Articles | Volume 20, issue 1
https://doi.org/10.5194/hess-20-299-2016
https://doi.org/10.5194/hess-20-299-2016
Research article
 | Highlight paper
 | 
19 Jan 2016
Research article | Highlight paper |  | 19 Jan 2016

Aggregation in environmental systems – Part 2: Catchment mean transit times and young water fractions under hydrologic nonstationarity

J. W. Kirchner

Related authors

Characterizing nonlinear, nonstationary, and heterogeneous hydrologic behavior using Ensemble Rainfall-Runoff Analysis (ERRA): proof of concept
James W. Kirchner
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-103,https://doi.org/10.5194/hess-2024-103, 2024
Revised manuscript under review for HESS
Short summary
Young and new water fractions in soil and hillslope waters
Marius G. Floriancic, Scott T. Allen, and James W. Kirchner
EGUsphere, https://doi.org/10.5194/egusphere-2024-437,https://doi.org/10.5194/egusphere-2024-437, 2024
Short summary
Seasonal dynamics and spatial patterns of soil moisture in a loess catchment
Shaozhen Liu, Ilja van Meerveld, Yali Zhao, Yunqiang Wang, and James W. Kirchner
Hydrol. Earth Syst. Sci., 28, 205–216, https://doi.org/10.5194/hess-28-205-2024,https://doi.org/10.5194/hess-28-205-2024, 2024
Short summary
New water fractions and their relationships to climate and catchment properties across Alpine rivers
Marius G. Floriancic, Michael P. Stockinger, James W. Kirchner, and Christine Stumpp
EGUsphere, https://doi.org/10.5194/egusphere-2023-1854,https://doi.org/10.5194/egusphere-2023-1854, 2023
Short summary
Toward a general calibration of the Swiss plate geophone system for fractional bedload transport
Tobias Nicollier, Gilles Antoniazza, Lorenz Ammann, Dieter Rickenmann, and James W. Kirchner
Earth Surf. Dynam., 10, 929–951, https://doi.org/10.5194/esurf-10-929-2022,https://doi.org/10.5194/esurf-10-929-2022, 2022
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Theory development
Flood drivers and trends: a case study of the Geul River catchment (the Netherlands) over the past half century
Athanasios Tsiokanos, Martine Rutten, Ruud J. van der Ent, and Remko Uijlenhoet
Hydrol. Earth Syst. Sci., 28, 3327–3345, https://doi.org/10.5194/hess-28-3327-2024,https://doi.org/10.5194/hess-28-3327-2024, 2024
Short summary
Power law between the apparent drainage density and the pruning area
Soohyun Yang, Kwanghun Choi, and Kyungrock Paik
Hydrol. Earth Syst. Sci., 28, 3119–3132, https://doi.org/10.5194/hess-28-3119-2024,https://doi.org/10.5194/hess-28-3119-2024, 2024
Short summary
Stream water sourcing from high-elevation snowpack inferred from stable isotopes of water: a novel application of d-excess values
Matthias Sprenger, Rosemary W. H. Carroll, David Marchetti, Carleton Bern, Harsh Beria, Wendy Brown, Alexander Newman, Curtis Beutler, and Kenneth H. Williams
Hydrol. Earth Syst. Sci., 28, 1711–1723, https://doi.org/10.5194/hess-28-1711-2024,https://doi.org/10.5194/hess-28-1711-2024, 2024
Short summary
Elasticity curves describe streamflow sensitivity to precipitation across the entire flow distribution
Bailey J. Anderson, Manuela I. Brunner, Louise J. Slater, and Simon J. Dadson
Hydrol. Earth Syst. Sci., 28, 1567–1583, https://doi.org/10.5194/hess-28-1567-2024,https://doi.org/10.5194/hess-28-1567-2024, 2024
Short summary
Bimodal Hydrographs in Semi-humid Forested Watershed: Characteristics and Occurrence Conditions
Zhen Cui, Fuqiang Tian, Zilong Zhao, Zitong Xu, Yongjie Duan, Jie Wen, and Mohd Yawar Ali Khan
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-36,https://doi.org/10.5194/hess-2024-36, 2024
Revised manuscript accepted for HESS
Short summary

Cited articles

Benettin, P., van der Velde, Y., van der Zee, S., Rinaldo, A., and Botter, G.: Chloride circulation in a lowland catchment and the formulation of transport by travel time distributions, Water Resour. Res., 49, 4619–4632, https://doi.org/10.1002/wrcr.20309, 2013.
Benettin, P., Kirchner, J., Rinaldo, A., and Botter, G.: Modeling chloride transport using travel-time distributions at Plynlimon, Wales, Water Resour. Res., 51, 3259–3276, https://doi.org/10.1002/2014WR016600, 2015.
Bethke, C. M., and Johnson, T. M.: Groundwater age and groundwater age dating, Annu. Rev. Earth Planet. Sci., 36, 121–152, https://doi.org/10.1146/annurev.earth.36.031207.124210, 2008.
Beven, K.: On subsurface stormflow: predictions with simple kinematic theory for saturated and unsaturated flows, Water Resour. Res., 18, 1627–1633, 1982.
Beven, K.: A manifesto for the equifinality thesis, J. Hydrol., 320, 18–36, https://doi.org/10.1016/j.jhydrol.2005.07.007, 2006.
Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
Here I show that seasonal tracer cycles yield strongly biased estimates of mean transit times in nonstationary catchments (and, by implication, in real-world catchments). However, they can be used to reliably estimate the fraction of "young" water in streamflow, meaning water that fell as precipitation less than roughly 2–3 months ago. This young water fraction varies systematically between high and low flows and may help in characterizing controls on stream chemistry.