Articles | Volume 29, issue 14
https://doi.org/10.5194/hess-29-3145-2025
https://doi.org/10.5194/hess-29-3145-2025
Research article
 | 
24 Jul 2025
Research article |  | 24 Jul 2025

Toward routing river water in land surface models with recurrent neural networks

Mauricio Lima, Katherine Deck, Oliver R. A. Dunbar, and Tapio Schneider

Related authors

Opinion: Optimizing climate models with process knowledge, resolution, and artificial intelligence
Tapio Schneider, L. Ruby Leung, and Robert C. J. Wills
Atmos. Chem. Phys., 24, 7041–7062, https://doi.org/10.5194/acp-24-7041-2024,https://doi.org/10.5194/acp-24-7041-2024, 2024
Short summary
Large-eddy simulations with ClimateMachine v0.2.0: a new open-source code for atmospheric simulations on GPUs and CPUs
Akshay Sridhar, Yassine Tissaoui, Simone Marras, Zhaoyi Shen, Charles Kawczynski, Simon Byrne, Kiran Pamnany, Maciej Waruszewski, Thomas H. Gibson, Jeremy E. Kozdon, Valentin Churavy, Lucas C. Wilcox, Francis X. Giraldo, and Tapio Schneider
Geosci. Model Dev., 15, 6259–6284, https://doi.org/10.5194/gmd-15-6259-2022,https://doi.org/10.5194/gmd-15-6259-2022, 2022
Short summary

Related subject area

Subject: Global hydrology | Techniques and Approaches: Modelling approaches
Representation of a two-way coupled irrigation system in the Common Land Model
Shulei Zhang, Hongbin Liang, Fang Li, Xingjie Lu, and Yongjiu Dai
Hydrol. Earth Syst. Sci., 29, 3119–3143, https://doi.org/10.5194/hess-29-3119-2025,https://doi.org/10.5194/hess-29-3119-2025, 2025
Short summary
Benchmarking historical performance and future projections from a large-scale hydrologic model with a watershed hydrologic model
Rajesh R. Shrestha, Alex J. Cannon, Sydney Hoffman, Marie Whibley, and Aranildo Lima
Hydrol. Earth Syst. Sci., 29, 2881–2900, https://doi.org/10.5194/hess-29-2881-2025,https://doi.org/10.5194/hess-29-2881-2025, 2025
Short summary
Drought decreases annual streamflow response to precipitation, especially in arid regions
Alessia Matanó, Raed Hamed, Manuela I. Brunner, Marlies H. Barendrecht, and Anne F. Van Loon
Hydrol. Earth Syst. Sci., 29, 2749–2764, https://doi.org/10.5194/hess-29-2749-2025,https://doi.org/10.5194/hess-29-2749-2025, 2025
Short summary
Mapping groundwater-dependent ecosystems using a high-resolution global groundwater model
Nicole Gyakowah Otoo, Edwin H. Sutanudjaja, Michelle T. H. van Vliet, Aafke M. Schipper, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci., 29, 2153–2165, https://doi.org/10.5194/hess-29-2153-2025,https://doi.org/10.5194/hess-29-2153-2025, 2025
Short summary
Can large-scale tree cover change negate climate change impacts on future water availability?
Freek Engel, Anne J. Hoek van Dijke, Caspar T. J. Roebroek, and Imme Benedict
Hydrol. Earth Syst. Sci., 29, 1895–1918, https://doi.org/10.5194/hess-29-1895-2025,https://doi.org/10.5194/hess-29-1895-2025, 2025
Short summary

Cited articles

Addor, N., Newman, A. J., Mizukami, N., and Clark, M. P.: The CAMELS data set: catchment attributes and meteorology for large-sample studies, Hydrol. Earth Syst. Sci., 21, 5293–5313, https://doi.org/10.5194/hess-21-5293-2017, 2017. a
Balsamo, G., Beljaars, A., Scipal, K., Viterbo, P., Van Den Hurk, B., Hirschi, M., and Betts, A. K.: A Revised Hydrology for the ECMWF Model: Verification from Field Site to Terrestrial Water Storage and Impact in the Integrated Forecast System, J. Hydrometeorol., 10, 623–643, https://doi.org/10.1175/2008jhm1068.1, 2009. a
Beck, H. E., Van Dijk, A. I. J. M., De Roo, A., Miralles, D. G., McVicar, T. R., Schellekens, J., and Bruijnzeel, L. A.: Global‐scale regionalization of hydrologic model parameters, Water Resour. Res., 52, 3599–3622, https://doi.org/10.1002/2015wr018247, 2016. a
Bonan, G.: Climate Change and Terrestrial Ecosystem Modeling, Cambridge Univ. Press, Cambridge, UK, Cambridge University Press, ISBN 9781107339217, https://doi.org/10.1017/9781107339217, 2019. a
Branstetter, M. L.: Development of a parallel river transport algorithm and applications to climate studies, Ph.D. dissertation, The University of Texas at Austin, 2001. a
Download
Short summary
Machine learning is playing an increasingly important role in hydrological modeling. In this paper, we introduce an adaptation of existing machine learning models for simulating streamflow in river basins, redesigning them with the goal of integrating them in climate models. We demonstrate the effectiveness of our adapted model by showing that it outperforms a physics-based river model. These results motivate further studies of the use of machine-learning-based river models inside climate models.
Share