summary
Projected future changes in the cryosphere and hydrology of a mountainous catchment in the upper Heihe River, China
Zehua Chang, Hongkai Gao, Leilei Yong, Kang Wang, Rensheng Chen, Chuntan Han, Otgonbayar Demberel, Batsuren Dorjsuren, Shugui Hou, and Zheng Duan
Hydrol. Earth Syst. Sci., 28, 3897–3917, https://doi.org/10.5194/hess-28-3897-2024,https://doi.org/10.5194/hess-28-3897-2024, 2024
Short summary
On the importance of plant phenology in the evaporative process of a semi-arid woodland: could it be why satellite-based evaporation estimates in the miombo differ?
Henry M. Zimba, Miriam Coenders-Gerrits, Kawawa E. Banda, Petra Hulsman, Nick van de Giesen, Imasiku A. Nyambe, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 28, 3633–3663, https://doi.org/10.5194/hess-28-3633-2024,https://doi.org/10.5194/hess-28-3633-2024, 2024
Short summary
Regionalization of GR4J model parameters for river flow prediction in Paraná, Brazil
Louise Akemi Kuana, Arlan Scortegagna Almeida, Emílio Graciliano Ferreira Mercuri, and Steffen Manfred Noe
Hydrol. Earth Syst. Sci., 28, 3367–3390, https://doi.org/10.5194/hess-28-3367-2024,https://doi.org/10.5194/hess-28-3367-2024, 2024
Short summary
Evolution of river regimes in the Mekong River basin over 8 decades and the role of dams in recent hydrological extremes
Huy Dang and Yadu Pokhrel
Hydrol. Earth Syst. Sci., 28, 3347–3365, https://doi.org/10.5194/hess-28-3347-2024,https://doi.org/10.5194/hess-28-3347-2024, 2024
Short summary

Cited articles

Abbott, M. B., Bathurst, J. C., Cunge, J. A., O'Connell, P. E., and Rasmussen, J.: An Introduction to the European Hydrologic System-System Hydrologue Europeen, “SHE”, a: History and Philosophy of a Physically-based, Distributed Modelling System, J. Hydrol., 87, 45–59, 1986a.
Abbott, M. B., Bathurst, J. C., Cunge, J. A., O'Connell, P. E., and Rasmussen, J.: An Introduction to the European Hydrologic System-System Hydrologue Europeen, “SHE”, b: Structure of a Physically based, distributed modeling System, J. Hydrol., 87, 61–77, 1986b.
Ambroise, B., Beven, K., and Freer, J.: Toward a generalization of the TOPMODEL concepts: Topographic indices of hydrologic similarity, Water Resour. Res., 32, 2135–2145, 1996.
Anderson, A. N., McBratney, A. B., and FitzPatric, K. E.: A soil mass, surface and spectral fractal dimensions estimated from thin section photographs, Soil Sci. Soc. Am. J., 60, 962–969, 1996.
Arya, L. M. and Paris, J. F.: A physioempirical model to predict the soil moisture characteristic from particle-size distribution and bulk density data, Soil Sci. Soc. Am. J., 45, 1023–1030, 1981.
Download
Short summary
The distributed hydrological model has not yet been applied in large watershed flood forecasting due to some limitations. By proposing a method for estimating channel cross section size with remote sensing data, employing the PSO algorithm optimize model parameters and running the model on high-performance supercomputer with parallel computation technique, this article successfully applied the Liuxihe model in a larger watershed flood forecasting in southern China at high resolution.