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Abstract. A distributed hydrological model has been suc-
cessfully used in small-watershed flood forecasting, but there
are still challenges for the application in a large watershed,
one of them being the model’s spatial resolution effect. To
cope with this challenge, two efforts could be made; one
is to improve the model’s computation efficiency in a large
watershed, the other is implementing the model on a high-
performance supercomputer. This study sets up a physically
based distributed hydrological model for flood forecasting of
the Liujiang River basin in south China. Terrain data digital
elevation model (DEM), soil and land use are downloaded
from the website freely, and the model structure with a high
resolution of 200 m × 200 m grid cell is set up. The initial
model parameters are derived from the terrain property data,
and then optimized by using the Particle Swarm Optimiza-
tion (PSO) algorithm; the model is used to simulate 29 ob-
served flood events. It has been found that by dividing the
river channels into virtual channel sections and assuming the
cross section shapes as trapezoid, the Liuxihe model largely
increases computation efficiency while keeping good model
performance, thus making it applicable in larger watersheds.
This study also finds that parameter uncertainty exists for
physically deriving model parameters, and parameter opti-
mization could reduce this uncertainty, and is highly recom-
mended. Computation time needed for running a distributed
hydrological model increases exponentially at a power of
2, not linearly with the increasing of model spatial resolu-
tion, and the 200 m × 200 m model resolution is proposed
for modeling the Liujiang River basin flood with the Liuxihe
model in this study. To keep the model with an acceptable
performance, minimum model spatial resolution is needed.
The suggested threshold model spatial resolution for model-
ing the Liujiang River basin flood is a 500 m × 500 m grid

cell, but the model spatial resolution with a 200 m × 200 m
grid cell is recommended in this study to keep the model at a
better performance.

1 Introduction

Flooding is one of the most devastating natural disasters in
the world, and huge damages have been caused (Krzmm,
1992; Kuniyoshi, 1992; Chen, 1995; EEA, 2010). Flood fore-
casting is one of the most widely used flood mitigation mea-
surements, and the watershed hydrological model is the ma-
jor tool for flood forecasting. Currently the most popular
hydrological model for watershed flood forecasting is still
the lumped model (Refsgaard et al., 1997), which averages
the terrain property and precipitation over the watershed, as
well as the model parameters. Hundreds of lumped models
have been proposed and widely used, such as the Sacramento
model proposed by Burnash et al. (1995), the Tank model
proposed by Sugawara et al. (1995), the Xinanjiang model
proposed by Zhao (1977), and the ARNO model proposed
by Todini (1996), to name a few among others. It is widely
accepted that the precipitation for driving the watershed hy-
drological processes is usually unevenly distributed over the
watershed, particularly for the large watershed; therefore, the
lumped model could not easily forecast the watershed flood-
ing of large watersheds. Furthermore, due to the inhomo-
geneity of terrain property over the watershed, which is true
even in very small watershed, the watershed flood forecasting
could not be forecasted accurately if the model parameters
are averaged over the watershed. For this reasons, new mod-
els are needed to improve the watershed flood forecasting
capability, particularly for large-watershed flood forecasting.
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Development of distributed hydrological models in the
past decades has provided the potential to improve the wa-
tershed flood forecasting capability. One of the most impor-
tant features of the distributed hydrological model is that it
divides watershed terrain into grid cells, which are regarded
to have the same meaning of a real watershed; i.e., the grid
cells have their own terrain properties and precipitation. Hy-
drological processes are calculated at both the grid cell scale
and the watershed scale, and the parameters used to calcu-
late hydrological processes are also different at different grid
cells. This feature enables it to describe the inhomogene-
ity of both the terrain property and precipitation over water-
shed. The distributed feature of the distributed hydrological
model is a very important feature compared to the lumped
model, which could help it better simulate the watershed hy-
drological processes at all scales, small or large. The inho-
mogeneity of precipitation over a watershed could also be
well described in the model, this is very helpful in modeling
large-watershed hydrological processes, particularly in trop-
ical and sub-tropical regions where the flooding is driven by
heavy storms. For this reason, the distributed hydrological
model is usually regarded as having the potential to better
simulate or forecast the watershed flood (Ambroise et al.,
1996; Chen et al., 2016). Employing a distributed hydrolog-
ical model for watershed food forecasting has been the new
trend (Vieux et al., 2004; Chen et al., 2016; Cattoën et al.,
2016; Witold et al., 2016; Kauffeldt et al., 2016).

The blueprint of a distributed hydrological model is re-
garded to be proposed by Freeze and Harlan (1969); the
first distributed hydrological model was the SHE model pro-
posed by Abbott et al. (1986a, b). The distributed hydro-
logical model requires different terrain property data for ev-
ery grid cells to set up the model structure; therefore, it is
data-driven model. In the early stage of distributed hydro-
logical modeling, this posted great challenge for the appli-
cation of distributed hydrological model, as the data were
not widely available and inexpensively accessible. With the
development of remote sensing sensors and techniques, ter-
rain data covering global range with high resolution has be-
come readily available and could be acquired inexpensively.
For example, the digital elevation model (DEM) at 30 m
grid cell resolution with global coverage could be freely
downloaded (Falorni et al., 2005; Sharma and Tiwari, 2014),
which largely enhances the development and application of
the distributed hydrological models. After that, many dis-
tributed hydrological models have been proposed, such as the
WATERFLOOD model (Kouwen, 1988), THALES model
(Grayson et al., 1992), VIC model (Liang et al., 1994),
DHSVM model (Wigmosta et al., 1994), CASC2D model
(Julien et al., 1995), WetSpa model (Wang et al., 1997),
GBHM model (Yang et al., 1997), WEP-L model (Jia et al.,
2001), Vflo model (Vieux et al., 2002), tRIBS model (Vivoni
et al., 2004), WEHY model (Kavvas et al., 2004), Liuxihe
model (Chen et al., 2011, 2016), etc.

The distributed hydrological model derives model parame-
ters physically from the terrain property data, and is regarded
not needed to calibrate the model parameter, and therefore it
could be used in data-poor or ungauged basins. This feature
of distributed hydrological model allowed it to be applied
widely in evaluating the impacts of climate changes and ur-
banization on hydrology (Li et al., 2009; Ott and Uhlenbrook,
2004; VanRheenen et al., 2004; Olivera and DeFee, 2007).
But it also was found that this feature caused parameter un-
certainty due to the lack of experiences and references in
physically deriving model parameters from the terrain prop-
erty; therefore it could not be used in fields that required high
flood-simulated accuracy, including watershed flood fore-
casting. It was realized that parameter optimization for a
distributed hydrological model is also needed to improve
the model’s performance, and a few methods for optimiz-
ing parameters of the distributed hydrological model have
been proposed. For example, Vieux and Vieux (2003) tried a
scalar method to adjust the model parameters, and the model
performance was found to be largely improved. Madsen et
al. (2003) proposed an automatic multi-objective parameter
optimization method with the Shuffled Complex Evolution
(SCE) algorithm for the SHE model, which also improved
the model performance. Shaffi and De Smedt (2009) pro-
posed a multi-objective genetic algorithm for optimizing pa-
rameters of the WetSpa model; the improved model result
is regarded to be reasonable. Xu et al. (2012a) proposed an
automated parameter optimization method with the Shuffled
Complex Evolution method developed at The University of
Arizona (SCE-UA) algorithm for the Liuxihe model, which
improved the model performance in small-watershed flood
forecasting. Chen et al. (2016) proposed an automated pa-
rameter optimization method based on the Particle Swarm
Optimization (PSO) algorithm for Liuxihe model water-
shed flood forecasting, and tested it in two watershed: one
small watershed and one large watershed. The results sug-
gested that the distributed hydrological model should op-
timize model parameters even if there is only little avail-
able hydrological data, while the derived model parameters
from the terrain property could physically serve as initial pa-
rameters. The above progresses in the distributed hydrolog-
ical model’s parameter optimization have matured, and will
largely improve the performance of the distributed hydrolog-
cial model, thus advancing the application of the distributed
hydrological model in real-time watershed flood forecasting.

Spatial resolution is a key factor in distributed hydrologi-
cal modeling. Theoretically, if the spatial resolution of a dis-
tributed hydrological model is higher, i.e., the grid cell size
is smaller, the terrain property could be described finer, and
the hydrological processes could be better simulated or fore-
casted; therefore, the model spatial resolution should be as
high as possible. On the other hand, higher model spatial
resolution requires higher-resolution terrain property data for
the model setup, which may not be available in some water-
sheds. Most important is that distributed hydrological model
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uses complex equations with physical meanings to calculate
the hydrological processes; therefore, it needs much more
computation resources than that of lumped model, and the re-
quired computation resources increase exponentially with the
increase of the model spatial resolution. Therefore, in mod-
eling flood processes of a large watershed, the computation
time needed for running the distributed hydrological model
would be huge if the model spatial resolution is kept high,
which may make the model application impractical due to
the high running cost. So if a distributed hydrological model
needs to be applied in a large watershed, a coarser resolu-
tion is the only choice, and the model’s capability will be
impacted with less satisfactory results. This is also called the
scaling effect of a distributed hydrological modeling. For this
reason, current application for watershed flood forecasting is
either limited to a small watershed with higher resolution or
a coarser resolution in a large watershed, i.e., a trade-off be-
tween the model performance and running cost.

Presently forecasting large-watershed flooding has been in
great demand as it impacts people and their properties at
large range, but, due to the scale effect, current distributed
hydrological models employed for a large watershed are
at coarser resolution, which lowers its capability for flood
forecasting and warning. For example, past application of
a distributed hydrological model for large-watershed flood
forecasting is at a resolution coarser than 1 km grid cell
(Lohmann et al., 1998; Vieux et al., 2004; Stisen et al., 2008;
Rwetabula et al., 2007); the models employed in the pan-
European Flood Awareness System (EFAS; Bartholmes et
al., 2009; Thielen et al., 2009, 2010; Sood and Smakhtin,
2015; Kauffeldt et al., 2016) are at 1–10 km grid cell, which
makes the result only applicable for flood warning.

The challenge for distributed hydrological model applica-
tion in large-watershed flood forecasting is its need for huge
computational resources; to cope with this challenge, two ef-
forts could be made. One is to improve the computation ef-
ficiency of distributed hydrological modeling in a large wa-
tershed, and the other is implementing the model on a high-
performance supercomputer; therefore, if the users are will-
ing to pay a high computation cost, the flood forecasting of
a large watershed with high resolution could be done. In this
study, the Liuxihe model (Chen et al., 2011, 2016), a physi-
cally based distributed hydrological model proposed for wa-
tershed flood forecasting, has been used for flood forecasting
of a large watershed in southern China to validate the fea-
sibility of a distributed hydrological model’s application for
large-watershed flood forecasting.

2 Method and data

2.1 Liujiang River basin

The river basin studied in this paper is the Liujiang River
basin (herein after referred to as LRB) in south China, which

is the first-order tributary of the Pearl River. LRB origi-
nates from the village Lang in Guizhou Province, and drains
though the Guizhou Province, Guangxi Zhuang Autonomous
Region and Hunan Province with 72 % of its drainage area
in the Guangxi Zhuang Autonomous Region. The length of
its main channel is 1121 km, and the total drainage area is
58 270 km2, which makes it a large river basin in China.

LRB is a mountainous watershed. There are high moun-
tains in the north and northwest of the watershed with high
elevation, whereas in the south and southeast areas, the ele-
vations are relatively low. This topography helps form severe
flooding in the middle and downstream. The basin is in the
sub-tropical monsoon climate zone with an average annual
precipitation of 1800 mm, and the precipitation distribution
is highly uneven both at spatial and temporal scale with 80 %
of its annual precipitation occurring in the summer. LRB is
in the center of storm zone of the Zhuang Autonomous Re-
gion; heavy storm was very frequent in the past. There have
been 59 disastrous flooding events in the past 400 years with
recording since 1488, which makes the LRB the tributary
with the most disastrous flooding among all the first-order
tributaries of the Pearl River. In the watershed, there are no
significant reservoirs to store flood runoff; therefore, flood
forecasting is one of the most effective ways of flood man-
agement.

2.2 Liuxihe model

The Liuxihe model is a physically based distributed hydro-
logical model proposed mainly for watershed flood forecast-
ing (Chen, 2009; Chen et al., 2011, 2016). Like other dis-
tributed hydrological models, the Liuxihe model divides the
watershed into grid cells based on the DEM of the stud-
ied watershed. To keep a reasonable model performance,
in past experiences of Liuxihe model research and appli-
cation, the model resolution is limited to 90 m × 90 m or
100 m × 100 m, but only used in small watersheds (Chen,
2009; Chen et al., 2011, 2013, 2016; Liao et al., 2012a, b;
Xu et al., 2012a, b). Precipitation, evaporation and runoff
production are calculated at cell scale; i.e., runoff routes first
on the cell, then along the cell to river channel and finally to
the watershed outlet. As the Liuxihe model is mainly used
in sub-tropical regions, the runoff production is calculated
based on the saturation-excess mechanism (Zhao, 1977). The
runoff routing is classified as hillslope routing, river chan-
nel routing, subsurface routing and underground routing. The
hillslope routing is regarded as a one-dimensional unsteady
flow, and the kinematical wave approximation is employed to
do the routing. The river channel routing is also regarded as
a one-dimensional unsteady flow, but the diffusive wave ap-
proximation is employed to do the routing. The above meth-
ods are widely used in the dominant distributed hydrological
models.

What makes Liuxihe model unique is that the river chan-
nel cross section shape is assumed to be trapezoid. With this
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Figure 1. Sketch map of the Liujiang River basin (LRB).

assumption, the river channel size could be represented with
three dimensions, including the bottom width, side slope and
bottom slope. One of the advantages with this assumption is
that the river channel cross section size could be estimated
with remotely sensed data (Chen et al., 2011); therefore, the
Liuxihe model could do river channel runoff routing physi-
cally, thus making the Liuxihe model a fully distributed hy-
drological model. As there are too many river channel cross
sections, and many of them are in the upstream of the water-
shed where they are not easily accessed, in real hydrological
modeling, directly measuring the river channel cross section
sizes is impractical considering the high cost. For this rea-
son, most of the distributed hydrological models could not
be applied in real applications or simply routed in the runoff
with lumped methods, which makes the model not a fully
distributed hydrological model, thus lowering the model’s
capability in simulating or forecasting the watershed flood
processes. Another advantage of this assumption is that it
also simplifies the runoff routing, thus improving the model’s
computation efficiency. For this reason, even though the Li-
uxihe model has a very high resolution, it still could be used
in real-time flood forecasting. This feature of the Liuxihe
model in estimating river channel cross section sizes gives
it the potential to be used in large-watershed flood forecast-
ing.

Like other distributed hydrological models, when used in
ungauged or data-poor watershed flood forecasting, the Liux-
ihe model derives model parameters physically from the ter-
rain property data. But if there is observed hydrological data,
automatic parameter optimization methods could been tried.
But an automatic parameter optimization needs thousands of
model runs, which makes it difficult to be used widely due
to huge computing source requirement, and also means it
takes a long time to set up the model. For this reason, a pub-

lic computer cloud was set up for optimizing the parameters
of the Liuxihe model, which employs parallel computation
techniques and was implemented on a supercomputer sys-
tem (Chen et al., 2013). With this development, the Liuxihe
model could easily optimize its model parameters.

Above advancements of the Liuxihe model in estimat-
ing river channel cross section sizes with remotely sensed
data, automatic parameters optimization and supercomput-
ing gives it the potential to be used in large-watershed flood
forecasting; therefore, in this study the Liuxihe model is em-
ployed to study flood forecasting in the LRB.

2.3 Hydrological data

There are 66 rain gauges installed in the watershed. In this
study, hydrological data of 30 flood events have been col-
lected, including the precipitation of the rain gauges and the
river discharge of the Liuzhou river gauge, which is located
in the downstream of the watershed and is close to the outlet,
as shown in Fig. 1, with a hourly step; brief information on
these flood events is listed in Table 1.

2.4 Terrain property data

Terrain property data include a DEM, land use/cover map
and soil map, which are used for setting up the distributed
hydrological model for flood forecasting. In this study, the
DEM was downloaded from the SRTM database (Falorni et
al., 2005; Sharma and Tiwari, 2014), the land use type was
downloaded from the USGS land use type database (Love-
land et al., 1991, 2000), and the soil type was downloaded
from FAO soil type database (http://www.isric.org). The
downloaded DEM has a spatial resolution of 90 m × 90 m,
considering LRB is large. The running load for the model
with a resolution of 90 m × 90 m may be too heavy to run in
this study; therefore, the DEM is rescaled to the resolutions
of 200 m × 200 m, as shown in Fig. 2a. The downloaded land
use and soil type were at a resolution of 1000 m × 1000 m,
and therefore are rescaled to the same resolution as the DEM,
as shown in Fig. 2b and c, respectively.

The highest elevation and the lowest elevation of the
LRB are 2124 and 42 m, respectively. There are nine
land use types, including evergreen needle leaved forest
(18.1 %), evergreen broadleaved forest (31.0 %), shrubbery
(32.5 %), mountain and alpine meadow (0.1 %), slope grass-
land (13.7 %), urban area (0.1 %), river (0.2 %), lakes (0.3 %)
and cultivated land (4 %).

There are 11 soil types, including Humic Acrisol (0.8 %),
Haplic and high-active Acrisol (1.5 %), Ferralic Cambisol
(5 %), Haplic Luvisols (3.5 %), Dystric Cambisol (2.8 %),
Calcaric Regosol (45.5 %), Dystric Regosol (2.9 %), Hap-
lic and weak active Acrisol (18 %), Artificial accumulated
soil (1.5 %), Eutric Regosol and black limestone soil (3.5 %),
Dystric rankers (15 %).
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Table 1. Brief information of flood events in LRB.

No. Floods No. Start time End time Length of Peak flow
(yyyymmddhh) (yyyymmddhh) hour (h) (m3 s−1)

1 1982042116 1982042116 1982110216 4614 12 600
2 1983020308 1983020308 1983021722 350 7880
3 1984021100 198402100 1984040105 1205 12 900
4 1985011900 1985011900 1985021114 544 11 400
5 1986022300 1986022300 1986042004 1334 12 200
6 1987050100 1987050100 1987071700 1848 10 800
7 1988070620 1988070620 1988100605 2915 27 000
8 1989042600 1989042600 1989081009 2499 7500
9 1990050100 1990001000 1990072306 2006 11 400
10 1991053118 1991053118 1991062806 686 14 300
11 1992042900 1992042900 1992072107 1977 18 100
12 1993060900 1993060900 1993082408 1818 21 200
13 1994060700 1994060700 1994080706 1416 26 500
14 1995052100 1995052100 1995071506 1296 17 300
15 1996060600 1996060600 1996081808 1728 33 700
16 1997060400 1997060400 1997062406 476 13 600
17 1998051600 1998051600 1998090100 2520 19 600
18 1990050100 1999050100 1999080404 1134 17 800
19 2000052100 2000052100 2000061809 659 24 100
20 2001051500 2001051500 2001062300 910 14 200
21 2002042600 2002042600 2002081000 2520 17 900
22 2003060600 2003060600 2003072103 843 11 600
23 2004070300 200407000 2004081508 998 23 700
24 2005061400 2005061400 2005070702 552 16 400
25 2006060400 2006060400 2006071000 870 13 200
26 2008060900 2008060900 2008061908 238 18 700
27 2009060908 2009060908 2009071208 788 26 800
28 2011061090 2011061009 2011090104 2004 9153
29 2012060220 2012060220 2012080101 1351 10 500
30 2013060114 2013060114 2013090114 2200 17 100

3 Results

3.1 Liuxihe model setup

Considering that the LRB is large, the DEM with a
200 m × 200 m resolution is adopted to set up the model
structure, not the original 90 m × 90 m resolution. The whole
watershed is first divided into 1 469 900 cells by the DEM
horizontally, which were further categorized into hillslope
cells and river cells. By using Strahler method (Strahler,
1957), the river channel is divided into a three-order sys-
tem as shown in Fig. 3, which divides all of the cells into
1 463 204 hillslope cells and 6696 river cells.

To estimate the river channel sizes, 178 virtual nodes were
set on the river channel system, and 225 virtual channel sec-
tions were formed as shown in Fig. 3. As in the Liuxihe
model, the shape of the virtual channel sections is assumed
to be trapezoid, and therefore the cross section size is rep-
resented by three dimensions, including bottom width, side
slope and bottom slope. As proposed in Liuxihe model, the
bottom width is estimated based on the satellite remote sens-

ing imageries. For the side slope, it is a low-sensitive data
and could be estimated based on local experiences. For the
bottom slope, it is calculated with the DEM along the virtual
channel section.

3.2 Parameter optimization

In the Liuxihe model, an initial parameter set was derived
first based on the terrain properties, including the DEM, soil
type and land use/cover type, so that the parameters will be
optimized. In this study, for the insensitive parameter of the
land use/cover-related parameters, which is the evaporation
coefficient, the initial value is set to be 0.7 for all cells based
on the experiences. The initial value of roughness, i.e., the
Manning coefficient, which is the sensitive parameter of the
land use/cover-related parameters, is derived from the land
use/cover type based on references (Chen et al., 1995; Zhang
et al., 2006, 2007; Shen and Shuanghe, 2007; Guo et al.,
2010; Li et al., 2013; Zhang et al., 2015), and listed in Ta-
ble 2.
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Figure 2. Terrain properties of LRB.

Figure 3. Liuxihe model structure setup for LRB (200 m × 200 m
resolution).

For the soil-related parameters include the water content
at saturation condition, the water content at field condition,
the water content at wilting condition, hydraulic conductivity

Table 2. The initial values of land use/cover-related parameters.

Land use/cover evaporation roughness
coefficient coefficient

Evergreen needle leaf forest 0.7 0.4
Evergreen broadleaf forest 0.7 0.6
Shrubbery 0.7 0.4
Mountains and alpine meadow 0.7 0.2
Slope grassland 0.7 0.3
City 0.7 0.05
Cultivated land 0.7 0.35

at saturation condition, soil thickness and soil porosity char-
acteristics coefficient b. Based on past modeling experiences
and references (Zeidler, 1993; Anderson et al., 1996), a value
of 2.5 is set to b for all soil types, and the water content at
wilting condition is set to be 30 % of the water content at the
saturation condition. The soil thickness is estimated based on
local experiences and listed in Table 3 for all soil types. The
initial values of the water content at the saturation condition,
the water content at field condition and hydraulic conduc-
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Table 3. The initial values of soil-related parameters.

Soil type Soil Water content Water content Hydraulic conductivity
thickness at saturation at field at saturation condition

(mm) condition condition (mm h−1)

Humic Acrisol 800 0.65 0.32 3.5
Haplic and high-active Acrisol 900 0.57 0.43 4.2
Ferralic cambisol 850 0.63 0.38 20.5
Haplic Luvisols 980 0.46 0.15 2.6
Dystric cambisol 950 0.55 0.41 14
Calcaric Regosol 1100 0.62 0.24 5.6
Dystric regosol 840 0.45 0.27 12.5
Haplic and weak active Acrisol 1050 0.58 0.16 4.6
Artificial accumulated soil 1000 0.63 0.34 5.5
Eutric Regosol and black limestone 550 0.75 0.27 3.5
Dystric rankers 380 0.78 0.36 8

tivity at saturation condition are estimated by using the Soil
Water Characteristics Hydraulic Properties Calculator (Arya
et al., 1981) based on soil texture, organic matter, gravel con-
tent, salinity and compaction. The estimated initial values of
soil-related parameters are listed in Table 3.

In this study, the PSO algorithm is employed to optimize
the initial model parameters, as the PSO algorithm has been
integrated into the Liuxihe model cloud (Chen et al., 2013,
2016). The number of particles of the PSO algorithm is set
to 20, while the value range of inertia weight ω is set to 0.1
to 0.9, the value range of acceleration coefficients C1 is set
to 1.25 to 2.75, and C2 to 0.5 to 2.5, and the maximum iter-
ation is set to 50. The flood event of 20080609 (see Fig. 4)
is selected to optimize the parameters of the Liuxihe model,
and Fig. 4 shows the result of the parameter optimization.
Among them, Fig. 4a is the parameters evolving process,
Fig. 4b is the changing curve of objective function, which
is set to minimize the peak flow error, and Fig. 4c is the sim-
ulated hydrograph of flood event 20080609 (see Fig. 4) with
the optimized parameters.

From the results in Fig. 4, it could be found that after 12
evolutions, the parameters optimization process converges to
its optimal values, and the optimal parameters are achieved,
the simulated hydrological process of a flood event that is
used for parameter optimization is quite a good fit to the ob-
served hydrological process and it could be said that the pa-
rameter has a good optimization effect.

As mentioned above, the automatic parameter optimiza-
tion of the distributed hydrological model is very time con-
suming. In this study, even a supercomputer is employed with
parallel computational techniques, and the time used for this
parameter optimization is overwhelming; the total time used
for achieving the above optimal parameters of the Liuxihe
model for LRB flood forecasting is 220 h, more than 9 days.
Considering several runs are usually needed before achieving
the final results, the parameter optimization procedure may

Figure 4. Parameter optimization results of Liuxihe model for LRB
with PSO algorithm.

take a few months, but this run time is really a good invest-
ment and the validation results proves this is worth doing.

3.3 Model validation

The other 29 flood events were simulated by using the Liux-
ihe model with the above optimized parameters, and the sim-
ulated hydrographs of eight flood events are shown in Fig. 5,
the simulated hydrographs of eight flood events with initial
parameters are also shown in Fig. 5.

From the result of Fig. 5, it has been found that the
simulated flood processes fits the observation reasonably
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Figure 5. Simulated flood events by Liuxihe model with optimized parameters.

well, particularly the simulated peak flow is quite good, and
the simulated hydrological processes with optimized model
parameters improved the simulated hydrological processes
largely. To further analyze the effect of parameter optimiza-
tion on model performance improvement, five evaluation in-
dices of the simulated flood events, including the Nash–
Sutcliffe coefficient, the correlation coefficient, the process
relative error, the peak flow error and water balance coeffi-
cient are calculated from the simulated results. Table 4 listed

the five indices for both the simulated results with the initial
parameters and the optimized parameters.

From Table 4, it could be seen that the five evaluation in-
dices are quite good for the simulated hydrological processes
with the optimized model parameters. The average peak flow
error is 5 % with 14 % the maximum. The average Nash–
Sutcliffe coefficient, correlation coefficient, process relative
error and water balance coefficient are 0.82, 0.83, 0.22 and
0.87, respectively, which are also quite good for large river
basin flood simulation. Five evaluation indices of the sim-
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Table 4. Evaluation indices of the simulated flood events.

ID Floods Parameters Nash–Sutcliffe Correlation Process relative Peak flow Water balance
coefficient/C coefficient/R error/P relative error/E coefficient/W

1 1982081219 initial 0.52 0.48 0.56 0.58 0.52
optimized 0.84 0.75 0.30 0.01 0.83

2 1983020308 initial 0.60 0.55 0.45 0.26 0.65
optimized 0.82 0.84 0.21 0.04 0.89

3 1984010100 initial 0.62 0.71 0.38 0.32 0.75
optimized 0.75 0.89 0.26 0.14 0.96

4 1985010100 initial 0.58 0.57 0.35 0.33 0.85
optimized 0.73 0.87 0.17 0.01 1.05

5 1986010100 initial 0.65 0.62 0.38 0.25 0.62
optimized 0.83 0.85 0.23 0.04 0.94

6 1987050100 initial 0.76 0.45 0.35 0.36 0.58
optimized 0.93 0.76 0.10 0.05 1.01

7 19880516200 initial 0.54 0.58 0.26 0.42 0.82
optimized 0.84 0.80 0.15 0.04 0.90

8 1989042600 initial 0.52 0.55 0.55 0.25 0.62
optimized 0.64 0.74 0.39 0.02 0.88

9 1990050100 initial 0.55 0.64 0.42 0.23 0.55
optimized 0.85 0.87 0.14 0.03 0.85

10 1991053118 initial 0.63 0.62 0.40 0.18 0.68
optimized 0.80 0.76 0.25 0.04 0.95

11 1992042900 initial 0.48 0.59 0.35 0.34 0.65
optimized 0.66 0.84 0.20 0.11 0.89

12 1993060900 initial 0.75 0.65 0.38 0.28 0.84
optimized 0.91 0.89 0.24 0.09 1.05

13 1994060700 initial 0.78 0.64 0.32 0.26 1.25
optimized 0.93 0.85 0.14 0.04 0.85

14 1995052100 initial 0.68 0.48 0.42 0.35 0.65
optimized 0.82 0.70 0.20 0.01 0.81

15 1996060600 initial 0.74 0.65 0.25 0.23 0.54
optimized 0.90 0.93 0.18 0.02 0.86

16 1997060400 initial 0.65 0.51 0.23 0.26 0.65
optimized 0.84 0.87 0.13 0.06 0.95

17 1998051600 initial 0.57 0.62 0.35 0.18 0.68
optimized 0.83 0.85 0.30 0.01 1.05

18 1999061700 initial 0.48 0.59 0.33 0.15 0.55
optimized 0.60 0.83 0.15 0.05 0.80

19 2000052100 initial 0.67 0.62 0.45 0.25 0.58
optimized 0.79 0.89 0.26 0.06 0.83

20 2001051500 initial 0.62 0.56 0.32 0.22 0.68
optimized 0.80 0.82 0.25 0.07 0.82

21 2002042600 initial 0.68 0.65 0.38 0.18 0.57
optimized 0.86 0.90 0.24 0.02 0.87

22 2003060600 initial 0.75 0.55 0.25 0.26 0.55
optimized 0.92 0.85 0.14 0.04 0.76

23 2004070300 initial 0.58 0.68 0.38 0.27 0.68
optimized 0.78 0.82 0.23 0.08 0.85

24 2005061400 initial 0.65 0.62 0.52 0.32 0.65
optimized 0.76 0.76 0.35 0.06 0.74

25 2006060400 initial 0.68 0.72 0.62 0.35 0.53
optimized 0.82 0.83 0.30 0.10 0.86

26 2009060908 initial 0.75 0.78 0.25 0.23 1.22
optimized 0.95 0.92 0.17 0.04 0.09

27 2011010100 initial 0.66 0.75 0.35 0.55 1.66
optimized 0.80 0.84 0.26 0.03 1.02

28 2012010100 initial 0.63 0.68 0.34 0.22 1.42
optimized 0.82 0.79 0.20 0.05 0.80

29 2013010100 initial 0.78 0.65 0.31 0.32 1.35
optimized 0.95 0.82 0.20 0.06 0.92

average initial 0.64 0.62 0.37 0.29 0.78
optimized 0.82 0.83 0.22 0.05 0.87
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Table 5. Grid cell numbers with different model spatial resolution.

Model resolution Number of Number of Number of
grid cells hillslope cells river cells

200 m × 200 m 1 469 900 1 463 204 6696
400 m × 400 m 367 475 365 801 1674
500 m × 500 m 235 184 234 113 1071
600 m × 600 m 163 322 162 578 744
1000 m × 1000 m 58 796 58 528 268

ulated hydrological processes with the optimized model pa-
rameters are also good improvements to those simulated with
the initial parameters, which are 0.64, 0.62, 0.37, 0.29 and
0.78. They are excellent in improving in all five indices, with
the average increases of 0.18, 0.21 and 0.09 of the average
Nash–Sutcliffe coefficient, correlation coefficient and water
balance coefficient, respectively, and the average decreases
of the peak flow error and process relative error are 24 %
and 15 %, respectively. Therefore, it could be concluded that
the Liuxihe model setup in LRB with optimized parame-
ters is reasonable and could be used for flood forecasting of
LRB. This also implies that the parameter optimization of the
distributed hydrological model could improve model perfor-
mances, and it should be done when it is possible.

4 Discussions

4.1 Computation time vs. model resolution

To evaluate the spatial resolution scaling effect of distributed
hydrological modeling in LRB, the DEM with a 90 m × 90 m
resolution is rescaled to the resolutions of 400 m × 400 m,
500 m × 500 m, 600 m × 600 m and 1000 m × 1000 m; the
land use and soil type at a 1000 m × 1000 m resolution are
also rescaled to the same resolutions of the DEM used. Li-
uxihe models for LRB flood forecasting at the above resolu-
tions are then set up with the above methods, and the model
structures are shown in Fig. 6.

With different spatial resolutions, the numbers of grid
cells, hillslope cells and river cells are different, but the
river channel orders are all set to 3, the numbers of vir-
tual channel nodes for the 400 m × 400 m, 500 m × 500 m,
600 m × 600 m and 1000 m × 1000 m resolution models are
100, 68, 46 and 33, respectively, and numbers of grid cells,
hillslope cells and river cells with different model resolution
are listed in Table 5. The sizes of every virtual cross sections
in Fig. 6 are measured with the in Fig. 6.

From Table 5, it could be seen, number of grid cells
of the model with a 200 m × 200 m resolution is 4 times
that of the 400 m × 400 m resolution, 6.25 times that of the
500 m × 500 m resolution, 9 times that of the 600 m × 600 m
resolution, and 25 times that of the 1000 m × 1000 m resolu-
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Figure 6. Liuxihe model structure setup for LRB with different resolution.

tion; it increases at an approximate exponential of power 2,
not linearly with the model resolution.

Parameters of the models with 400 m × 400 m, 500 m ×

500 m, 600 m × 600 m and 1000 m × 1000 m resolutions are
optimized with the PSO algorithm by using the same flood
event data, and listed in Table 6. From the results it could
be seen that some parameters are significantly different with
resolution variation, but some change little, and this implies
that the model parameters are resolution dependent.

Computation times required for parameter optimization
are quite different. For the model with a 200 m × 200 m reso-
lution, the time for parameter optimization is 220 h, whereas
that for models with 400 m × 400 m, 500 m × 500 m,
600 m × 600 m and 1000 m × 1000 m the resolutions are 80,
55, 35 and 12 h, respectively. The times needed for param-
eter optimization of the model at 200 m × 200 m resolution
is 2.75 times that for the 400 m × 400 m resolution model, 4
times that for the 500 m × 500 m resolution model, 6.3 times
that for the 600 m × 600 m resolution model, and 18.3 times
that for the 1000 m × 1000 m resolution model. Considering
the time needed for model run, the 200 m × 200 m model res-
olution is regarded as appropriate for LRB.

4.2 Model performance vs. model resolution

The other 29 flood events are also simulated with the mod-
els at 400 m × 400 m resolution, 500 m × 500 m resolution,
600 m × 600 m resolution and 1000 m × 1000 m resolution.

Simulated hydrograph of five flood events, including two
big,two medium and one small, are shown in Fig. 7.

From the results it could be seen that the simulated hydro-
logical processes with five different spatial resolutions are
quite different. The result simulated with 1000 m × 1000 m
resolution is not so good, although the flood shapes are
simulated well, but the peak flows are much lower than
that of the observation; therefore, the result is not ac-
ceptable and could not be recommended. The result sim-
ulated with 600 m × 600 m resolution is better than that of
1000 m × 1000 m resolution, but there is still big peak flow
error, and therefore the result with 600 m × 600 m resolu-
tion is also not recommended. The result simulated with
the 500 m × 500 m resolution model is a big improvement
to those simulated with the 600 m × 600 m resolution and
1000 m × 1000 m resolution models, the flood shapes are
more similar to the observation, and the peak flow is also
closer to the observation; therefore, it could be recommended
for flood forecasting if the spatial resolution could not be
much finer. The result simulated with a 400 m × 400 m res-
olution has some improvements to that of a 500 m × 500 m
resolution, but it is not significant, so it is not recommended
to replace the results at the 500 m × 500 m resolution. The re-
sult simulated with the 200 m × 200 m resolution model is a
big improvement to those simulated with the 400 m × 400 m
resolution and 500 m × 500 m resolution model, the flood
shapes fit the observation much better and the peak flows are
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Figure 7. Simulated results with different model resolutions.

also much closer to the observation; it is a good simulation
result and could be recommended for flood forecasting of the
LRB. As the results are good enough, there is no need to fur-
ther explore the finer model resolution.

5 Conclusions

By employing Liuxihe model, a physically based distributed
hydrological model, this study sets up a distributed hydro-
logical model for the flood forecasting of the Liujiang River
basin in southern China that could be regarded as a large wa-
tershed. Terrain data including DEM, soil type and land use
type are downloaded from the website freely, and the model
structure with a high resolution of 200 m × 200 m grid cell
is set up, which divides the whole watershed into 1 469 900
grid cells that is further divided into 1 463 204 hillslope cells
and 6696 river cells. The initial model parameters are derived
from the terrain property data, and then optimized by us-

ing the PSO algorithm with one observed flood event, which
improves the model performance largely. 29 observed flood
events are simulated by using the model with optimized pa-
rameters, the results are analyzed, and the model scaling ef-
fects are studied. Based on these studies, following conclu-
sions are suggested.

1. In the Liuxihe model, the river channels are divided into
virtual channel sections, and the cross section shapes
are assumed to be trapezoid and the size is the same
within the virtual channel section. The size of the virtual
channel section is simplified to three indices, includ-
ing bottom width, side slope and bottom slope, those
are estimated by using remote sensing imageries. This
method not only makes the distributed model applica-
tion practical but also simplifies the river channel rout-
ing method. This significantly increases the model com-
putation efficiency, and it could be used in larger water-
sheds. Results in this study show the model setup with
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this method has a reasonable performance; i.e., this sim-
plification has not sacrificed the model’s flood simula-
tion accuracy significantly, and therefore this simplifi-
cation could be used in large-watershed-distributed hy-
drological modeling, including the Liuxihe model and
other models.

2. Uncertainty exists for physically derived model param-
eters. Parameter optimization could reduce parameter
uncertainty, and is highly recommended to do so when
there is some observed hydrological data. In this study,
the simulated hydrograph with optimized model param-
eters fits the observed hydrograph more in shape than
that simulated with initial model parameters, and the
five evaluation indices are improved also. The average
increases of the Nash–Sutcliffe coefficient, correlation
coefficient and water balance coefficient are 0.18, 0.21
and 0.09, respectively, and the average decreases of the
peak flow error and process relative error are 24 and
15 %, respectively; this implies that the model perfor-
mance is improved significantly with parameter opti-
mization.

3. Computation time needed for running a distributed hy-
drological model increases exponentially at an approx-
imate power of 2, not linearly with the increasing of
model spatial resolution. In this study, the computa-
tion time required for parameter optimization for the
model with a 200 m × 200 m resolution is 220 h, that
is 4 times of that of the model at 500 m × 500 m and
18.3 times of that of the model at 1000 m × 1000 m res-
olution. Based on the Liuxihe model cloud system im-
plemented on the high-performance supercomputer, the
200 m × 200 m model resolution is the highest resolu-
tion that could be fulfilled in modeling Liujiang River
basin flooding with the Liuxihe model, considering the
computation cost. This also means that if the user could
pay the high computation cost, then a larger watershed
could also be modeled with the Liuxihe model by im-
plemented the Liuxihe model cloud system on a much
more advanced high-performance supercomputer, this
could be easily done presently if the user thinks this in-
vestment is a worth doing.

4. In forecasting a watershed flood by using the distributed
hydrological model, minimum model spatial resolution
needs to be maintained to keeping the model at an ac-
ceptable performance. Usually if the model’s spatial
resolution increases, i.e., the grid cell gets smaller, the
model performance is better, but this will increase the
run time significantly; therefore, there is a threshold
model spatial resolution to keep the model performance
reasonable while keeping the model run at the least
amount of time. In this study, the threshold model spa-
tial resolution is at 500 m × 500 m grid cell, but the res-
olution at 200 m × 200 m grid cell is recommended by

trading-off between the computation cost and the model
performance. This conclusion may be different in differ-
ent watersheds for the Liuxihe model, or even different
in the same watershed for different models.

5. Terrain data downloaded freely from the website de-
rived a river channel system that is very similar to
the natural river channel system after it is rescaled
from its original spatial resolution of 90 m × 90 m to
200 m × 200 m, 500 m × 500 m and 1000 m × 1000 m,
but the higher-resolution DEM describes the river chan-
nel more in details. This means that the freely down-
loaded DEM could be used to set up the Liuxihe model
for Liujiang River basin flood forecasting.

6 Data availability

The DEM data were downloaded from the SRTM database
(http://srtm.csi.cgiar.org), the land use type data were down-
loaded from the USGS Global Land Cover Characteriza-
tion (GLCC) database (https://lta.cr.usgs.gov/GLCC), and
the soil type data were downloaded from FAO soil type
database (http://www.isric.org). The flood event data includ-
ing the rainfall and river discharge data are provided by the
Bureau of Hydrology, Pearl River Water Resources Commis-
sion, China; this data can only be used for this study and can-
not be provided to others by the authors.
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