Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.153
IF5.153
IF 5-year value: 5.460
IF 5-year
5.460
CiteScore value: 7.8
CiteScore
7.8
SNIP value: 1.623
SNIP1.623
IPP value: 4.91
IPP4.91
SJR value: 2.092
SJR2.092
Scimago H <br class='widget-line-break'>index value: 123
Scimago H
index
123
h5-index value: 65
h5-index65
Volume 20, issue 4
Hydrol. Earth Syst. Sci., 20, 1483–1508, 2016
https://doi.org/10.5194/hess-20-1483-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.
Hydrol. Earth Syst. Sci., 20, 1483–1508, 2016
https://doi.org/10.5194/hess-20-1483-2016
© Author(s) 2016. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 19 Apr 2016

Research article | 19 Apr 2016

Hydrologic extremes – an intercomparison of multiple gridded statistical downscaling methods

Arelia T. Werner and Alex J. Cannon

Related authors

Climate and atmospheric drivers of historical terrestrial carbon uptake in the province of British Columbia, Canada
Y. Peng, V. K. Arora, W. A. Kurz, R. A. Hember, B. J. Hawkins, J. C. Fyfe, and A. T. Werner
Biogeosciences, 11, 635–649, https://doi.org/10.5194/bg-11-635-2014,https://doi.org/10.5194/bg-11-635-2014, 2014

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Modelling approaches
A meteorological–hydrological regional ensemble forecast for an early-warning system over small Apennine catchments in Central Italy
Rossella Ferretti, Annalina Lombardi, Barbara Tomassetti, Lorenzo Sangelantoni, Valentina Colaiuda, Vincenzo Mazzarella, Ida Maiello, Marco Verdecchia, and Gianluca Redaelli
Hydrol. Earth Syst. Sci., 24, 3135–3156, https://doi.org/10.5194/hess-24-3135-2020,https://doi.org/10.5194/hess-24-3135-2020, 2020
Short summary
Bias in dynamically downscaled rainfall characteristics for hydroclimatic projections
Nicholas J. Potter, Francis H. S. Chiew, Stephen P. Charles, Guobin Fu, Hongxing Zheng, and Lu Zhang
Hydrol. Earth Syst. Sci., 24, 2963–2979, https://doi.org/10.5194/hess-24-2963-2020,https://doi.org/10.5194/hess-24-2963-2020, 2020
Short summary
Impact of downscaled rainfall biases on projected runoff changes
Stephen P. Charles, Francis H. S. Chiew, Nicholas J. Potter, Hongxing Zheng, Guobin Fu, and Lu Zhang
Hydrol. Earth Syst. Sci., 24, 2981–2997, https://doi.org/10.5194/hess-24-2981-2020,https://doi.org/10.5194/hess-24-2981-2020, 2020
Short summary
Comparing Palmer Drought Severity Index drought assessments using the traditional offline approach with direct climate model outputs
Yuting Yang, Shulei Zhang, Michael L. Roderick, Tim R. McVicar, Dawen Yang, Wenbin Liu, and Xiaoyan Li
Hydrol. Earth Syst. Sci., 24, 2921–2930, https://doi.org/10.5194/hess-24-2921-2020,https://doi.org/10.5194/hess-24-2921-2020, 2020
Short summary
Uncovering the shortcomings of a weather typing method
Els Van Uytven, Jan De Niel, and Patrick Willems
Hydrol. Earth Syst. Sci., 24, 2671–2686, https://doi.org/10.5194/hess-24-2671-2020,https://doi.org/10.5194/hess-24-2671-2020, 2020
Short summary

Cited articles

Abatzoglou, J. T. and Brown, T. J.: A comparison of statistical downscaling methods suited for wildfire applications, Int. J. Climatol., 32, 772–780, 2012.
Ahmed, K. F., Wang, G., Silander, J., Wilson, A. M., Allen, J. M., Horton, R., and Anyah, R.: Statistical downscaling and bias correction of climate model outputs for climate change impact assessment in the U.S. northeast, Global Planet. Change, 100, 320–332, 2013.
Benestad, B. E., Hanssen-Bauer, I., and Chen, D.: Chapter 8: Reducing Uncertainties, in: Emperical-Statistical Downscaling, World Scientific, Singapore, 2008.
Bennett, K. E., Werner, A. T., and Schnorbus, M.: Uncertainties in Hydrologic and Climate Change Impact Analyses in Headwater Basins of British Columbia, J. Climate, 25, 5711–5730, 2012.
Bürger, G., Schulla, J., and Werner, A. T.: Estimates of future flow, including extremes, of the Columbia River headwaters, Water Resour. Res., 47, W10520, https://doi.org/10.1029/2010WR009716, 2011.
Publications Copernicus
Download
Short summary
Seven gridded statistical downscaling methods are tested for strength in simulating climate and hydrologic extremes. A recently developed technique, which is a post-processed version of bias corrected constructed analogues where the final bias correction is based on the bias corrected climate imprint method, is shown to be an especially strong method for hydrologic extremes versus other more commonly applied methods, including the popular bias corrected spatial disaggregation method.
Seven gridded statistical downscaling methods are tested for strength in simulating climate and...
Citation