Articles | Volume 20, issue 1
https://doi.org/10.5194/hess-20-505-2016
https://doi.org/10.5194/hess-20-505-2016
Research article
 | 
29 Jan 2016
Research article |  | 29 Jan 2016

Development and verification of a real-time stochastic precipitation nowcasting system for urban hydrology in Belgium

L. Foresti, M. Reyniers, A. Seed, and L. Delobbe

Related authors

Quality control and correction method for air temperature data from a citizen science weather station network in Leuven, Belgium
Eva Beele, Maarten Reyniers, Raf Aerts, and Ben Somers
Earth Syst. Sci. Data, 14, 4681–4717, https://doi.org/10.5194/essd-14-4681-2022,https://doi.org/10.5194/essd-14-4681-2022, 2022
Short summary
Exploring the use of underground gravity monitoring to evaluate radar estimates of heavy rainfall
Laurent Delobbe, Arnaud Watlet, Svenja Wilfert, and Michel Van Camp
Hydrol. Earth Syst. Sci., 23, 93–105, https://doi.org/10.5194/hess-23-93-2019,https://doi.org/10.5194/hess-23-93-2019, 2019
Short summary
Analysis of lightning outliers in the EUCLID network
Dieter R. Poelman, Wolfgang Schulz, Rudolf Kaltenboeck, and Laurent Delobbe
Atmos. Meas. Tech., 10, 4561–4572, https://doi.org/10.5194/amt-10-4561-2017,https://doi.org/10.5194/amt-10-4561-2017, 2017
Short summary
Regional frequency analysis of extreme rainfall in Belgium based on radar estimates
Edouard Goudenhoofdt, Laurent Delobbe, and Patrick Willems
Hydrol. Earth Syst. Sci., 21, 5385–5399, https://doi.org/10.5194/hess-21-5385-2017,https://doi.org/10.5194/hess-21-5385-2017, 2017
Short summary
Imperfect scaling in distributions of radar-derived rainfall fields
M. J. van den Berg, L. Delobbe, and N. E. C. Verhoest
Hydrol. Earth Syst. Sci., 18, 5331–5344, https://doi.org/10.5194/hess-18-5331-2014,https://doi.org/10.5194/hess-18-5331-2014, 2014

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Modelling approaches
The suitability of a seasonal ensemble hybrid framework including data-driven approaches for hydrological forecasting
Sandra M. Hauswirth, Marc F. P. Bierkens, Vincent Beijk, and Niko Wanders
Hydrol. Earth Syst. Sci., 27, 501–517, https://doi.org/10.5194/hess-27-501-2023,https://doi.org/10.5194/hess-27-501-2023, 2023
Short summary
Continuous streamflow prediction in ungauged basins: long short-term memory neural networks clearly outperform traditional hydrological models
Richard Arsenault, Jean-Luc Martel, Frédéric Brunet, François Brissette, and Juliane Mai
Hydrol. Earth Syst. Sci., 27, 139–157, https://doi.org/10.5194/hess-27-139-2023,https://doi.org/10.5194/hess-27-139-2023, 2023
Short summary
Daily ensemble river discharge reforecasts and real-time forecasts from the operational Global Flood Awareness System
Shaun Harrigan, Ervin Zsoter, Hannah Cloke, Peter Salamon, and Christel Prudhomme
Hydrol. Earth Syst. Sci., 27, 1–19, https://doi.org/10.5194/hess-27-1-2023,https://doi.org/10.5194/hess-27-1-2023, 2023
Short summary
Spatial distribution of oceanic moisture contributions to precipitation over the Tibetan Plateau
Ying Li, Chenghao Wang, Ru Huang, Denghua Yan, Hui Peng, and Shangbin Xiao
Hydrol. Earth Syst. Sci., 26, 6413–6426, https://doi.org/10.5194/hess-26-6413-2022,https://doi.org/10.5194/hess-26-6413-2022, 2022
Short summary
Ensemble streamflow prediction considering the influence of reservoirs in Narmada River Basin, India
Urmin Vegad and Vimal Mishra
Hydrol. Earth Syst. Sci., 26, 6361–6378, https://doi.org/10.5194/hess-26-6361-2022,https://doi.org/10.5194/hess-26-6361-2022, 2022
Short summary

Cited articles

Achleitner, S., Fach, S., Einfalt, T., and Rauch, W.: Nowcasting of rainfall and of combined sewage flow in urban drainage systems, Water Sci. Technol., 59, 1145–51, 2009.
Atencia, A. and Zawadzki, I.: A comparison of two techniques for generating nowcasting ensembles – Part I: Lagrangian ensemble technique, Mon. Weather Rev., 142, 4036–4052, 2014.
Berenguer, M., Corral, C., Sánchez-Diezma, R., and Sempere-Torres, D.: Hydrological validation of a radar-based nowcasting technique, J. Hydrometeorol., 6, 532–549, 2005.
Berenguer, M., Sempere-Torres, D., and Pegram, G. G. S.: SBMcast – an ensemble nowcasting technique to assess the uncertainty in rainfall forecasts by Lagrangian extrapolation, J. Hydrol., 404, 226–240, 2011.
Berne, A., Delrieu, G., Creutin, J.-D., and Obled, C.: Temporal and spatial resolution of rainfall measurements required for urban hydrology, J. Hydrol., 299, 166–179, 2004.
Download
Short summary
The Short-Term Ensemble Prediction System (STEPS) is implemented in real time at the Royal Meteorological Institute of Belgium (STEPS-BE). The idea behind STEPS is to quantify the forecast uncertainty by adding stochastic perturbations to the deterministic extrapolation of radar images. In this paper we present the deterministic, probabilistic and ensemble verification of STEPS-BE forecasts using four precipitation cases that caused sewer system overflow in the cities of Leuven and Ghent.