Articles | Volume 21, issue 7
https://doi.org/10.5194/hess-21-3879-2017
https://doi.org/10.5194/hess-21-3879-2017
Review article
 | 
28 Jul 2017
Review article |  | 28 Jul 2017

The future of Earth observation in hydrology

Matthew F. McCabe, Matthew Rodell, Douglas E. Alsdorf, Diego G. Miralles, Remko Uijlenhoet, Wolfgang Wagner, Arko Lucieer, Rasmus Houborg, Niko E. C. Verhoest, Trenton E. Franz, Jiancheng Shi, Huilin Gao, and Eric F. Wood

Related authors

INTRA-FIELD CROP YIELD VARIABILITY BY ASSIMILATING CUBESAT LAI IN THE APSIM CROP MODEL
M. G. Ziliani, M. U. Altaf, B. Aragon, R. Houborg, T. E. Franz, Y. Lu, J. Sheffield, I. Hoteit, and M. F. McCabe
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLIII-B3-2022, 1045–1052, https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-1045-2022,https://doi.org/10.5194/isprs-archives-XLIII-B3-2022-1045-2022, 2022
Mapping groundwater abstractions from irrigated agriculture: big data, inverse modeling, and a satellite–model fusion approach
Oliver Miguel López Valencia, Kasper Johansen, Bruno José Luis Aragón Solorio, Ting Li, Rasmus Houborg, Yoann Malbeteau, Samer AlMashharawi, Muhammad Umer Altaf, Essam Mohammed Fallatah, Hari Prasad Dasari, Ibrahim Hoteit, and Matthew Francis McCabe
Hydrol. Earth Syst. Sci., 24, 5251–5277, https://doi.org/10.5194/hess-24-5251-2020,https://doi.org/10.5194/hess-24-5251-2020, 2020
Short summary
PREDICTING BIOMASS AND YIELD AT HARVEST OF SALT-STRESSED TOMATO PLANTS USING UAV IMAGERY
K. Johansen, M. J. L. Morton, Y. Malbeteau, B. Aragon, S. Al-Mashharawi, M. Ziliani, Y. Angel, G. Fiene, S. Negrao, M. A. A. Mousa, M. A. Tester, and M. F. McCabe
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W13, 407–411, https://doi.org/10.5194/isprs-archives-XLII-2-W13-407-2019,https://doi.org/10.5194/isprs-archives-XLII-2-W13-407-2019, 2019
Inferring soil salinity in a drip irrigation system from multi-configuration EMI measurements using adaptive Markov chain Monte Carlo
Khan Zaib Jadoon, Muhammad Umer Altaf, Matthew Francis McCabe, Ibrahim Hoteit, Nisar Muhammad, Davood Moghadas, and Lutz Weihermüller
Hydrol. Earth Syst. Sci., 21, 5375–5383, https://doi.org/10.5194/hess-21-5375-2017,https://doi.org/10.5194/hess-21-5375-2017, 2017
Short summary
PUSHBROOM HYPERSPECTRAL IMAGING FROM AN UNMANNED AIRCRAFT SYSTEM (UAS) – GEOMETRIC PROCESSINGWORKFLOW AND ACCURACY ASSESSMENT
D. Turner, A. Lucieer, M. McCabe, S. Parkes, and I. Clarke
Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XLII-2-W6, 379–384, https://doi.org/10.5194/isprs-archives-XLII-2-W6-379-2017,https://doi.org/10.5194/isprs-archives-XLII-2-W6-379-2017, 2017

Related subject area

Subject: Global hydrology | Techniques and Approaches: Remote Sensing and GIS
Dynamic rainfall erosivity estimates derived from IMERG data
Robert A. Emberson
Hydrol. Earth Syst. Sci., 27, 3547–3563, https://doi.org/10.5194/hess-27-3547-2023,https://doi.org/10.5194/hess-27-3547-2023, 2023
Short summary
A global analysis of water storage variations from remotely sensed soil moisture and daily satellite gravimetry
Daniel Blank, Annette Eicker, Laura Jensen, and Andreas Güntner
Hydrol. Earth Syst. Sci., 27, 2413–2435, https://doi.org/10.5194/hess-27-2413-2023,https://doi.org/10.5194/hess-27-2413-2023, 2023
Short summary
Investigating sources of variability in closing the terrestrial water balance with remote sensing
Claire Irene Michailovsky, Bert Coerver, Marloes Mul, and Graham Jewitt
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-81,https://doi.org/10.5194/hess-2023-81, 2023
Revised manuscript accepted for HESS
Short summary
Soil moisture estimates at 1 km resolution making a synergistic use of Sentinel data
Remi Madelon, Nemesio J. Rodríguez-Fernández, Hassan Bazzi, Nicolas Baghdadi, Clement Albergel, Wouter Dorigo, and Mehrez Zribi
Hydrol. Earth Syst. Sci., 27, 1221–1242, https://doi.org/10.5194/hess-27-1221-2023,https://doi.org/10.5194/hess-27-1221-2023, 2023
Short summary
Global evaluation of the “dry gets drier, and wet gets wetter” paradigm from a terrestrial water storage change perspective
Jinghua Xiong, Shenglian Guo, Abhishek, Jie Chen, and Jiabo Yin
Hydrol. Earth Syst. Sci., 26, 6457–6476, https://doi.org/10.5194/hess-26-6457-2022,https://doi.org/10.5194/hess-26-6457-2022, 2022
Short summary

Cited articles

Aires, F., Prigent, C., Rossow, W. B., and Rothstein, M.: A new neural network approach including first guess for retrieval of atmospheric water vapor, cloud liquid water path, surface temperature, and emissivities over land from satellite microwave observations, J. Geophys. Res.-Atmos., 106, 14887–14907, 2001.
Aker, J. C. and Mbiti, I. M.: Mobile phones and economic development in Africa, J. Econ. Perspect., 24, 207–232, https://doi.org/10.1257/jep.24.3.207, 2010.
Alemohammad, S. H., Fang, B., Konings, A. G., Green, J. K., Kolassa, J., Prigent, C., Aires, F., Miralles, D., and Gentine, P.: Water, Energy, and Carbon with Artificial Neural Networks (WECANN): A statistically-based estimate of global surface turbulent fluxes using solar-induced fluorescence, Biogeosciences Discuss., https://doi.org/10.5194/bg-2016-495, in review, 2016.
Allamano, P., Croci, A., and Laio, F.: Toward the camera rain gauge, Water Resour. Res., 51, 1744–1757, https://doi.org/10.1002/2014WR016298, 2015.
Alsdorf, D. E., Rodríguez, E., and Lettenmaier, D. P.: Measuring surface water from space, Rev. Geophys., 45, RG2002, https://doi.org/10.1029/2006RG000197, 2007.
Download
Short summary
We examine the opportunities and challenges that technological advances in Earth observation will present to the hydrological community. From advanced space-based sensors to unmanned aerial vehicles and ground-based distributed networks, these emergent systems are set to revolutionize our understanding and interpretation of hydrological and related processes.