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Abstract. In operational hydrology, estimation of the predic-

tive uncertainty of hydrological models used for flood mod-

elling is essential for risk-based decision making for flood

warning and emergency management. In the literature, there

exists a variety of methods analysing and predicting uncer-

tainty. However, studies devoted to comparing the perfor-

mance of the methods in predicting uncertainty are limited.

This paper focuses on the methods predicting model residual

uncertainty that differ in methodological complexity: quan-

tile regression (QR) and UNcertainty Estimation based on lo-

cal Errors and Clustering (UNEEC). The comparison of the

methods is aimed at investigating how well a simpler method

using fewer input data performs over a more complex method

with more predictors. We test these two methods on several

catchments from the UK that vary in hydrological charac-

teristics and the models used. Special attention is given to

the methods’ performance under different hydrological con-

ditions. Furthermore, normality of model residuals in data

clusters (identified by UNEEC) is analysed. It is found that

basin lag time and forecast lead time have a large impact on

the quantification of uncertainty and the presence of normal-

ity in model residuals’ distribution. In general, it can be said

that both methods give similar results. At the same time, it

is also shown that the UNEEC method provides better per-

formance than QR for small catchments with the changing

hydrological dynamics, i.e. rapid response catchments. It is

recommended that more case studies of catchments of dis-

tinct hydrologic behaviour, with diverse climatic conditions,

and having various hydrological features, be considered.

1 Introduction

The importance of accounting for uncertainty in hydrolog-

ical models used in flood early warning systems is widely

recognized (e.g. Krzysztofowicz, 2001; Pappenberger and

Beven, 2006). Such an uncertainty in the model prediction

stems mainly from four important sources: perceptual model

uncertainty, data uncertainty, parameter estimation uncer-

tainty, and model structural uncertainty (e.g. Solomatine and

Wagener, 2011). Analysis of predictive uncertainty (Todini,

2008) of hydrological models used for flood modelling en-

able hydrologists and managers to achieve better risk-based

decision making and thus has the potential to increase the re-

liability and credibility of flood warning. Therefore, the ne-

cessity of estimating the predictive uncertainty of rainfall–

runoff models is broadly acknowledged in operational hy-

drology, and the management of uncertainty in hydrologic
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predictions has emerged as a major focus of interest in both

research and operational modelling (Wagener and Gupta,

2005; Liu and Gupta, 2007; Montanari, 2007; Todini, 2008).

In this respect comparing different methods, which are often

developed and tested in isolation, receives the attention of

researchers, e.g. as suggested within the HEPEX framework

(see van Andel et al., 2013).

While the discussions on the necessity of evaluating the

contributions of various sources of errors to the overall model

uncertainty have been going for a long time (see e.g. Gupta

et al., 2005; Brown and Heuvelink, 2005; Liu and Gupta,

2007), there have also been attempts to estimate the residual

uncertainty. By residual uncertainty, we understand the re-

maining model uncertainty assuming that other sources were

accounted for (for example by calibrating the parameters),

or not considered (all other sources like an inaccurate rating

curve, inputs, etc.) (Solomatine and Shrestha, 2009). We rec-

ognize that there are many sources of uncertainty leading to

uncertainty in the model output (their influence is typically

explored by running Monte Carlo experiments). However, in

this paper we consider the uncertainty of model outputs, as-

suming that parameters, inputs and the data used for model

calibration are known (so we do not consider their uncer-

tainty explicitly). Within this context, a (residual) model er-

ror is seen as a manifestation of the (residual) model uncer-

tainty.

In this context, two classes of uncertainty analysis meth-

ods can be considered. The first one relates to the Bayesian

framework with the meta-Gaussian transformation of data

as its important part; these methods are based on a rigor-

ous statistical framework. The following techniques and pa-

pers can be mentioned: the original Bayesian forecasting sys-

tem (BFS) and the Hydrological Uncertainty Processor as

its part (Krzysztofowicz, 1999; Krzysztofowicz and Kelly,

2000); its implementations and variations described in Mon-

tanari and Brath (2004), Reggiani and Weerts (2008), Reg-

giani et al. (2009), and Bogner and Pappenberger (2011); and

the Model Conditional Processor (Todini, 2008; Coccia and

Todini, 2011).

The other class of methods (of which two are dealt with

in this paper) includes more “straightforward” ones which

are directly oriented at predicting the properties (quantiles)

of the residual error distribution by linear or non-linear re-

gression (machine learning) techniques: quantile regression

(QR) (Koenker and Basset, 1978) with its applications in hy-

drology reported by Solomatine and Shrestha (2009), Weerts

et al. (2011), and López López et al. (2013); UNcertainty

Estimation based on local Errors and Clustering (UNEEC)

that uses machine learning techniques (Shrestha and Soloma-

tine, 2006; Solomatine and Shrestha, 2009); and the dynamic

uncertainty model by regression on absolute error (DUMB-

RAE) (Pianosi and Raso, 2012). In this paper we consider

two methods from this class that differ in their methodolog-

ical complexity: quantile regression (QR) and UNcertainty

Estimation based on local Errors and Clustering (UNEEC).

Quantile regression (Koenker and Basset, 1978; Koenker

and Hallock, 2001; Koenker, 2005) is basically a set of lin-

ear regression models (typically, two) where predictands (re-

sponse variables) are the selected quantiles of the conditional

distribution of some variables (discharge or water level in

the present research study), and predictors are lagged values

of the same variable. This methodology allows for examina-

tion of the entire distribution of the variable of interest rather

than a single measure of the central tendency of its distribu-

tion (Koenker, 2005). QR models have been used in a broad

range of applications: economics and financial market anal-

ysis (Kudryavtsev, 2009; Taylor, 2007), agriculture (Barnwal

and Kotani, 2013), meteorology (Bremnes, 2004; Friederichs

and Hense, 2007; Cannon, 2011), wind forecasting (Nielsen

et al., 2006; Møller et al., 2008), the prediction of ozone con-

centrations (Baur et al., 2004; Munir et al., 2012), etc. In hy-

drological modelling the QR method has been applied as an

uncertainty post-processing technique in previous research

studies with different configurations.

The configurations of QR differ mainly in two aspects:

treatment of the quantile crossing problem (a problem when

quantiles of the lower order appear to be larger than those

of the higher order) and the quantiles derivation in normal

space using normal quantile transformation (NQT). Solo-

matine and Shrestha (2009) make use of the classical QR

approach, without considering quantile crossing and NQT.

Weerts et al. (2011), Verkade and Werner (2011), and Roscoe

et al. (2012) apply QR to various deterministic hydrologic

forecasts. The QR configuration investigated in these stud-

ies uses the water level or discharge forecasts as predictors

to estimate the distribution quantiles of the model error. It

includes a transformation into normal space using the NQT

and the quantile crossing problem is addressed by imposing

a fixed distribution of the predictand in the crossing domain.

Singh et al. (2013) make use of a similar configuration dif-

ferentiating two cases based on the similarities in informa-

tion content between calibration and validation data periods.

Coccia and Todini (2011) observe that QR’s usefulness and

performance depend on the assumed patterns in quantiles; for

example, lack of linear variation of the error variance with

the magnitude of the forecasts hinders reasonable estimation

of the quantiles, especially for high flows/water levels. López

López et al. (2014) apply QR to predict the quantiles of the

environmental variables itself (water level) rather than the

quantiles of the model error, and the four different configura-

tions of QR are compared and extensively verified. It should

be noted that, in this study, by design, the only predictor

in QR is the deterministic model output for discharge/water

level, and the quantiles of observed discharge/water level are

estimated through linear regression.

The UNEEC method was introduced 10 years ago

(Shrestha and Solomatine, 2006; Shrestha et al., 2006). The

method builds a non-linear regression model (machine learn-

ing, e.g. an artificial neural network) to estimate the quantiles

of the error distribution, and it assumes that residual uncer-
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tainty depends on the modelled system state characteristics

so that any variable can be used as a predictor. A notable

characteristic of UNEEC is the special attention to achiev-

ing accuracy by local modelling of errors (by clustering and

treating clusters separately), so that particularities of differ-

ent hydrometeorological conditions, i.e. heterogeneities in-

herent to rainfall–runoff process, are represented through dif-

ferent error pdfs. Shrestha and Solomatine (2006) tested the

UNEEC method on the Sieve catchment in Italy based on the

estimates of lower and upper prediction limits correspond-

ing to the 90 % confidence level (CL). The method was also

applied to a different catchment (Brue, in the UK; HBV

model) and it was compared to the Bayesian meta-Gaussian

approach (Montanari and Brath, 2004), as well as the version

of Monte Carlo technique GLUE (Beven and Binley, 1992).

It was reported that the uncertainty estimates obtained by

UNEEC were in fact more acceptable and interpretable than

those obtained by the other methods. UNEEC was further ex-

tended to estimate several quantiles (thus approximating the

full pdf of the error distribution) and applied to the Bagmati

catchment in Nepal (Solomatine and Shrestha, 2009), and it

was compared to several other methods including QR. It was

found that the UNEEC method generated consistent and in-

terpretable results which are more accurate and reliable than

QR. In the further study (Pianosi et al., 2010) UNEEC was

extended so as to include parametric uncertainty (UNEEC-

P); however, local features of uncertainty were not consid-

ered. Nasseri et al. (2013) compared UNEEC with meth-

ods which are mainly based on the fuzzy extension princi-

ple: IMFEP (incremental modified fuzzy extension principle)

and MFEP (modified fuzzy extension principle). It has been

shown that the methods provided similar performance on the

two monthly water balance models for the two basins in Iran

and France.

Solomatine and Shrestha (2009) presented their initial ex-

periments to compare QR and UNEEC on one case study,

and Weerts et al. (2011) discussed the experience with QR

on another one. In this paper we go further and test the newer

variants of these methods on several contrasting catchments

that cover a wide range of climatic conditions and hydrologi-

cal characteristics. The motivation here is to identify possible

advantages and disadvantages of using the QR and UNEEC

methods based on their comparative performance, especially

during flooding conditions (i.e. for the data cluster associ-

ated with high flow/water level conditions). The knowledge

gaps regarding the use of the methods with different param-

eterizations are addressed. For example, we now incorpo-

rate into UNEEC the autoregressive component by consid-

ering past error values (in addition to discharge and effective

rainfall) in one case study, and model outputs for the state

variables soil moisture deficit (SMD) and groundwater level

(GW) are used as predictors (in addition to water level) in

another case study. In the QR version implemented, the lin-

ear regression model was established to predict the quantiles

of observed water levels conditioned on simulated/forecasted

water levels. Furthermore, we present results of statistical

analysis of error time series to better understand (hydrolog-

ical) models’ quality in relation to its effect on uncertainty

analysis results, and to discuss the assumption of normality

in the model residuals, particularly in view of the cluster-

ing approach employed within the framework of the UNEEC

method. We apply methods to estimate predictive uncertainty

in the Brue catchment (southwestern UK) and the Upper Sev-

ern catchments – Yeaton, Llanyblodwel, and Llanerfyl (Mid-

lands, UK).

It should be noticed that by design UNEEC uses a richer

set of predictors than QR and a more sophisticated non-linear

regression model, so the comparison between simple and

complex models may seem unfair. However, more predictors

may not bring more information needed for accurate predic-

tion. Only experiments can allow for stating that for each par-

ticular case. Our experience with the data-driven models (and

both QR and UNEEC are such) showed that adding more

predictors does not necessarily mean higher accuracy on un-

seen data. Parsimony (Box et al., 2008) often leads to better

generalization. In this study we compare the two uncertainty

prediction methods, with the aim of investigating whether a

simpler method using fewer input data may possibly perform

better than the more complex method with more predictors.

Overall, selection of the most appropriate uncertainty pro-

cessor for a specific catchment is a matter of compromise

between its complexity and accuracy in consideration of the

data availability and also the characteristics of the catchment,

and we believe the findings of such a comparative analysis

could be useful for the operational hydrology community.

The remainder of the paper is structured as follows. The

next section describes the residual uncertainty analysis meth-

ods (QR and UNEEC) and the validation measures used. Sec-

tion 3 describes the studied catchments and the experimental

set-up. The results for error and uncertainty analyses are pre-

sented and discussed in Sect. 4. In Sect. 5 the main conclu-

sions from the study and recommendations for future work

are presented.

2 Methodology

2.1 Uncertainty analysis methods

2.1.1 Definitions

As in Solomatine and Shrestha (2009) and Weerts et

al. (2011), we consider a deterministic (hydrological) model

M of a catchment predicting a system output variable ŷ given

the input data vector x (x ∈X) and the vector of model pa-

rameters θ . There are various sources of error associated with

the model output (e.g. discharge), so the system response (i.e.

actual discharge) can be expressed as

yt+LT = ŷ+ e =M(x,θ)+ e, (1)
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where e is the total residual error (in the remainder of the

text, the terms “model error” and “model residual” are used

interchangeably to refer to e); t is the (discrete) time. The

model M can be used in two modes depending on the re-

lation between the lead time (LT: the duration between the

time of forecast and the time for which the forecast is made)

of interest and the model time step (1t):{
simulation mode, LT= 1 ·1t

forecasting mode, LT> 1 ·1t.

}
(2)

Given the model structureM , and the parameter set θ , the un-

certainty analysis methods used in this study, namely QR and

UNEEC, estimate the residual uncertainty of a calibrated hy-

drological model whose parameters and inputs are assumed

to be known exactly. In this set-up the different sources of

uncertainty are not distinguished explicitly. In both methods,

the uncertainty model U predicts the quantile value qτ and

is calibrated for different quantiles (τ ), and for various lead

times (LT) separately:

qτt+LT = U(I,λ), (3)

where I is the input data matrix, and λ is the vector of model

parameters. In a simplest case when the number of quantiles

is two, they form the CL (e.g. 90 %) and the corresponding

confidence interval, CI. The quantiles computed in this study

are τ = 0.05, 0.25, 0.75, and 0.95, allowing for formation of

the 50 and 90 % confidence intervals.

2.1.2 Quantile regression

As mentioned, several QR configurations have been previ-

ously investigated for estimating the residual uncertainty. In

López López et al. (2014) (in open access), the four alterna-

tive configurations of QR for several catchments at the Upper

Severn River have been compared and verified. The compar-

ative analysis included different experiments on the deriva-

tion of regression quantiles in original and in normal space

using NQT, a piecewise linear configuration considering in-

dependent predictand domains and avoiding the quantile

crossing problem with a relatively recent technique (Bondell

et al., 2010). The intercomparison showed that the reliability

and sharpness vary across configurations, but in none of the

configurations do these two forecast quality aspects improve

simultaneously. Further analysis reveals that skills in terms

of the various verification metrics (i.e. Brier skill score, BSS;

mean continuous ranked probability skill core, CRPSS; and

the relative operating characteristic score, ROCS) are very

similar across the four configurations. Therefore, noting also

the main idea behind the current study (which is to investi-

gate how well a simpler method using fewer input data per-

forms over a more complex method with more predictors),

the simplest QR configuration (termed there the “QR1: non-

crossing Quantile Regresssion”) was applied in this study.

QR1 estimates the quantiles of the distribution of water level

Figure 1. Quantile regression example scheme considering differ-

ent quantiles.

or discharge in the original domain, without any initial trans-

formation, and avoids the quantile crossing problem. A brief

description of the QR configuration used in the present work

is given below (for details, the reader is referred to López

López et al., 2014).

For every quantile τ , we assume a linear relationship be-

tween the forecasted (or predicted) value, ŝ, and the real ob-

served value, s,

s = aτ ŝ+ bτ , (4)

where aτ and bτ are the parameters of linear regression. By

minimizing the sum of residuals, one can find the parameters

aτ and bτ :

min

J∑
j=1

ρτ (sj − (aτ ŝj + bτ )), (5)

where sj and ŝj are the j th paired samples from a total of

J samples and ρτ is the quantile regression function for the

quantile τ :

ρτ (εj )=

{
(τ − 1) · εj ,εj ≤ 0,

τ · εj , εj ≥ 0

}
. (6)

Equation (6) is applied for the error (εj ), which is defined as

the difference between the observation (sj ) and the linear QR

estimate (aτ ŝj + bτ ) for the selected quantile τ .

Figure 1 illustrates the estimation of a selection of quan-

tiles, including the 0.95, 0.75, 0.25 and 0.05 quantiles. To

obtain the QR function for a specific quantile, e.g. τ = 0.05,

Eqs. (5) and (6) are applied as follows:

ρ0.05(εj )=

{
−0.95 · εj ,εj ≤ 0

0.05 · εj ,εj ≥ 0

}
. (7)

In the case of an ideal model, the 95 % of observed–

forecasted pairs would be located above the τ = 0.05 quan-

tile linear regression line, and 5 % would remain below it.

Considering the two observed–forecasted pairs of the total of
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J samples, j = 1 and j = 2, their corresponding errors, ε1

and ε2, are

ε1 = s1− (a0.05ŝ1+ b0.05) < 0;

ε2 = s2− (a0.05ŝ2+ b0.05) > 0. (8)

Introducing both values in Eq. (5), QR allows for solving the

minimization problem calculating the regression parameters

a0.05 and b0.05 for this particular quantile τ = 0.05:

min(−0.95 · ε1+ 0.05 · ε2+ . . .+ ρ0.05(εJ )). (9)

The procedure explained here can be applied for any quan-

tile, τ .

2.1.3 UNEEC

In UNEEC, a machine learning model, e.g. an artificial neu-

ral network, instance-based learning (e.g. k-nearest neigh-

bours) or a M5 model tree, is built to predict uncertainty

associated with the model outputs corresponding to the fu-

ture inputs to a (hydrological) model. The steps involved in

UNEEC are summarized below.

– Identify the set of predictor variables (the lagged rainfall

data, soil moisture, flow, etc.) that describe the flow pro-

cess based on their effect on the model error. These pre-

dictors can be selected using average mutual informa-

tion (AMI) and correlation analysis. Using AMI brings

the advantage of detection of non-linear relationships

(Battiti, 1994).

– Identify the fuzzy clusters in the data set in the space

of predictor variables (using e.g. the fuzzy c-means

method) (Fig. 2). The optimal number of clusters can

be determined using the methods described, e.g. in Xie

and Benie (1991), Halkidi et al. (2001), and Nasseri and

Zahraie (2011).

– For each cluster c, calculate the quantiles, qτc , of the

empirical distribution of the model error, taking into ac-

count however the membership degree of each data vec-

tor to a considered cluster.

– For each data vector, calculate the “global” estimate of

the quantile qτ using the quantiles calculated for each

cluster qτc . This is done by weighting them by the corre-

sponding degree of membership of the given data vector

to this cluster. Calculated qτ values for each quantile τ

are used as outputs for the uncertainty model U .

– Train a machine learning model (U ) (e.g. ANN or M5

model tree) using the set of predictors as inputs, and the

data prepared at the previous step as the output. U will

be able to predict the quantile value qτ for the new input

vectors.

Figure 2. An example of fuzzy clustering of input data (the pre-

dictors are past rainfall at lag t − 2 and past flow at lag t − 1) dur-

ing training of the uncertainty model, U (adapted from Solomatine,

2013).

Various machine learning models can be employed; in this

study the M5 model tree (Quinlan, 1992) has been used for

all case studies. A model tree is a tree-like modular model

which is in fact equivalent to a piecewise linear function.

At non-terminal nodes there are rules that progressively split

data into subsets, and finally the linear regression equations

in the leaves of the tree built on the data subset that reached

this particular leaf. The main reasons for using this tech-

nique are its accuracy, transparency (analytical expressions

for models are obtained explicitly) and speed in training.

Model trees have shown high accuracy in our previous stud-

ies (e.g. Solomatine and Dulal, 2003).

2.2 Validation methods

In this study we use several statistical measures of uncer-

tainty to evaluate and to some extent compare performances

of QR and UNEEC. These are, namely, prediction interval

coverage probability (PICP; Shrestha and Solomatine, 2006),

mean prediction interval (MPI; Shrestha and Solomatine,

2006), and average relative interval length (ARIL; Jin et al.,

2010). PICP has also been used by other authors (e.g. Laio

and Tamea, 2007) as an important performance measure to

estimate the accuracy of probabilistic forecasts.

PICP should be seen as the most important measure since

it shows how many observations fall into the estimated inter-

val. PICP is the probability that the observed values (yt ) lie

within the estimated prediction limits (PL) computed for a

significance level of 1−α (e.g. 90 %):

PICP=
1

n

∑n

t=1
C, where C ={

1, PLlower
t ≤ yt ≤ PL

upper
t

0, otherwise

}
. (10)

Ideally, the PICP value should be equal to or close to the

specified CL.

MPI computes the average width of the uncertainty band

(or prediction interval), i.e. the distance between the up-
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per and lower prediction limits (PL
upper
t and PLlower

t , respec-

tively):

MPI=
1

n

∑n

t=1
(PL

upper
t −PLlower

t ). (11)

MPI= 0 means there is no uncertainty at all. MPI is a rather

simple indicator giving an idea about the distribution sharp-

ness.

ARIL is similar to MPI and considers the average width of

uncertainty bounds in relation to the observed value:

ARIL=
1

n

∑n

t=1

(PL
upper
t −PLlower

t )

yt
. (12)

Having the observed value in the denominator accounts for

the fact that uncertainty (and MPI) is usually higher for

higher values of flow and thus has a “normalization” effect. A

problem with ARIL is that if the flow is 0 or close to 0, ARIL

will be infinity or very high. This problem could be helped

by removing all observations above a certain threshold from

the calculations (a suggestion of one of the reviewers of this

paper); we leave this idea for further testing in the future re-

search.

A possibility to combine PICP and ARIL is to use the NUE

indicator proposed by Nasseri and Zahraie (2011):

NUE=
PICP

w×ARIL
. (13)

Nasseri and Zahraie (2013) recommend that methods with

the higher NUE should be preferred over those with the lower

NUE; however, we do not think this is a universally applica-

ble recommendation: if for two methods PICP is equal and

close to the confidence interval (90 %) and ARIL for one

method is higher (which is not good), then the NUE for this

method will actually be lower.

There is no single objective measure of the quality of an

uncertainty prediction method (since the “actual” uncertainty

of the model (error pdf) at each time step is not known). The

closer PICP is to the CL, the higher the trust in a partic-

ular uncertainty prediction method should be. In principle,

a reliable method should lead to reasonably low values of

MPI (and ARIL). However, a wide MPI does not mean that

a method estimating the prediction interval is inaccurate – it

could simply mean that the main model is not very accurate,

and the high MPI shows that.

PICP indeed evaluates whether the expected percentage of

observations falls into the predicted interval, and should be

seen as an important average indicator of the predictor’s per-

formance. However, in the case of high noise in the model

error (aleatoric uncertainty), the fact that PICP is far from

90 % could mean simply that none of the data-driven predic-

tive models can capture the input–output dependencies and

predict quantiles accurately. For comparative studies, how-

ever, PICP can very well be used: the method with PICP

closest to 90 % should be seen as the best (with some toler-

ance). Additional analysis may be carried out to see whether

the methods developed for the assessment of the probabilistic

forecast quality can be used (Laio and Tamea, 2007) (it is not

exactly the same as the residual uncertainty analysed here,

but the mathematical apparatus seems to be transferrable). In

this paper, however, we have not considered these, so they

can be recommended for exploration and testing in the future

studies.

It is also worth mentioning that all considered measures

are averages and so should be used together with the uncer-

tainty bound plots of which visual analysis reveals more in-

formation on the capacity of different uncertainty prediction

methods during particular periods.

3 Application

3.1 Case studies

3.1.1 Brue catchment

Located in the southwest of England, the Brue River catch-

ment has a history of severe flooding. Draining an area of

135 km2 to its river gauging station at Lovington (Fig. 3a),

the catchment is predominantly rural and of modest relief

and gives rise to a responsive flow regime due to its soil

properties. The major land use is pasture on clay soil. The

mean annual rainfall in the catchment is 867 mm and mean

river flow is 1.92 m3 s−1 (basin average, 1961–1990) (Ta-

ble 1). This catchment has been extensively used for research

on weather radar, quantitative precipitation forecasting and

rainfall–runoff modelling, as it has been facilitated with a

dense rain-gauge network (see e.g. Moore et al., 2000; Bell

and Moore, 2000).

The flow in the Brue River was simulated by the HBV-96

model (Lindström et al., 1997), which is an updated version

of the HBV rainfall–runoff model (Bergström, 1976). This

lumped conceptual hydrological model consists of subrou-

tines for snow accumulation and melt (excluded for Brue),

the soil moisture accounting procedure, routines for runoff

generation, and a simple routing procedure (Fig. 3b). The in-

put data used are hourly observations of precipitation (basin

average), air temperature, and potential evapotranspiration

(estimated by the modified Penmann method) computed

from the 15 min data. The model time step is 1 h (1t = 1 h).

The model is calibrated automatically using the adaptive

cluster covering algorithm (ACCO) (Solomatine et al., 1999).

The data sets used for calibrating and validating the HBV-

96 model are based on Shrestha and Solomatine (2008). It

should be mentioned that the discharge data on calibration

have many peaks which are higher in magnitude compared

to those in the validation data.

The uncertainty analyses conducted for the Brue catch-

ment are based on one-step-ahead flow estimates, i.e.

LT= 1 h (simulation mode). Effective rainfall (rainfall minus
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Table 1. Summary of the main basin characteristics for the catchments selected.

Catchment name Drainage area Elevation Mean flow Mean annual rainfall Highest river level recorded Basin lag time

(km2) (m) (m−3 s−1) (mm) (m) (h)

Brue 135 ≈ 20 1.92∗ 867∗ 4.45∗∗∗ 8–9

Yeaton 180.8 61.18 1.60∗∗∗∗ 767∗∗∗∗ 1.13∗∗∗ 15–20

Llanyblodwel 229 77.28 6.58∗∗∗∗ 1267∗∗∗∗ 2.68∗∗∗ 7–10

Llanerfyl ≈ 100 151 > 10∗∗ > 1300∗∗ 3.59∗∗∗ 3–5

∗ Basin average for the period 1961–1990.
∗∗ Rough estimates based on the data available for 2006–2013.
∗∗∗ http://apps.environment-agency.gov.uk/river-and-sea-levels/
∗∗∗∗ Computed for the periods 1963–2005 and 1973–2005 for Yeaton and Llanyblodwel, respectively and taken from the UK Hydrometric Register (Marsh and Hannaford,

2008).

Figure 3. (a) The Brue catchment showing a dense rain-gauge network and its river-gauging station, Lovington, where the discharge is

measured, and (b) schematic representation of the HBV-96 model (Lindström et al., 1997) with the routine for snow (upper), soil (middle),

and response (bottom) (Shrestha and Solomatine, 2008).

evapotranspiration) values were used instead of using rainfall

data directly.

3.1.2 Upper Severn catchments: Yeaton, Llanyblodwel,

and Llanerfyl

Flowing from the Cambrian Mountains (610 m) in Wales, the

River Severn is the longest river in Britain (about 354 km).

It forms the border between England and Wales and flows

into the Bristol Channel. The river drains an area of approx-

imately 10 500 km2 above the monitoring station at Upton

on Severn. Mean annual precipitation ranges from approxi-

mately 2500 mm in the west to less than 700 mm in the south

(EA, 2009). The Upper Severn includes rock formations clas-

sified as non-aquifers as well as loamy soils characterized

by their high water retention capacity (for a more detailed

description of the Upper Severn, see Hill and Neal, 1997).

Flooding is a major problem at the downstream due to ex-

cessive rainfall at the upstream (the Welsh hills), early 2014

floods being the most recent significant floods that occurred.

In this work, the three sub-catchments of the Upper Sev-

ern River are analysed: Yeaton, Llanyblodwel, and Llanerfyl

(Fig. 4). The area, elevation, mean flow, mean annual rainfall

and basin lag time (time of concentration) information of the

catchments are presented in Table 1. The Yeaton catchment

is located at a lower elevation and over a flat area compared

to Llanerfyl and Llanyblodwel. This catchment also has the

longest basin lag time. The smallest catchment in terms of

drainage area is Llanerfyl, which also has the shortest basin

lag time (approx. 3–5 h) leading to flash floods, so that the

predictive uncertainty information on flood forecast for this

catchment has especially high importance.

In the Midlands Flood Forecasting System (MFSS; a

Delft-FEWS forecast production system as described in

Werner et al., 2013), the Upper Severn catchment is repre-

sented by a combination of numerical models for rainfall–

runoff modelling (MCRM; Bailey and Dobson, 1981), hy-

drological routing (DODO; Wallingford, 1994), hydrody-

namic routing (ISIS; Wallingford, 1997), and error correction

(ARMA). The input data used within MFSS include (a) real-

time spatial data (observed water level and rain-gauge data as

well as air temperature and catchment average rainfall); (b)

radar actuals; (c) radar forecasts; and (d) numerical weather

prediction data (all provided by the UK Meteorological Of-
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Figure 4. The Upper Severn catchments: Yeaton, Llanyblodwel and

Llanerfyl.

fice). The data available were split into two parts for calibra-

tion (7 March 2007, 08:00 UTC–7 March 2010, 08:00 UTC)

and validation (7 March 2010, 20:00 UTC–7 March 2013,

08:00 UTC), preserving similar statistical properties in both

data sets.

The forecasting system issues two forecasts per day (08:00

and 20:00 UTC) with a time horizon of 2 days. First, the es-

timates of internal states are obtained by running the models

(which are forced with observed precipitation, evapotranspi-

ration and temperature) in historical mode over the previous

period. The state variables for the (hydrological) model are

soil moisture deficit (SMD, the amount of water required to

bring the current soil moisture content to field capacity in the

root zone), groundwater level (GW), snow water equivalent

(SWE), and snow density (SD). Using a stand-alone version

of MFSS, the system (forced by the forecasted precipitation)

is then run forward with a time step of 1 h.

It is important to note that this case study, unlike the Brue

catchment, includes errors in the meteorological forecast and

the back transformation of discharge to water level – via a

rating curve – in a lumped manner. Therefore, the effects

of rating curve uncertainty (Di Baldassarre and Montanari,

2009; Sikorska et al., 2013; Coxon et al., 2014; Mukolwe

et al., 2014) and precipitation forecast uncertainty (Kobold

and Sušelj, 2005; Shrestha et al., 2013) are accommodated

as well.

The uncertainty analysis is aimed at estimating predictive

uncertainty for the forecast time series (1t = 12 h) corre-

sponding to the lead time of interest. In this study, we con-

sider the lead times LT= 1, 3, 6, 12, and 24 h only.

3.2 Experimental set-up

In all case studies the QR uncertainty prediction method em-

ploys a linear regression model. While in the Brue catchment

the linear regression model estimates the quantile τ of ob-

served discharge conditioned on simulated discharge, in the

Upper Severn catchments the linear regression model esti-

mates the quantile τ of the observed water level conditioned

on the forecasted water level. In UNEEC the M5 model tree

is employed as the prediction model. Selection of the best set

of the input variables for UNEEC is based on AMI and corre-

lation analysis, and the number of clusters is identified by the

model-based optimization. UNEEC is configured differently

for each case, as described below.

3.2.1 Brue catchment

Shrestha and Solomatine (2008) tested the UNEEC method

on the Brue catchment to assess residual uncertainty of the

one-step-ahead flow estimates. The predictors of model er-

ror identified using AMI and correlation analysis were only

lagged discharge (Qt−1,Qt−2,Qt−3) and effective rainfall

(REt−8, REt−9, REt−10) values. In this study, however, we

try a different set of predictors. In addition to the mentioned

variables, we also consider the two most recent past error

values (et−1, et−2), allowing thus for incorporation of the au-

toregressive features (for this case study it paid off – MPI

values decrease (< 5 %) during both training and test peri-

ods). As in the previous study, the number of clusters used

was five.

3.2.2 Upper Severn catchments: Yeaton, Llanyblodwel,

and Llanerfyl

In the Upper Severn case studies, a variety of predictors are

considered for the model, e.g. observed and modelled wa-

ter level, forecasted precipitation, and state variables (GW,

SMD, SWE, SD). Although the benefits of using the soil

moisture (observed or modelled) and groundwater level in-

formation for modelling rainfall–runoff processes and pre-

dicting runoff are well known in the literature (Aubert et

al., 2003; Lee and Seo, 2011; Tayfur et al., 2014), we can-

not cite any studies exploring the possible advantages of us-

ing such information for improving predictive capabilities of

uncertainty analysis methods. Therefore, the dependence of

model residuals on variables expressing the internal state of

the catchments is also analysed.

Among the state variables, the most significant correlation

with the model error was shown by GW and SMD. While

GW was found to be positively correlated with model resid-

uals (i.e. as GW increases, error increases too), SMD and

model error had a negative correlation. The positive correla-

tion between GW and model residuals can be explained by

the fact that high groundwater levels are associated with ex-

cessive precipitation during which model errors are higher
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in magnitude. High soil moisture deficit, on the other hand,

indicates that there has been no excessive precipitation and

that the soil is not filled up with infiltrated water. High evap-

oration rates (causing soil to dry up) can also result in high

soil moisture deficit. It should be noted that the latter is less

likely to be valid for the Upper Severn catchments consider-

ing the prevailing climate in the region. Accordingly, lower

soil moisture deficit is linked with excessive precipitation

events such that soil moisture deficit is negatively correlated

with the model error.

Eventually, on the basis of studying the correlations and

AMI between various candidate predictors and the output,

and using expert judgement, the following variables have

been chosen to serve as candidate predictors:

– the most recent precipitation (Pt−1),

– the observed water level (Hobs,t−1),

– error (et−1),

– state variables GW and SMD.

It should be noted that subscript t−1 denotes the 12 h de-

lay since the data sets analysed have a time step of 12 h (see

Sect. 3.1.2).

In an attempt at removing least influential inputs, the set of

variables above was then subjected to the model-based opti-

mization: the degree of influence of various inputs has been

explored by running the UNEEC predictor for different sets

of inputs and comparing the resulting PICP and MPI. It was

found that there were only negligible changes (and mostly no

change) when Pt−1 and et−1 were included or not. Based on

this analysis, these two variables have been excluded from

the further experiments, and only the variables GW, SMD,

and Hobs,t−1 have been used as predictors. Inclusion of GW

was important since this variable provides more explainable

results in terms of PICP and MPI. It should be noted that us-

ing GW and SMD can be considered as a proxy for using the

rainfall information.

Fuzzy clustering in UNEEC is carried out by the fuzzy

c-means method and employs six clusters with the fuzzy ex-

ponential coefficient set to 2. The number of clusters was

chosen based on computation of the Partition Index (SC), the

Separation Index (S) and the Xie and Beni Index (XB) (Ben-

said et al., 1996; Xie and Beni, 1991). (It should be men-

tioned that the sensitivity of PICP and MPI to different num-

bers of clusters supports the choice of six clusters.)

Within the variables considered in clustering, GW is the

most influential one. Fig. 5 shows fuzzy clustering of GW,

SMD, and Hobs,t−1 data for the Llanyblodwel catchment

(lead time 6 h). This figure also contains the plot of model

residuals against GW, where one can observe heteroscedas-

ticity of model residuals with respect to GW. As can be easily

seen, while Cluster 2 is associated with very high groundwa-

ter levels, Cluster 4 is associated with the low groundwater

level conditions, which might occur due to the low water lev-

els in the river and/or high soil moisture deficit.

It must be noted that in this study the hydrological model

output is not included as yet another input to UNEEC (along

with the observed discharge/water level) in all case studies.

However, it may be worth exploring this idea in the further

studies.

4 Results and discussion

This part focuses on statistical error analysis (Sect. 4.1) and

comparison of uncertainty analysis results (Sect. 4.2).

4.1 Statistical error analysis

Understanding the quality of hydrological model quality (e.g.

water level forecasts) is important in order to discuss uncer-

tainty analysis results provided by any method. For this pur-

pose, we analyse the error time series statistically. We also

check the homoscedasticity (the assumption which simpli-

fies the mathematical and computational treatment of ran-

dom variables) of the model residuals. Furthermore, we in-

vestigate the normality of model residuals through probabil-

ity plots of the normal distribution and the t location-scale

distribution, whose pdf is given by Eqs. (14) and (15), re-

spectively:

f (x)= (1
/
σ ·
√

2π ) · e−(x−µ)
2
/

2σ 2 (14)

f (x)=
0
(
ν+ 1

/
2
)

σ ·
√

2π ·0 ·
(
ν+ 1

/
2
) ·[

ν+ (x−µ /σ )
2

ν

]−(ν+1/2 )

, (15)

where µ is the location parameter (mean), σ is the scale pa-

rameter (standard deviation), ν is the shape parameter (i.e.

the number of degrees of freedom), and 0 is the gamma func-

tion. The t location-scale distribution is similar to the normal

distribution but has heavier tails, making it more prone to

outliers. Within this study outliers refer to very high model

residuals occurring during extreme precipitation and flow

events. In the case of normality of data, its analysis becomes

much simpler; however, often this is not the case.

Residual uncertainty varies in time and with the changing

hydrometeorological situation, so in this paper we investi-

gate the residual distribution for different hydrometeorologi-

cal conditions represented by clusters found within the UN-

EEC method (on the training data set).

4.1.1 Brue catchment

The observed discharge plotted against simulated discharge

during calibration and validation periods can be seen in

Fig. 6a and c, respectively. During calibration, although the
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Figure 5. Fuzzy clustering of GW (left, top) and its relation to the model residuals (right), SMD (left, middle) and Hobs, t−1 (left, bottom)

for the calibration period (7 March 2007, 08:00 UTC–7 March 2010, 08:00 UTC) – Llanyblodwel, lead time 6 h.

Figure 6. Observed discharge, simulated discharge and model residuals during calibration and validation (Brue catchment).

model residuals are lower at flows higher than 35 m3 s−1

compared to at flows less than 35 m3 s−1 (in Fig. 6a), it can

be seen from Fig. 6c that the HBV-96 model is less accurate

in simulating high flows compared to low flows. It is also

noteworthy to mention that in calibration (Fig. 6a) there is

higher dispersion around the diagonal line than in validation

(Fig. 6c).

Figure 6b and 6d shows how model residuals change with

increasing discharge values during calibration and validation

periods, respectively. Clearly, model residuals of the Brue

catchment are heteroscedastic; that is to say, the variance of

model residuals varies with the effect being modelled, i.e.

observed discharge.

Figure 7 presents probability plots for model residuals dur-

ing training. The top left plot compares the two selected

distributions (normal distribution and t location-scale dis-

tribution). The estimated parameters for the best fit to data

are µ= 0.0363 m3 s−1 and σ = 0.7619 m3 s−1 for normal

distribution – same with the empirical parameters. On the

other hand, the best fit parameters for t location-scale distri-

bution are different: µ= 0.0607 m3 s−1, σ = 0.2351 m3 s−1

and ν = 1.5833. From this figure, one can conclude that the

model residuals’ distribution is far from being close to nor-

mal even though the parameters of the fitted normal distribu-

tion are the same as those obtained from the empirical dis-

tribution. It is obvious that t location-scale distribution pro-

vides a better fit as it is able to enclose the data at the tails

much better compared to a fitted normal distribution. Yet, the

outliers are still not represented fully.
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Figure 7. Probability plots for model residuals (during training) for the Brue catchment: comparison of the two fitted distributions: normal

vs. t location-scale distribution (top left), and the clusters.

Normality of the model residuals’ distribution is further

investigated for different hydrometeorological conditions as

identified by clustering in the space of the predictor variables.

Analysis of the probability plot for each cluster formed in-

dicates that there is no significant departure from normality

(with regard to the fitted normal distribution), unlike in the

overall model residuals. The most striking result among all

clusters is achieved in the one representing very high flow

and high rainfall (Cluster 4, 0.95 % of total data) (Fig. 7, bot-

tom middle). The distribution of all the other clusters (Clus-

ters 1, 2, 3, and 5) was found to be more or less equally close

to normal. When visually compared, these distributions were

only slightly less close to normal with respect to Cluster 4.

4.1.2 Upper Severn catchments: Yeaton, Llanyblodwel,

and Llanerfyl

The quality of (water level) forecasts is assessed based on

standard deviation of model error. The results are compara-

tively presented for different lead times in Fig. 8. It can be

clearly seen that during both calibration and validation as

lead time increases, the standard deviation of error increases

as well. Also, it should be noticed that there is a direct in-

creasing effect of shorter basin lag time on standard devia-

tion. For example, the catchment with the shortest basin lag

time, that is Llanerfyl, always has a larger standard devia-

tion for all lead times. On the contrary, the smallest standard

deviation always occurs in the catchment with the longest

basin lag time, which is Yeaton. This is mainly due to the

fact that the basin lag time represents the memory of a catch-

ment. Hence, the flood forecasting capability of a hydrolog-

ical model is affected negatively when the basin lag time is

short.

The observed water levels are plotted against forecasted

water levels in the Llanyblodwel catchment during calibra-

tion and validation for lead time 6 h in Fig. 9a and c, respec-

tively. Figure 9b and d shows model error plotted against

observed water level on the logarithmic scale. Although it

is not very clear from Fig. 9a (and Fig. 9c), it is evident

from Fig. 9b (and Fig. 9d) that the model error increases

with higher water levels, as expected. This confirms the het-

eroscedasticity of model residuals.

Normality of model residuals for the Llanyblodwel catch-

ment for all lead times was investigated (see Fig. 10, top

left). Visual inspection of probability plots, superimposed on

which the line joining the 25th and 75th percentiles of the fit-

ted normal distributions, reveals that errors are not normally

distributed, i.e. the data do not fall on the straight line, as is

especially the case for the tails. It should be realized that the

departure from normality increases with longer lead times.

The top right plot in Fig. 10 compares the two selected dis-

tributions (normal distribution and t location-scale distribu-

tion) for model residuals during training. It can be concluded

that neither the normal distribution nor the t location-scale

distribution provides a good fit to the data.

Furthermore, a normality check for model residuals’ dis-

tribution is made individually for the data clusters cor-

responding to particular hydrometeorological conditions.

The variables used for clustering are groundwater level

(GW), soil moisture deficit (SMD), and observed water level

(Hobs, t−1). It is seen that the level of achieving normality

in model residuals’ distribution for each cluster is substan-
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Figure 8. Standard deviation of model error during calibration and validation (Upper Severn catchments).

Figure 9. Observed water level, forecasted water level and model residuals during calibration and validation (Llanyblodwel, lead time 6 h).

tially poorer if compared to the Brue catchment. This can

be explained by the fact that the error time series data being

analysed have a time step of 12 h which is long enough to

hinder the effects of varying water levels on error. Another

reason can be related to the nature of model residuals, e.g.

forecasted precipitation is used to predict water levels. This

brings a great amount of uncertainty and a higher difference

between the actual and the predicted water levels (i.e. higher

model residuals). It is also worth mentioning that the distri-

bution closest to normal is found in the data cluster repre-

senting high groundwater levels, high water levels, and low

soil moisture deficit (Cluster 2, comprising 4.6 % of the total

data set) (Fig. 10, middle). Distributions of Clusters 1, 3, 4,

5, and 6 are far from normal.

Both the Brue and Llanyblodwel case studies indicate that

it is not possible to understand the origin of the model error

in uncertainty assessment by looking at the probability plots

of model residuals for each cluster. However, it is worth-

while mentioning that it is mostly the extreme events which

make the overall distribution non-Gaussian. Classifying data

so that different hydrometeorological conditions (most im-

portantly, the extreme events) are separated helps to achieve

homogeneity, and thus normality in model residuals’ distri-

bution. Therefore clustering can be suggested as an alterna-

tive to transformation of model residuals before applying any

statistical methods to them.

Hydrol. Earth Syst. Sci., 19, 3181–3201, 2015 www.hydrol-earth-syst-sci.net/19/3181/2015/



N. Dogulu et al.: Estimation of predictive hydrologic uncertainty 3193

Figure 10. Probability plots for model residuals (during training) for the Llanyblodwel catchment: comparison of fitted normal distributions

for all the lead times (top left); comparison of the two fitted distributions: normal vs. t location-scale distribution (top right) and the clusters

(lead time 6 h).

Figure 11. Comparison of prediction limits for the 90 % confidence level during validation: (a) for the highest peak event (16 December 1995,

04:00 UTC–28 December 1995, 16:00 UTC), and (b) for a medium peak event (6 January 1996, 00:00 UTC–18 January 1996, 12:00 UTC).

4.2 Uncertainty prediction by QR and UNEEC

Uncertainty analysis results from both methods are evaluated

and compared employing the validation measures explained

in Sect. 2.2.

4.2.1 Brue catchment

Validation measures PICP, MPI, and ARIL are provided in

Table 2. In terms of PICP, even though QR provides PICP

values slightly closer to 90 and 50 % during training, UN-

EEC was found to be more reliable in validation, especially

for the 90 % CL. While the narrowest prediction interval on

average is given by UNEEC during training for both 90 and

50 % CL, comparable MPI values are obtained during valida-

tion. QR has smaller ARIL values, particularly for the 90 %

CL. However, on aggregate UNEEC yields better results over

QR, especially in validation.

Looking at Fig. 11a, visual analysis of 90 % prediction in-

tervals for the highest flow period in validation reveals that

neither UNEEC nor QR is perfectly able to enclose the ob-

servations of high flows. Overall, in validation, the analysis

results from UNEEC and QR are comparable for the highest

peak event (Table 2). For medium peaks in validation, how-

ever, QR produces wider uncertainty bounds in comparison

to UNEEC. This is illustrated in Fig. 11b. For this medium

peak event it should be noted that the higher MPI (and ARIL)
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Table 2. Uncertainty analysis results for 90 and 50 % confidence levels (Brue catchment).

Confidence level PICP (%) MPI (m−3 s−1) ARIL (–)

UNEEC QR UNEEC QR UNEEC QR

TR
90 % 91.19 90.00 1.58 1.69 1.86 1.47

50 % 51.28 50.01 0.54 0.58 0.55 0.46

VD
90 % 88.29 82.33 1.37 1.39 2.35 1.83

50 % 30.29 32.75 0.45 0.47 0.67 0.57

VD (highest peak event)
90 % 57.14 62.79 2.86 3.47 0.66 0.78

50 % 27.91 30.90 1.06 1.28 0.24 0.27

VD (medium peak event)
90 % 88.04 87.04 2.36 2.75 0.51 0.61

50 % 55.81 50.50 0.90 1.00 0.20 0.22

TR: training; VD: validation.

Table 3. PICP, MPI, and ARIL values for each cluster (training, 90 % confidence level, Brue): UNEEC vs. QR.

Cluster no. Number of data UNEEC QR

PICP (%) MPI (m3 s−1) ARIL (–) PICP (%) MPI (m3 s−1) ARIL (–)

1a 5447 (62.3 %) 92.12 1.14 2.67 88.16 0.88 1.96

2 787 (9.0 %) 82.08 2.98 0.50 84.5 3.51 0.57

3 2167 (24.7 %) 94.46 1.44 0.53 96.72 1.94 0.71

4b 83 (0.95 %) 74.70 7.55 0.33 90.36 12.00 0.49

5 266 (3.05 %) 77.44 5.96 0.48 89.47 7.58 0.58

a Low flows, low rainfall.
b High flows, high rainfall.

value by QR is not manifested in PICP – both methods have

very close PICP values (Table 2). One of the reasons for this

may relate to the fact that by design UNEEC uses more pre-

dictors that explain the (past) catchment behaviour and hence

is able to “memorize” catchment behaviour better, and this is

especially pronounced during the longer periods of medium

flows rather than during high flows having shorter duration.

We have also compared performance of QR and UNEEC

for each cluster found by UNEEC during training. Unlike

for the whole data set (which is highly heterogeneous due

to extremes in rainfall–runoff processes), analysis for each

individual cluster focuses on more homogeneous data sets.

Table 3 shows the corresponding PICP, MPI and ARIL. In

general, it is difficult to decide which method is better – re-

sults are mixed. However, there is one observation that can be

made. For most clusters there is a dependency between PICP

and MPI: typically the higher MPI corresponds to PICP be-

ing closer to the CL (90 %). This may be explained by the

fact that for narrow MPIs PICP would be under “pressure”

and be lower (however, it would be difficult to generalize).

For example, for the high flow cluster (Cluster 4), QR ap-

pears to be better in terms of PICP, whereas UNEEC ends up

with very narrow MPI, and this is probably the reason why

its PICP could not reach 90 % CL.

The reported comparison was done for the clusters found

by UNEEC during training. In principle, a similar compar-

ison can also be made for the homogeneous groups of data

in the validation set; however, this may not have much sense

since this set imitates the model in operation, and in opera-

tion all models are run for individual input vectors at each

time step of the model run, and not for the whole set of data

(so the “validation set” in operation will never exist).

4.2.2 Upper Severn catchments: Yeaton, Llanyblodwel,

and Llanerfyl

For these catchments, in order to reflect performance for dif-

ferent lead times better, we are using the graphical represen-

tation of results.

Figure 12 shows the PICP values plotted against the MPI

for the calibration and validation periods. The most impor-

tant general conclusion is that both methods show excellent

results in terms of PICP for 90 % CL. For the 50 % CL the

results seem to be worse, especially for UNEEC – but the

reader should take into account that for the low lead times

the hydrological models are very accurate; hence MPI is ex-

tremely narrow (especially for 50 % CL) and it is no surprise

that PICP cannot be accurately calculated. Furthermore, for

the 90 % CL, the following can be said: for Yeaton, QR does
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Figure 12. Comparison of UNEEC and QR based on both PICP and MPI during calibration period (7 March 2007, 08:00 UTC–7 March

2010, 08:00 UTC) and validation period (7 March 2010, 20:00 UTC–7 March 2013, 08:00 UTC) for the 90 % and 50 % confidence levels.

(The size of the marker represents the lead time; i.e. the bigger the marker, the longer the lead time.)

Figure 13. MPI (left) and ARIL (right) values obtained during calibration period (7 March 2007, 08:00 UTC–7 March 2010, 08:00 UTC)

and validation period (7 March 2010, 20:00 UTC–7 March 2013, 08:00 UTC) for the 90 % confidence level.

slightly better than UNEEC; for Llanyblodwel, both methods

are equally good; for Llanerfyl, the UNEEC method is a bit

better than QR.

For the further analysis, Fig. 13 presents MPI and ARIL

values for the 90 % CL on calibration and validation data

sets. It can be seen that with the increase in the lead time, the

forecast error obviously increases, and the values of both in-

dicators follow. In view of the (high) model accuracy, the rel-

atively low MPI values in the Yeaton catchment are not sur-

prising for both methods. Overall, the results are mixed: for

some catchments, QR is marginally better; for other catch-

ments, UNEEC has the higher performance.
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Figure 14. Comparison of prediction limits for the 90% confidence level during validation (1 April 2012–7 March 2013): Yeaton, lead time

3 h (top); Llanyblodwel, lead time 6 h (middle); and Llanerfyl, lead time 12 h (bottom).

Figure 15. Comparison of prediction limits for the falling limb part of the hydrographs (medium water levels) for the 90 % confidence level

during validation: (a) Yeaton, lead time 3 h; (b) Llanyblodwel, lead time 6 h; and (c) Llanerfyl, lead time 12 h.

For the further comparison of estimated prediction limits

through uncertainty plots, three cases are selected based on

the relationship between basin lag time and lead time. These

cases are (1) Yeaton, lead time 3 h (lead time < basin lag

time), (2) Llanyblodwel, lead time 6 h (lead time ≈ basin lag

time), and (3) Llanerfyl, lead time 12 h (lead time > basin lag

time). The fundamental idea here is to understand how well

the residual uncertainty is assessed with regard to forecast

lead time and its relation to basin lag time. The catchment

with the longest basin lag time (Yeaton) is considered for

Case 1, where the effect of a very short lead time is to be in-

vestigated. Here in this decision, there is the deliberate inten-

tion to combine the condition of having more accurate model

outputs (i.e. extremely small residuals) as well. Case 3, on

the other hand, is important to understand lead time-basin lag

time relationship for the worst situation: relatively poor qual-

ity of the forecasting model and the longest lead time. This

is the most critical case since the performance of predictive

uncertainty method’s performance has a bigger role in the

operational decision-making process. Apart from these two

extreme cases, Case 2 represents a balanced situation where

the lead time of interest and basin lag time are approximately
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Table 4. PICP, MPI, and ARIL values for MEDIUM water levels (validation, 90 % confidence level): UNEEC vs. QR.

Catchment Water level Number of data UNEEC QR

PICP (%) MPI (m) ARIL (–) PICP (%) MPI (m) ARIL (–)

Yeaton 0.3–0.6 m 281 (13 %) 82.56 0.0212 0.054 86.48 0.0299 0.074

Llanyblodwel 0.5–0.8 m 540 (25 %) 89.63 0.1377 0.223 93.52 0.1680 0.269

Llanerfyl 1.3–1.6 m 570 (26.5 %) 84.91 0.4156 0.297 85.09 0.5572 0.398

equal. The Llanyblodwel catchment is chosen for this case as

its model has a moderate predictive accuracy. Fig. 14 com-

pares the computed prediction limits by QR and UNEEC for

these cases during the latest 11-month period of validation

(April 2012–February 2013). It was during late 2012 that the

Upper Severn catchment suffered from serious flooding, and

this period corresponds to the right half of the plots. The most

salient observations from Fig. 14 are as follows:

– In Llanerfyl, one can notice a strange behaviour of the

model causing sharp changes in forecasted water lev-

els (unstable model outputs), and thus in prediction

limits. Considering that the Llanerfyl catchment has a

basin lag time of ∼ 3–5 h, hydrological conditions in

the catchment, e.g. water levels, can change signifi-

cantly in 12 h (1t , time step of the data set). Therefore,

it is not surprising that the sharpest changes occur in

this catchment’s hydrograph as compared to Yeaton and

Llanyblodwel. One can observe even more significant

changes in the second half period of the hydrograph. It

is necessary to mention that these oscillating changes

appear as a consequence of the forecasting model’s ex-

tremely poor performance.

– For the low water levels in Yeaton and Llanyblodwel,

UNEEC gives wider prediction intervals as compared

to QR. A possible explanation for this can be encap-

sulation of groundwater level information in UNEEC.

Groundwater levels remain at higher levels for longer

periods than water levels in the river (i.e. due to slow

and long response times of groundwater levels to chang-

ing hydrometeorological conditions). Thus, using GW

as an input variable in its non-linear model, UNEEC has

the potential to provide an uncertainty band of larger

widths for water levels when the groundwater level is

high.

– For the medium water levels in Yeaton and Llany-

bldowel, QR gives wider prediction intervals as com-

pared to UNEEC, which is confirmed by the higher

MPI and ARIL (without any significant improvements

in PICP) values for QR (Table 4) obtained for medium

water levels. This is particularly true on the falling limb

part of the hydrographs as exemplified in Fig. 15a and b

(for Yeaton and Llanyblodwel, respectively). The aver-

age of the MPI values corresponding to three examples

shown from Yeaton and Llanyblodwel, respectively, are

0.0204 and 0.0201 m for UNEEC, whereas for QR it is

0.0418 and 0.0295 m.

– For peak water levels in the Yeaton and Llanyblodwel

catchments, it is mostly QR that produces a higher up-

per prediction limit than UNEEC. Yet, this does not con-

tribute to the overall performance of the method signifi-

cantly. On the contrary, it is seen in some cases that such

high upper prediction limits make the uncertainty band

unnecessarily wide.

– Continuous peaks prevail in the Llanerfyl catchment (as

its basin lag time is far shorter than the forecast lead

time of interest). Such continuous peaks occur during

certain periods in the Llanyblodwel catchment too. In

most of these cases, UNEEC gives narrower uncertainty

band, and wider prediction interval computed by QR

is redundant. That is to say, it does not contribute QR

method’s performance (as measured by PICP) at all in

terms of its ability to enclose more observations within

the band. For peak water levels, however, QR is slightly

more informative than UNEEC.

– Noticeably, upper prediction limits obtained by QR in

the Llanerfyl catchment for the long-lasting falling limb

part of the hydrograph (indicated by arrows in Fig. 14c)

are too high, e.g. even greater than those provided by

UNEEC. QR (in this study, by design) is a method

building simple linear regression models considering

only observed water levels on forecasted water levels.

Having a rather simple mathematical formulation, it

might be that the sensitivity of the computed upper pre-

diction limit to the magnitude of water level increases,

and shows an amplifying effect on uncertainty band

width.

Table 5 shows the values of validation measures (PICP,

MPI, and ARIL) for each cluster (obtained during training)

for the Llanyblodwel catchment (lead time 6 h). For flood

management the cluster 2 (4.6 % of all data) – with the high

groundwater levels, and hence potentially corresponding to

flood conditions – could be the most interesting one. In UN-

EEC, the highest MPI value was obtained for this cluster

with a relatively bad PICP value compared to the other clus-

ters. Similar to UNEEC, the largest MPI was obtained for
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Table 5. PICP, MPI, and ARIL values for each cluster (training, 90 % confidence level, Llanyblodwel, lead time 6 h): UNEEC vs. QR.

Cluster no. Number of data UNEEC QR

PICP (%) MPI (m) ARIL (–) PICP (%) MPI (m) ARIL (–)

1 413 (19.1 %) 88.62 0.1492 0.271 93.95 0.1506 0.250

2a 100 (4.6 %) 85.00 0.2964 0.288 95.00 0.3538 0.326

3 336 (15.5 %) 90.18 0.1798 0.249 94.94 0.2283 0.287

4b 359 (16.6 %) 93.04 0.0518 0.182 89.14 0.0305 0.100

5 535 (24.8 %) 89.53 0.1128 0.308 85.79 0.0742 0.179

6 416 (19.2 %) 90.38 0.0920 0.212 92.31 0.1021 0.208

a High groundwater levels;
b low groundwater levels.

this cluster with the QR method also. Both methods provide

equally bad PICP values. Giving a wider uncertainty band

than UNEEC on average, QR is less capable of estimating

reasonable prediction limits for very high groundwater lev-

els. This is also supported by its greater (12 %) ARIL value

compared to UNEEC.

PICP and MPI values for Cluster 4 should be mentioned

as well. This cluster represents the situations with the very

low water levels, very low groundwater levels, and very high

soil moisture deficit, and constitutes 16.6 % of all the data.

In comparison to UNEEC, QR provides a PICP value very

close to 90 % CL despite its slightly lower MPI. Thus, one

can say that UNEEC fails in providing reliable uncertainty

estimates for the extreme condition associated with very low

water and groundwater levels. This can be due to the effect

of using state variables as predictors. All in all, the state vari-

ables are calculated by the model and they cannot reflect real

catchment conditions accurately, especially when the (hydro-

logical) model is not very accurate. That is particularly true

for the extreme events, considering that models mostly fail in

simulating such events.

Overall, UNEEC is worse than QR on for one cluster but

better or equal on all other clusters; however, in general, both

methods in terms of PICP show reasonably good results.

5 Conclusions and recommendations

This study should be seen as accompanying the study by

López López et al. (2014) (and earlier work on UNEEC and

QR) and presents a comparative evaluation of uncertainty

analysis and prediction results from QR and UNEEC meth-

ods on the four catchments that vary in hydrological char-

acteristics and the models used: Brue catchment (simulation

mode) and Upper Severn catchments – Yeaton, Llanyblod-

wel, and Llanerfyl (forecasting mode). The latter set of case

studies is important from a practical perspective in that the

effect of lead time on uncertainty analysis results and its re-

lation to basin lag time is demonstrated. For both QR and

UNEEC different model configurations than their previous

applications are considered. One of reasons to compare these

two methods was to understand if a simpler linear method

(QR) using fewer input data performs well compared to a

more complex (non-linear) method (UNEEC) with more pre-

dictors. The following conclusions can be drawn from the

results of this study:

– In terms of easiness of set-up (data preparation and cal-

ibration), preference should be given to QR simply be-

cause it is a simpler linear method with one input vari-

able (in this study), whereas UNEEC has more steps and

requires more data analysis. However, the model set-up

is carried out only once, and in operation both methods

can be easily used and both have very low running times

(a fraction of a second on a standard PC) since they are

based on algebraic calculations.

– In almost all case studies both methods adequately rep-

resent residual uncertainty and provide similar results

consistent with the understanding of the hydrological

picture of the catchment and the accuracy of the (hydro-

logical) models used. We can recommend both methods

for use in flood forecasting.

– In one case study, Llanerfyl, we found that UNEEC was

giving more adequate estimates than QR. This catch-

ment has a shorter basin lag time and the model out-

puts for this catchment were characterized by a rela-

tively high error, so our conclusion was that probably

in such a rapid response catchment the UNEEC’s more

sophisticated non-linear models were able to capture re-

lationships between the hydrometeorological and state

variables, and the quantiles better than the QR’s linear

model.

– A useful finding is that inclusion of a variable repre-

senting groundwater level (GW) as a predictor in UN-

EEC improves its performance for the Upper Severn

catchments. This can be explained by the fact that this

variable has a high level of information content about

the state of a catchment. However, it should be noted

that, in other catchments, using such information can

be misleading due to slow (and long) response times
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of groundwater levels to changing hydrometeorological

conditions. Yet, overall, it can be advised to make use of

variables which can be representative of the hydrolog-

ical response behaviour of a catchment for improving

the predictive capacity of data-driven methods.

There are limitations of the presented research (aspects that

have not been taken into account in this paper due to the time

and project setting constraints), which can also be seen as

recommendations for the future research.

We recommend comparing the two presented methods

(QR and UNEEC) with more predictive uncertainty methods

which use different methodologies, such as HUP (Krzyszto-

fowicz, 1999), the more recent MCP (Todini, 2008) and

DUMBRAE (Pianosi and Raso, 2012). Yet another recom-

mendation (induced by the referee’s and Editor’s sugges-

tions) is to extend the list of the possible performance mea-

sures and to test the applicability of the methods developed

for the assessment of the probabilistic forecast quality (Laio

and Tamea, 2007) whose mathematical apparatus is trans-

ferrable to the problem of residual uncertainty prediction.

It can also be recommended to test capabilities of differ-

ent predictive uncertainty methods on theoretical cases with

the known distributions, as well as on the catchments of dis-

tinct hydrologic behaviour, with diverse climatic conditions,

and having various hydrological features. In this study, we

found that the basin lag time is a notable characteristic of a

catchment having great influence on uncertainty analysis re-

sults (as measured by PICP and MPI). When the lag time is

longer, the catchment memorizes more information regard-

ing its hydrological response characteristics.

On the other hand, exploring the performance of different

methods on similar catchments (Sawicz et al., 2011; Toth,

2013; Patil and Stieglitz, 2011; Sivakumar et al., 2014) and

finding bases for generalized guidelines on the selection of

the most appropriate predictive uncertainty method in opera-

tional flood forecasting practices is also important and could

be considered in the further studies as well.

When different predictive uncertainty methods are eval-

uated based on their comparative performance, it is more

important to have validation measures incorporating certain

aspects of rainfall–runoff processes, i.e. varying flow condi-

tions. For example, the accuracy of the hydrological model

decreases during high flow events, and thus the amount of

residual uncertainty increases. This necessitates exploring

validation measures linking the prediction interval to the (hy-

drological) model quality, e.g. by employing the weighted

mean prediction interval (Dogulu et al., 2014).

There are other possibilities for further improvements in

both of the presented methods. For example, the different

configurations of QR, the alternative clustering techniques

for UNEEC, as well as using it in instance-based learning

(e.g. locally weighted regression) as the predicting model can

be explored further.
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