Articles | Volume 19, issue 7
Hydrol. Earth Syst. Sci., 19, 3181–3201, 2015
https://doi.org/10.5194/hess-19-3181-2015
Hydrol. Earth Syst. Sci., 19, 3181–3201, 2015
https://doi.org/10.5194/hess-19-3181-2015

Research article 23 Jul 2015

Research article | 23 Jul 2015

Estimation of predictive hydrologic uncertainty using the quantile regression and UNEEC methods and their comparison on contrasting catchments

N. Dogulu et al.

Related authors

A Hydrologist's Guide to Open Science
Caitlyn A. Hall, Sheila M. Saia, Andrea L. Popp, Nilay Dogulu, Stanislaus J. Schymanski, Niels Drost, Tim van Emmerik, and Rolf Hut
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2021-392,https://doi.org/10.5194/hess-2021-392, 2021
Preprint under review for HESS
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Uncertainty analysis
Sequential data assimilation for real-time probabilistic flood inundation mapping
Keighobad Jafarzadegan, Peyman Abbaszadeh, and Hamid Moradkhani
Hydrol. Earth Syst. Sci., 25, 4995–5011, https://doi.org/10.5194/hess-25-4995-2021,https://doi.org/10.5194/hess-25-4995-2021, 2021
Short summary
Key challenges facing the application of the conductivity mass balance method: a case study of the Mississippi River basin
Hang Lyu, Chenxi Xia, Jinghan Zhang, and Bo Li
Hydrol. Earth Syst. Sci., 24, 6075–6090, https://doi.org/10.5194/hess-24-6075-2020,https://doi.org/10.5194/hess-24-6075-2020, 2020
Short summary
Coupled machine learning and the limits of acceptability approach applied in parameter identification for a distributed hydrological model
Aynom T. Teweldebrhan, Thomas V. Schuler, John F. Burkhart, and Morten Hjorth-Jensen
Hydrol. Earth Syst. Sci., 24, 4641–4658, https://doi.org/10.5194/hess-24-4641-2020,https://doi.org/10.5194/hess-24-4641-2020, 2020
A systematic assessment of uncertainties in large-scale soil loss estimation from different representations of USLE input factors – a case study for Kenya and Uganda
Christoph Schürz, Bano Mehdi, Jens Kiesel, Karsten Schulz, and Mathew Herrnegger
Hydrol. Earth Syst. Sci., 24, 4463–4489, https://doi.org/10.5194/hess-24-4463-2020,https://doi.org/10.5194/hess-24-4463-2020, 2020
Short summary
Technical note: Uncertainty in multi-source partitioning using large tracer data sets
Alicia Correa, Diego Ochoa-Tocachi, and Christian Birkel
Hydrol. Earth Syst. Sci., 23, 5059–5068, https://doi.org/10.5194/hess-23-5059-2019,https://doi.org/10.5194/hess-23-5059-2019, 2019
Short summary

Cited articles

Aubert, D., Loumagne, C., and Oudin, L.: Sequential assimilation of soil moisture and streamflow data in a conceptual rainfallrunoff model, J. Hydrol., 280, 145–161, https://doi.org/10.1016/S0022-1694(03)00229-4a, 2003.
Bailey, R. and Dobson, C.: Forecasting for floods in the Severn catchment, J. Inst. Water Eng. Sci., 35, 168–178, 1981.
Barnwal, P. and Kotani, K.: Climatic impacts across agricultural crop yield distributions: An application of quantile regression on rice crops in Andhra Pradesh, India, Ecol. Econ., 87, 95–109, 2013.
Battiti, R.: Using mutual information for selecting features in supervised neural net learning, IEEE T. Neural Networ., 5, 537–550, 1994.
Baur, D., Saisana, M., and Schulze, N.: Modelling the effects of meteorological variables on ozone concentration – a quantile regression approach, Atmos. Environ., 38, 4689–4699, 2004.
Download