Articles | Volume 19, issue 7
https://doi.org/10.5194/hess-19-3181-2015
https://doi.org/10.5194/hess-19-3181-2015
Research article
 | 
23 Jul 2015
Research article |  | 23 Jul 2015

Estimation of predictive hydrologic uncertainty using the quantile regression and UNEEC methods and their comparison on contrasting catchments

N. Dogulu, P. López López, D. P. Solomatine, A. H. Weerts, and D. L. Shrestha

Related authors

A hydrologist's guide to open science
Caitlyn A. Hall, Sheila M. Saia, Andrea L. Popp, Nilay Dogulu, Stanislaus J. Schymanski, Niels Drost, Tim van Emmerik, and Rolf Hut
Hydrol. Earth Syst. Sci., 26, 647–664, https://doi.org/10.5194/hess-26-647-2022,https://doi.org/10.5194/hess-26-647-2022, 2022
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Uncertainty analysis
Use of expert elicitation to assign weights to climate and hydrological models in climate impact studies
Eva Sebok, Hans Jørgen Henriksen, Ernesto Pastén-Zapata, Peter Berg, Guillaume Thirel, Anthony Lemoine, Andrea Lira-Loarca, Christiana Photiadou, Rafael Pimentel, Paul Royer-Gaspard, Erik Kjellström, Jens Hesselbjerg Christensen, Jean Philippe Vidal, Philippe Lucas-Picher, Markus G. Donat, Giovanni Besio, María José Polo, Simon Stisen, Yvan Caballero, Ilias G. Pechlivanidis, Lars Troldborg, and Jens Christian Refsgaard
Hydrol. Earth Syst. Sci., 26, 5605–5625, https://doi.org/10.5194/hess-26-5605-2022,https://doi.org/10.5194/hess-26-5605-2022, 2022
Short summary
Pitfalls and a feasible solution for using KGE as an informal likelihood function in MCMC methods: DREAM(ZS) as an example
Yan Liu, Jaime Fernández-Ortega, Matías Mudarra, and Andreas Hartmann
Hydrol. Earth Syst. Sci., 26, 5341–5355, https://doi.org/10.5194/hess-26-5341-2022,https://doi.org/10.5194/hess-26-5341-2022, 2022
Short summary
Benchmarking global hydrological and land surface models against GRACE in a medium-sized tropical basin
Silvana Bolaños Chavarría, Micha Werner, Juan Fernando Salazar, and Teresita Betancur Vargas
Hydrol. Earth Syst. Sci., 26, 4323–4344, https://doi.org/10.5194/hess-26-4323-2022,https://doi.org/10.5194/hess-26-4323-2022, 2022
Short summary
Guidance on evaluating parametric model uncertainty at decision-relevant scales
Jared D. Smith, Laurence Lin, Julianne D. Quinn, and Lawrence E. Band
Hydrol. Earth Syst. Sci., 26, 2519–2539, https://doi.org/10.5194/hess-26-2519-2022,https://doi.org/10.5194/hess-26-2519-2022, 2022
Short summary
Quantifying input uncertainty in the calibration of water quality models: reordering errors via the secant method
Xia Wu, Lucy Marshall, and Ashish Sharma
Hydrol. Earth Syst. Sci., 26, 1203–1221, https://doi.org/10.5194/hess-26-1203-2022,https://doi.org/10.5194/hess-26-1203-2022, 2022
Short summary

Cited articles

Aubert, D., Loumagne, C., and Oudin, L.: Sequential assimilation of soil moisture and streamflow data in a conceptual rainfallrunoff model, J. Hydrol., 280, 145–161, https://doi.org/10.1016/S0022-1694(03)00229-4a, 2003.
Bailey, R. and Dobson, C.: Forecasting for floods in the Severn catchment, J. Inst. Water Eng. Sci., 35, 168–178, 1981.
Barnwal, P. and Kotani, K.: Climatic impacts across agricultural crop yield distributions: An application of quantile regression on rice crops in Andhra Pradesh, India, Ecol. Econ., 87, 95–109, 2013.
Battiti, R.: Using mutual information for selecting features in supervised neural net learning, IEEE T. Neural Networ., 5, 537–550, 1994.
Baur, D., Saisana, M., and Schulze, N.: Modelling the effects of meteorological variables on ozone concentration – a quantile regression approach, Atmos. Environ., 38, 4689–4699, 2004.
Download