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Abstract. Machine learning is playing an increasing role in
hydrology, supplementing or replacing physics-based mod-
els. One notable example is the use of recurrent neural net-
works (RNNs) for forecasting streamflow given observed
precipitation and geographic characteristics. Training of such
a model over the continental United States (CONUS) has
demonstrated that a single set of model parameters can be
used across independent catchments, and that RNNs can out-
perform physics-based models. In this work, we take a next
step and study the performance of RNNs for river routing
in land surface models (LSMs). Instead of observed pre-
cipitation, the LSM-RNN uses instantaneous runoff calcu-
lated from physics-based models as an input. We train the
model with data from river basins spanning the globe and
test it using historical streamflow measurements. The model
demonstrates skill at generalization across basins (predicting
streamflow in catchments not used in training) and across
time (predicting streamflow during years not used in train-
ing). We compare the predictions from the LSM-RNN with
results from an existing physics-based model calibrated with
a similar dataset and find that the LSM-RNN outperforms
the physics-based model: a gain in median Nash–Sutcliffe
efficiency (NSE) from 0.56 to 0.64 (time-split experiment)
and from 0.30 to 0.34 (basin-split experiment). Our results
show that RNNs are effective for global streamflow predic-
tion from runoff inputs and motivate the development of
complete routing models that can capture nested sub-basis
connections.

1 Introduction

The surface water cycle is a key component of the climate
system (Oki and Kanae, 2006), and river routing of runoff
from the land to the ocean is an important transport pro-
cess simulated in land surface models (LSMs) within climate
models (Li et al., 2015). Routing models provide a freshwater
source for ocean models and have a range of additional ap-
plications, from water resource management (He et al., 2017)
to flood hazard assessments under climate change scenarios
(Wobus et al., 2017).

River basins, the areas drained by individual rivers and
their tributaries, tile the land surface into weakly connected
domains, with water transport between basins given by the
river streamflow. Two main processes are typically consid-
ered in river modeling: hillslope routing and river channel
routing (Mizukami et al., 2016). Hillslope routing describes
how water moves across the landscape, considering factors
such as topography, soil characteristics, and vegetation. It
is the process that leads to the time lag between instan-
taneously generated runoff on land and the aggregation of
runoff at a river channel, contributing to streamflow. This
process is unresolved in the river models used in LSMs and
must be parametrized. In contrast, river channel routing de-
scribes how water moves from upstream channels to down-
stream outlets within the river network itself. Both the hill-
slope and river channel routing processes occur simultane-
ously within a basin.

Within an LSM, a river routing model must demonstrate
generalizability across multiple temporal and spatial scales.
In time, it should capture the seasonal cycle and the faster
surface runoff response to precipitation events. In space, it
must display generalizability across basins, one of the main
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challenges in modern hydrology (Sivapalan et al., 2003; Hra-
chowitz et al., 2013). What we call regional basin general-
izability, known in the hydrology community as regional-
ization, describes the skill of a model at using the learned
characteristics of gauged basins (where streamflow is mea-
sured by stream gauges) to predict behavior in other, pos-
sibly ungauged, basins, generally in the same region at a
sub-continental scale. Several approaches exist to tackle this
problem (Prieto et al., 2019). What we call global basin gen-
eralizability refers to the same concept, but across all re-
gions, and is also referred to as global-scale regionaliza-
tion (Beck et al., 2016). In both cases, hydrological mod-
els that rely heavily on single-basin calibrations have greater
difficulty generalizing due to overfitting to individual basins
(Kratzert et al., 2024). Moreover, the vast majority of basins
in many regions are ungauged; the generalization of mod-
els calibrated with basins from well-represented regions to
those with a lack of gauges is therefore especially challeng-
ing (Feng et al., 2021).

A physics-based approach to river modeling can be im-
plemented considering different processes at different scales.
Lohmann et al. (1996) presented one of the first river rout-
ing schemes for LSMs, using a linear model to account
for hillslope routing in each grid and the linearized Saint-
Venant equation to model water transport in between grids.
Later models, like the storage-based schemes of Oki and Sud
(1998) and Branstetter (2001), used simplified 1D kinematic
wave routing (KWR) equations to route water for both hills-
lope and river channel routing jointly, but explicitly account-
ing for the spatial distribution of streamflow under various
approximations. More advanced approaches (e.g., Ye et al.,
2012; Wu et al., 2014) apply 1D KWR explicitly, account-
ing for the differences between hillslope and river channel
routing. Moreover, Li et al. (2013) additionally accounted
for tributary channels explicitly. More recent models, such as
that of Mizukami et al. (2016), offer flexibility by coupling
different possibilities for hillslope and river channel routing
in a domain that can be either vector- or grid-based. Physics-
based representation of these processes presents several ad-
vantages. First, the physical equations describing the flow
naturally conserve water mass, which is crucial for systems
simulated for long periods of time, as is the case in LSMs.
Second, the interpretability of the model is straightforward
since one knows exactly what physical laws are being used.
Finally, physical laws have a long history of success in phys-
ical modeling; thus, these approaches are commonly em-
ployed in streamflow forecasting models across disciplines.
Despite these advantages, however, physical models tend to
perform poorly at regional and global basin generalizability,
and it has been argued that this is due to challenges in ex-
pressing routing processes across scales and locations using
simple physical laws (Nearing et al., 2021). For a more de-
tailed overview of physics-based routing models, see Shaad
(2018).

Recently, a class of recurrent deep learning models, re-
ferred to as long short-term-memory (LSTM) models, have
outperformed physics-based models on the rainfall-runoff
problem (Kratzert et al., 2019b). In Kratzert et al. (2018), an
LSTM was trained to model the entire land hydrology system
for the continental United States (CONUS). The model took
observed precipitation as input (along with other dynamic in-
puts such as near-surface temperature, surface pressure, etc.)
and then simulated streamflow at the outlet of gauged catch-
ments, implicitly modeling snowpack, soil storage, runoff,
hillslope routing, and river channel routing. In Kratzert
et al. (2019b), attributes such as topography, vegetation, and
soil properties from different catchments were added to the
model to improve its performance. The model did not ex-
plicitly account for routing between basins and treated each
catchment independently. Nonetheless, the model showed
good performance in regional calibration, where a single
set of parameters is learned using data from multiple catch-
ments at once. Further studies also showed that these types
of models were successful at basin generalization, predict-
ing streamflow on the outlet of catchments not included in
the training set (Kratzert et al., 2019a); more recently, sim-
ilar models have demonstrated greater global basin general-
izability than physics-based models (Nearing et al., 2024).
In particular, these results suggest that models can repre-
sent the unresolved processes in hillslope and channel rout-
ing accurately. A drawback to using these machine learning
(ML) models in LSMs is that they are not guaranteed to con-
serve mass a priori (or produce otherwise physical output,
such as positive streamflow); however, constraints can be en-
forced by adapting the architecture of the network, for ex-
ample, to be mass conserving (Hoedt et al., 2021). More im-
portantly, though machine-learning-based models have been
used for routing between basins in specific regions (Moshe
et al., 2020), these types of models have not been used yet
for this purpose over entire continents, which is a necessary
step in order to implement them in LSMs.

1.1 Our contributions

Our goal in this work is to explore the use of LSTMs for river
routing in a global LSM. To do so, we make multiple alter-
ations to the rainfall-runoff LSTM of Kratzert et al. (2019b),
including in model architecture and training and validation
procedures:

(i) We use instantaneous runoff (both surface and sub-
surface) as input, rather than precipitation, assuming
that the runoff is provided by a separate land model.
This is done to be able to keep track of where water is
stored within the land surface. Keeping track of water
fluxes (runoff, evaporation, transpiration) and storage
(snow, soil, etc.) is crucial in LSMs for understanding
interactions between key land surface components, such
as soil, vegetation, and snowpack, all of which interact
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with the atmosphere through energy and water fluxes
(Bonan, 2019).

(ii) We construct a globally consistent dataset to train and
validate runoff-driven models. We incorporate runoff
variables from reanalysis and use a globally unified sys-
tem of basin characterizations, to ensure that our routing
model can be integrated into an LSM in the future. This
also requires consistency between gauged catchments
and geographical definitions of the nested sub-basins
provided by our base dataset (Lehner et al., 2008). A
similar idea was first introduced in the Caravan dataset
(Kratzert et al., 2023), using precipitation instead of
runoff and catchments instead of globally consistent
sub-basins.

(iii) We evaluate the trained LSTM models on LSM-relevant
tasks, including generalization across time and basins,
using both CONUS and global training data. We
demonstrate good performance of the model and inter-
pret results at a granular level by breaking down skill
over different geographical regions.

(iv) We compare our generalization experiments with the
physics-based LISFLOOD model (Van Der Knijff et al.,
2010), which underlies the Global Flood Awareness
System (GloFAS), an operational product and service
of the Copernicus Emergency Management Service. To
do so, we use the GloFAS discharge product provided
as reanalysis. Results show the recurrent neural network
(RNNs) approach displays superior performance.

(v) We consider the mass conservation properties of the
LSTM (Appendix D).

This work represents a first step toward using LSTMs for
river routing in LSMs; however, we still treat each basin as
independent, as in Kratzert et al. (2019b). The problem of
routing between basins is left for future work.

1.2 Outline and notation

The terms catchment and basin are often used interchange-
ably in the hydrology literature. In this paper, we use “basin”
(and sub-basin) for the units of topographical subdivision
of the world into drainage areas, and “catchment” for the
drainage area of specific gauges. Additionally, we use the
term generalization in time as described in the previous sec-
tion (generalizing to time periods unseen in calibration, but
only for basins used in calibration), in place of what the hy-
drology community often refers to as performance in gauged
basins. We use the term basin generalization as described in
the previous section (generalizing to basins not used in cal-
ibration), in place of what the hydrology community refers
to as regionalization or performance in ungauged basins. We
choose this terminology because whether a basin is gauged

or not is a property of the basin, while time and basin gen-
eralizability are experimental design concepts. For example,
only gauged basins can be used for validating a model, re-
gardless of whether that model is calibrated in a “gauged”
(generalization in time) or “ungauged” (basin generalization)
fashion.

The paper is structured as follows. Section 2 presents the
various components of our model, including data engineering
and the training of the ML model. Section 3 presents our find-
ings regarding time and basin generalization, a comparison
with a physics-based model, and an investigation of model
performance by basin attributes. Section 4 summarizes the
main results and outlines future directions, including apply-
ing the LSTM to routing between basins.

2 Methods

2.1 Dataset

The first phase of this project consisted of constructing a con-
sistent dataset that allows worldwide calibrations and simu-
lations. Using global data for training is important as it in-
creases the likelihood of generalization outside the training
sample. In an LSM, river routing must be simulated across
the entire globe, and not just across basins in the training set.
To construct the dataset, we need forcing data, which vary in
time and space, as well as static attributes describing physi-
cal characteristics of each basin, which are assumed to only
vary in space and which encode how runoff is routed within
a basin. We additionally require streamflow data in each of
these basins, which is the quantity our model is predicting.
As explained in the introduction, we only target within-basin
routing (hillslope routing and within-basin channel routing),
not main channel routing between nested sub-basins. This
allows us to treat each basin as independent in training and
simplifies the training task, at the expense of not making use
of the information present in the river network structure. In
practical terms, this implies that each catchment represented
by a gauge in our dataset must have a clear match to a basin.

2.1.1 Basins and static attributes

The HydroSHEDS dataset (Lehner et al., 2008) provides
a vector-based division of the globe into basins (Hy-
droBASINS, Lehner and Grill, 2013), viewable in levels (1
to 12) of resolution: as the levels grow, basins are subdivided
into nested sub-basins, following the topography of the re-
gion. Moreover, each basin has static attributes derived from
well-established global digital maps (HydroATLAS, Linke
et al., 2019), which we use to construct the training data, as
explained in Sect. 2.2. These static attributes are divided into
seven sub-classes: hydrology, physiography, climate, land
cover & use, soils & geology, and anthropogenic influences.
This offers a detailed description of basins that will be used
to span the dimensional space in which our model operates.
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Static attributes are assumed to be constant over time and
were chosen based both on previous studies (Kratzert et al.,
2019b) and on our physical understanding of the problem.
A table with all selected static attributes used in our mod-
els is shown in Appendix A. A particularly important static
attribute is the area of the catchment, described in Sect. 2.1.3.

2.1.2 Dynamic inputs

Dynamic variables are the ones that change with time: sub-
surface and surface runoff (mass attributes), temperature at
2 m height, surface pressure, and solar radiation over each
basin. While in principle only mass attributes are required,
additional variables were found to improve the accuracy of
the model overall. Dynamic variables such as evaporation
from rivers and re-infiltration are ignored. Water that is lost
from river channels via these mechanisms is not explicitly
tracked but can be implicitly present.

We derive a daily time series for each dynamic input for
each basin using the grid-based reanalysis dataset provided
by ERA5-Land (Muñoz-Sabater et al., 2021). Each point of
the grid was attributed to the corresponding basin polygon in
space using a simple ray-casting algorithm (Shimrat, 1962).
To account for grid cells overlapping with basin boundaries,
a Monte Carlo simulation was used to estimate how much of
the cell area overlapped with the basin. We added noise to
each grid point coordinate and computed the probability of
finding a point inside the polygon. Figure 1a illustrates the
process.

All dynamic variables are calculated daily. Sub-surface
and surface runoff are extensive variables and are summed
over the set of grid points inside each basin. The air tem-
perature at 2 m height, the surface pressure, and the solar ra-
diation are intensive variables and are averaged over the set
of grid points inside each basin. Spatial averaging is applied
to all variables within a basin, involving the division of the
cumulative time series values within each basin by the corre-
sponding number of grid points within that basin. We high-
light that this process is feasible starting from any grid res-
olution, which makes the model adaptable to other datasets
without the need for recalibration.

A final pre-processing step prior to training and net-
work evaluation is to normalize all input variables, following
Kratzert et al. (2022).

2.1.3 Streamflow

Measurements of streamflow as a function of time were ob-
tained from the Global Runoff Data Centre (GRDC, https:
//portal.grdc.bafg.de/, last access: 11 September 2024). To
associate the discharge records from the river gauges, iden-
tified by latitude and longitude, with their corresponding
basins, we employed the ray-casting algorithm to determine
which polygon (basin vector) encloses each gauge. We found
that, in many cases, the gauge catchment area defined by

GRDC and the basin area for the corresponding basin in Hy-
droSHEDS were not in agreement. This can occur for two
main reasons:

– When a single gauge catchment area contains several
small sub-basins, the catchment is much larger than the
basin containing the gauge, which is probably a sub-
basin dependent on upstream basins inside the catch-
ment.

– When a basin has smaller, secondary rivers with associ-
ated gauge catchment areas within it, the basin is much
bigger than the gauge catchment within it, which prob-
ably corresponds to a sub-basin.

To reduce errors arising from assigning gauge catchment
areas to the incorrect basin, we used a filter allowing not
more than a 20 % difference between the catchment and basin
area. This value was chosen as a balance between a small
threshold (favoring gauges closer to the outlet of the basin,
hence more representative of the outflow of the basin) and
a large threshold (favoring more matching examples, hence
more data for calibration). Ultimately, this filter has the role
of choosing only basins with good spatial agreement with
their gauge catchment. Moreover, only gauges with more
than 1 year of consecutive data were considered in the train-
ing phase. This procedure was inspired by Sutanudjaja et al.
(2018). We highlight that not all basins have data in the test
phase, which means that some basins can be used for train-
ing but not for testing. The result of this process is shown in
Fig. 1b.

The streamflow measurements provided by GRDC are in
terms of the local time zone where the gauge is located.
To match with ERA5-Land reanalysis, we interpolated these
time series to UTC. As the GRDC time series have daily
increments, this shift assumes a constant streamflow during
the day, which is a coarse approximation. Furthermore, we
take the gauge catchment area defined by GRDC (and not
the basin area defined by HydroSHEDS) to use as a static at-
tribute for the gauge linked to a basin for model training. This
variable is crucial for the model because it enables it to ad-
just the input runoff, normalized to the basin area, according
to the size of the drainage area, in order to predict stream-
flow. All other static and dynamic inputs are estimated using
the corresponding basin defined in HydroSHEDS.

The resulting runoff and streamflow time series on the
basin in Fig. 1 are shown in Fig. 2.

2.1.4 Dataset summary

The process was applied for all nine continental areas and for
3 of the 12 levels available in HydroSHEDS (levels 5, 6, and
7). These levels were chosen based on their sub-basin area to
be relevant for typical resolutions of climate models. Table 1
summarizes the number of catchments in each level both in
the CONUS and globally, and reports their areas. The study
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Figure 1. (a) Illustration of the Monte Carlo algorithm used for transforming gridded ERA5-Land data into basin-specific data for Hy-
droSHEDS basin 2070017000 (shaded pink, located at the east coast of Spain). Grid cells that are completely inside the basin have a weight
of 1 because their entire area lies within the basin. Grid cells outside the basin have weights less than 1, representing the fraction of their area
within the basin. Other basins are shaded gray, and their boundaries are outlined in black. The white area is the sea (in this case the Balearic
Sea). (b) GRDC gauges and the river network structure within the same basin. In the figure, the chosen gauge (white circle) is the one used in
the calibration of our model for this specific basin, as it better represents the entire drainage area of the basin. The other gauge has a smaller
catchment area, so it represents a smaller fraction of the behavior of the basin.

Figure 2. Surface runoff, sub-surface runoff, and streamflow during 1 year for basin 2070017000 of HydroSHEDS, located at the east coast
of Spain.

covered the time span from 1990 to 2019, with certain gauges
exhibiting gaps in discharge data. No gap filling technique
was applied, and only original values were retained.

2.2 LSTM model

Recurrent neural networks are a subset of neural networks
that contain recurrent connections and were designed to han-
dle sequential data (Rumelhart et al., 1986; Goodfellow et al.,
2016). RNNs are particularly effective when the predictor
requires (possibly long) time history data to make accurate
forecasts. This is relevant to our use case, as the key variables
(surface and sub-surface runoff) are provided as a daily time

series for each basin, but streamflow may depend on the time
history of runoff because of physical storage and transport
processes. Given an element xt in a sequence (x1, . . .,xT )

indexed by discrete time (1, . . .,T ) and a set of learnable pa-
rameters θ , a hidden state ht in a typical RNN is completely
described by the recurrent relation

ht = F(ht−1,xt ;θ), (1)

where F represents some flexible parametrized model, and
this equation is subject to an initial condition h0. Here, xt is
the vector concatenating the vector of dynamic variables (xd

t )
and the vector of static attributes (xs): xt = (xd

t ,x
s). At the

final time T , the corresponding output q̂T (daily streamflow
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Table 1. Relevant statistics for gauged basins in the US and over the globe, including the number of catchments and their median, minimum,
and maximum catchment areas.

US Global

Level Number Median (km2) Min, Max (km2) Number Median (km2) Min, Max (km2)

Level 5 55 2.9× 104 4.9× 103, 2.4× 105 224 3.0× 104 3.6× 103, 3.4× 105

Level 6 150 1.1× 104 1.9× 103, 6.2× 104 443 9.9× 103 1.2× 103, 7.0× 104

Level 7 193 4.4× 103 7.6× 102, 2.1× 104 660 3.7× 103 3.9× 102, 5.4× 104

Figure 3. Diagram of dependencies in the recurrent neural net-
work. The input vector xt = (Rs

t ,R
ss
t , . . .;A,. . .) is a concatenation

of dynamic inputs, such as instantaneous surface runoff Rs(t), sub-
surface runoff Rss(t), and other dynamic inputs that vary with time
t , and static attributes, such as the catchment area A and others.
The variable h denotes the hidden state. (Figure modeled after and
inspired by those in Goodfellow et al. (2016).)

in m3 s−1) depends on the hidden state through

q̂T =G(hT ;θ), (2)

where G is a function that is composed of a linear transfor-
mation and a dropout layer used to prevent overfitting (Sri-
vastava et al., 2014). A schematic of the network is shown in
Fig. 3.

LSTMs (long short-term memories; Hochreiter and
Schmidhuber, 1997) are a type of RNN with a specific gen-
eral structure of the function F . A detailed explanation of
the LSTM network used in this work can be found in Ap-
pendix B. The design of the network avoids the vanish-
ing gradient problem that plagues the training procedures
for vanilla RNNs, so that optimization of the weights of an
LSTM is far more effective. As an RNN, it also allows for
the state at previous steps to affect the output at the current
step.

The training procedure seeks to optimize the loss function
by varying the free parameters of the LSTM. Our loss func-
tion L is a modified Nash–Sutcliffe efficiency (NSE), defined
as

L(θ)=
1
B

∑
b,t

(q̂b,t − qb,t )
2

(s(b)+ δ)2
, (3)

where q̂b,t and qb,t are the predicted and observed stream-
flow at basin b’s outlet for time t in the training set, s(b)
is the standard deviation of streamflow at basin b, and δ is a
small number (set to 0.1) for numeric stability. The loss func-
tion is averaged by the number of basins in the training set B.
Moreover, we chose to skip missing values of streamflow to
increase the number of valid samples for which we can com-
pute the loss, which may then vary for each basin. Since there
is no factor in the numerator dividing by the number of ob-
servations per basin, this indicates that basins with more ob-
servations (fewer gaps) are effectively weighted more by the
loss function. We refer the reader to Kratzert et al. (2019b)
for further discussion of this loss function choice. Note that
the NSE is a standard metric for performance used in time se-
ries prediction; we provide a further description and analysis
of the NSE metric in Sect. 2.3.

To tune the model, we used the Adam optimizer (Kingma
and Ba, 2014), with the recommended parameters of β1 =

0.9, β2 = 0.999, and ε = 10−8. Following Kratzert et al.
(2019b), we chose the number of recurrent iterations of the
LSTM to be T = 270, the number of features in the hidden
state h to be 256, and the dropout probability of the linear
layer in G to be 0.4. We trained the model for 35 epochs,
with a learning rate of 10−3 for the first 10 epochs, 10−4 for
the 10 following epochs, and 10−5 for the last 5 epochs. More
details can also be found in our code (Lima, 2024).

Without additional constraints, there is no guarantee that
the LSTM model conserves water mass (aside from indi-
rectly, by matching observed streamflow given runoff as in-
put). An important consideration for LSMs is how to adapt
this model in order to conserve mass, possibly accounting
for processes like evaporation from rivers and re-infiltration
of water into the soil. Possible approaches include changing
the loss function or adapting the neural network design to be
mass conserving (Hoedt et al., 2021); we leave such adapta-
tions for future work.

2.3 Metrics

To assess the performance of the model, we use the Nash–
Sutcliffe efficiency (NSE, Nash and Sutcliffe, 1970), which,
for a given outlet, can be written as

NSE= 1−
∑
t (q̂t − qt )

2∑
t (qt − q̄)

2 , (4)
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where q̂t and qt are the predicted and observed streamflow
at a basin outlet for time t and q̄ is the averaged observed
streamflow over all valid times in the validation or test set.
Note that here we omit the index b because the expression is
computed for each basin and not for an ensemble of basins
as in the expression of the loss function. In this expression, 1
is a perfect score (q̂t = qt ), and it gets worse (lower NSE) as
the fraction of the mean squared error (

∑
t (q̂t −qt )

2/n) nor-
malized by the variance of the streamflow (

∑
t (qt − q̄)

2/n)

increases, where n indicates the number of observations for
each basin. This normalization implies that the NSE lies in
(−∞,1]. Note that if a model is predicting only the mean
flow at the outlet (i.e., q̂t = q̄), we would have an NSE of
0. We will use this value as reference to evaluate perfor-
mances above a naive mean flow baseline (NSE> 0) vs. per-
formances below a naive mean flow baseline (NSE < 0), as
suggested in Knoben et al. (2019).

Another commonly used metric in hydrology is the Kling–
Gupta efficiency (KGE, Gupta et al., 2009), which, for a
given basin, can be written as

KGE= 1−
√
(r − 1)2+ (α− 1)2+ (β − 1)2. (5)

where r is the linear correlation coefficient between simu-
lated and observed time series; α = σ̂/σ is the variability
ratio, given by the ratio between the standard deviation in
simulations σ̂ and the standard deviation in observations σ ;
and β = µ̂/µ is the bias ratio, given by the ratio between the
mean in simulations µ̂ and the mean in observations µ. This
score represents an explicit decomposition of the normalized
mean squared error into the three components r , α, and β.
The score likewise lies in (−∞,1], with 1 being a perfect
score. We can define a reference value based on the KGE for
a model predicting only the mean flow. In this case, we would
have no correlation (r = 0), no variability ratio (α = 0), but
a perfect bias ratio (β = 1), which gives a reference KGE of
1−
√

2≈−0.41. We will use this reference value as a pa-
rameter to evaluate performances above a naive mean flow
baseline (KGE > 1−

√
2) vs. performances below a naive

mean flow baseline (KGE < 1−
√

2).
As both scores are unbounded along the negative axis, out-

liers can lead to large negative values. Therefore, we use the
median score (rather than the mean) over the entire ensem-
ble of basins to quantify the results. In discussions of only
well-performing basins (outperforming the mean flow refer-
ence), it is still useful to use the mean; we denote this metric
as “MeanNSE>0” for the NSE and “MeanKGE>1−

√
2” for the

KGE. Better models will have this mean closer to 1. We also
define the fraction of poor-performing basins (worse than the
mean flow reference) in the test set. We denote this metric as
“%NSE<0” for the NSE and “%KGE<1−

√
2” for the KGE. Bet-

ter models will have this fraction closer to zero. As both met-
rics are normalized, we can compare river discharges from
basins with different sizes and regimes in different climates.

3 Results

We present a series of experiments carried out to quantify
the performance of the model. We compare the behavior of
a model driven with precipitation with that of one driven
with runoff, and we compare the behavior of a model trained
and tested in the USA with one trained and tested glob-
ally. To assess generalizability across basins and times, we
experiment with different training/testing/validation splits.
The model’s training time varied with the datasets and the
longest run took a few hours with one V100 GPU. Further-
more, we compare the performance of the model against
the physics-based model LISFLOOD (Van Der Knijff et al.,
2010), provided by GloFAS v4.0 reanalysis data (Grimaldi
et al., 2022), which is publicly available in the Coperni-
cus Climate Data Store (https://ewds.climate.copernicus.eu/
datasets/cems-glofas-historical?tab=overview, last access:
22 April 2025). The simulations generated by both mod-
els are presented under various conditions, including those
where both models produce poor scores, those where the
simulations are close to the median score, and those where
each model demonstrates good performance relative to the
median score of each model. An additional point is made re-
garding possible comparisons with the models presented here
and other LSTM models in the literature. Finally, we analyze
the performance by continent and other attributes. An anal-
ysis by HydroSHEDS levels is provided in Appendix C. All
models shown in this section are based on the same LSTM
architecture, which is not strictly mass conserving. An anal-
ysis of mass conservation for our LSTM can be found in Ap-
pendix D.

3.1 From precipitation in the USA to runoff worldwide

This series of experiments investigates the performance of
LSTMs trained and validated using basins in the USA only
and LSTMs trained and validated on global data. The USA
was chosen as reference for being a well-characterized re-
gion in terms of data availability and because it allows for
a more direct comparison with previous results (Kratzert
et al., 2019a, b; see Sect. 3.2.2 for further discussion). Our
goals were to determine how the performance of the model
changes when the dynamic input changes (from precipita-
tion to runoff driven from reanalysis), to determine how the
model performance changes when trained with more varied
data (from the USA to the global case), and to investigate
how the model performs at the basin and time generalization
tasks.

3.1.1 Time generalization

To address these questions, we begin with a time train-
ing/validation split. The dataset was divided into three dif-
ferent time series for all basins: from 1 October 1999 to
30 September 2009 for training, from 1 October 2009 to
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Figure 4. Cumulative NSE density function for the LSTM mod-
els trained on different datasets. The models in blue and red were
trained using runoff as input; the model in purple was trained us-
ing precipitation as input. Solid lines indicate time-split datasets;
dashed lines indicate basin-split datasets. The experiments are de-
scribed in detail in Sect. 3.1.1 and 3.1.2.

30 September 2019 for validation, and from 1 October 1989
to 30 September 1999 for testing. We compared the model
trained on the USA with runoff input with the model trained
on the USA with precipitation input. We also compared the
performance of the model trained on the USA with runoff
input with the model trained using the global dataset with
runoff input.

Figure 4 shows the results of the models trained in this
time-split configuration (solid lines). Shown is the cumula-
tive density function (CDF) of the NSE scores, truncated to
[0,1], for the five different models analyzed. Since a perfect
model has an NSE score of 1, the best models have a CDF
that remains near 0 at all values of the NSE except at 1. The
median NSE corresponds to CDF= 0.5.

The results of the time-split experiment show that the
model exhibits similar performance when we change the
dynamic input data from precipitation to runoff. Quantita-
tively, we observe a median NSE of 0.50 for the runoff-driven
model and a median NSE of 0.52 for the precipitation-driven
model when both are trained on USA data. The model ex-
hibits an increase in accuracy when trained with global data,
yielding a median NSE of 0.60. This suggests that the model
exhibits enhanced learning capabilities when trained on a
more diverse dataset.

3.1.2 Basin generalization

We next investigate LSTMs trained on random subsets of all
basins globally and test on a disjoint set of all basins glob-
ally. We divide our dataset of basins by choosing 70 % for

Table 2. Performance metrics for LSTM models over different
datasets.

Model NSE

%NSE<0 MeanNSE>0 Median

USA basin-split (runoff) 20.83 0.51 0.43
USA time-split (runoff) 11.25 0.54 0.5
USA time-split (precip.) 10.23 0.53 0.52
Globe basin-split (runoff) 24.31 0.54 0.43
Globe time-split (runoff) 8.62 0.58 0.6

training (from 1 October 1999 to 30 September 2009) and
validation (from 1 October 1989 to 30 September 1999) and
30 % for testing (in the same time window as the training set).
More precisely, from a total of 398 (USA) and 1327 (global)
basins matched with gauges after the filters were applied, we
use 278 (USA) and 928 (global) to train and validate and
120 (USA) and 399 (global) to test the model in this config-
uration. In this second set of experiments, we only compare
models driven by runoff.

The results of the basin-split experiments are also shown in
Fig. 4 (dotted lines). The results demonstrate that the basin-
split models perform more poorly compared with their coun-
terparts trained with a time-split. This is expected as the un-
seen basins problem is a more challenging task. However,
similar performances are observed in both the regionally cal-
ibrated (USA) and globally calibrated models: a median NSE
of 0.43 is observed for both cases. In Appendix C, it is shown
that the global basin-split model has a better performance for
higher levels (5 and 6) in comparison with level 7, which
means that the basin generalizability of the model does de-
pend on the general size of the basins.

3.1.3 Summary of results

Table 2 highlights some important additional points. The
time-split configuration trained on observed USA precipi-
tation data has the smallest fraction of performances with
scores worse than the naive mean flow baseline model among
the configurations trained and tested in the USA, suggest-
ing that it suffers less from outliers and that there is room
for improvement in runoff modeling. We also highlight that
MeanNSE>0 is a good quantitative number to summarize the
overall behavior of the curves in the CDF in Fig. 4.

3.2 Comparison with other models

3.2.1 Comparison with a physics-based model

In a second series of experiments, we compare the LSTM
model with the LISFLOOD model, provided by GloFAS
v4.0. This choice was made because LISFLOOD explicitly
calculates runoff and performs routing of river water from
reanalysis data from ERA5 (Hersbach et al., 2020). More-
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over, the comparison between the LSTM and LISFLOOD
was straightforward to carry out without additional calibra-
tions, as the LISFLOOD streamflow predictions are provided
with the reanalysis data. That said, there are some impor-
tant differences between our model and training procedure
and those of GloFAS: (i) GloFAS uses different forcings
from ERA5, including precipitation, to calculate runoff inter-
nally, whereas the LSTM uses runoff variables computed by
the HTESSEL model (Balsamo et al., 2009) in ERA5-Land;
(ii) LISFLOOD is a complete river routing model, whereas
the LSTM models basins independently; (iii) the objective
function for GloFAS is based on the modified KGE met-
ric, whereas the LSTM was trained to optimize the NSE;
and (iv) GloFAS is calibrated with a different global set of
gauges.

Next, we compare the results of GloFAS with the LSTM
in both a time- and basin-split experiment. However, several
caveats should be noted. First, a sensible time-split exper-
iment is challenging, as GloFAS draws different dates for
training, validating, and testing for each basin. This means
that the validation time frame of the LISFLOOD model may
coincide with the test period used in our comparison here,
potentially simplifying the prediction task of the time-split
experiment for GloFAS relative to the LSTM. Second, the
locations of only GRDC gauges that were used to calibrate
GloFAS are known and other datasets may have been used
in place of the same gauges (GloFAS team members, pri-
vate communication). This allows for a basin-split experi-
ment comparison, but (a) some of the gauges in our test
set may have been used in the calibration of GloFAS, and
(b) the unknown time-split may mean that, for some of the
test basins, GloFAS is generalizing in both space and time.
The former makes the GloFAS prediction task easier than the
LSTM task, while the latter makes the GloFAS prediction
task harder than the LSTM task, since the LSTM is trained
and tested in different basins but using the same time win-
dow. For a large enough temporal training period and for a
global set of basins, we would expect that generalizing in
space and time is similar to generalizing in space, since that
is the much more challenging task. For all of these reasons,
we note the basin- and time-split experiments with a “*” in
Table 3 and Figure 5.

In order to construct the set of gauges used in our compar-
isons, we considered the following:

– When carrying out the time-split experiment, we restrict
the analysis to the intersection of the test set of basins
used by our global time-split model and the basins used
to calibrate GloFAS.

– When carrying out the basin-split experiment, we re-
strict the analysis to the intersection of the test set of
basins used by our global basin-split model and the
basins not used to calibrate GloFAS.

– We filter basins by allowing no more than a 20 % dif-
ference between the catchment area reported by GRDC
and the catchment reported by GloFAS.

The process resulted in a total of 283 basins in the time-
split configuration and 197 basins in the basin-split config-
uration. We highlight that these basins are independent of
other basins, since our models do not route water between
basins. The LSTMs are evaluated against GloFAS for the
same time periods.

Figure 5 shows the comparison between the LSTM trained
in the time-split and basin-split configurations and the
physics-based benchmark. Figure 5a shows the CDF for the
NSE score, which is the score that our model was designed
to optimize. Figure 5b shows the CDF for the KGE score,
which is the score optimized by GloFAS.

For the gauges we use, the LSTM shows an overall bet-
ter accuracy compared with GloFAS in both basin- and time-
split experiments. For the temporal split, the LSTM has a
median score of 0.64 on NSE and 0.72 on KGE, whereas
GloFAS displays a median score of 0.53 on NSE and 0.71
on KGE. For the basin-split, the LSTM has a median score
of 0.33 on NSE and 0.41 on KGE, whereas GloFAS displays
a median score of 0.30 on NSE and 0.40 on KGE. Observe
that, despite being optimized for NSE, the LSTM has simi-
lar scores on both basin- and time-split to GloFAS on KGE.
Moreover, the LSTM predictions result in fewer basins with
performance worse than the baseline in all experiments. We
show other metrics in Table 3.

It is interesting that the LSTM time-split model performs
better here than in the experiments presented in Sect. 3.1.
This may suggest that the set of basins used by GloFAS con-
tains gauges with more reliable measurements.

3.2.2 Comparison with other LSTM models

In this section we discuss possible comparisons with similar
LSTM-based models from Kratzert et al. (2019b) and Near-
ing et al. (2024). These comparisons are in general difficult
to make as each model is trained using different basins, using
different dynamic input variables, and, in the case of Nearing
et al. (2024), with different experimental designs. The mod-
els are also intended for different use cases.

In Kratzert et al. (2019b), an LSTM model was trained
using observed dynamic inputs gathered for catchments in
the CONUS (Addor et al., 2017). In a time-split experiment,
Kratzert et al. (2019b) reported a median NSE of 0.73 (with-
out ensembles). In our time-split experiment for the USA
with reanalysis precipitation as input (Sect. 3.1), we found
a median NSE of 0.52. Importantly, the dynamic inputs of
the former come from observations, while the dynamic in-
puts used to train the latter come from reanalysis data. As
a consequence, these two models are not easily comparable
as using observed precipitation (among other inputs) is more
accurate than using reanalysis data. Additionally, our LSM-
RNN was calibrated with fewer basins.
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Figure 5. Cumulative density functions for (a) NSE and (b) KGE for the LSTM and GloFAS. The domain is truncated to [0,1] for NSE and
to [1−

√
2,1] for KGE, with the lower bounds corresponding to the mean flow prediction reference value. The legend in (a) equally applies

in (b). The “*” is there to make it explicit that GloFAS experiments are not exactly a basin-split nor a time-split, as we do not know the exact
set of dates used to calibrate the model. As detailed in Sect. 3.2.1, this potentially simplifies the tasks performed by LISFLOOD.

Table 3. Performance metrics for the LSTM model in basin-split and time-split configurations and for the benchmark reanalysis from
GloFAS.

Model NSE KGE

%NSE<0 MeanNSE>0 Median %KGE<1−
√

2 MeanKGE>1−
√

2 Median

LSTM basin-split 26.4 0.51 0.34 12.18 0.44 0.41
GloFAS basin-split* 34.01 0.45 0.30 13.2 0.41 0.40
LSTM time-split 7.07 0.62 0.64 1.77 0.66 0.72
GloFAS time-split* 15.19 0.58 0.56 6.71 0.66 0.71

The “*” is there to make it explicit that GloFAS experiments are not exactly a basin-split or a time-split, as we do not know the exact set of
dates used to calibrate the model. As detailed in Sect. 3.2.1, this potentially simplifies the tasks performed by LISFLOOD.

In Nearing et al. (2024), an LSTM model was trained using
a rich set of dynamic inputs coming from multiple datasets
including high-resolution forecasts, estimates from satellites,
and ERA5-Land reanalysis data. Precipitation, not runoff,
was used. The purpose of the model is for forecasting floods
in watersheds globally. The model was trained globally and
was tested in a time-and-basin split simultaneously. Due to
large differences in input data and experimental design, a
comparison between the published results of this model and
our model is not necessarily meaningful to make. The use of
more input data with higher accuracy than reanalysis data
should improve streamflow predictions; hence, we expect
this model to outperform our LSM-RNN.

3.3 Simulations vs. observed streamflow

In this section, we present simulated time series along with
observations for various values of NSE and KGE to give a
visual sense of performance. For four different basins, Fig. 6
shows the predictions of the LSTM model in the global time-

split configuration, the GloFAS reanalysis, and the observed
discharge at the corresponding GRDC gauge.

In the first example (Fig. 6a), we have a performance
that lies around the median NSE performance of our model:
(0.61/0.63) for the LSTM and (0.52/0.56) for GloFAS in the
time interval displayed. The next example (Fig. 6b) shows
a poor performance in both NSE/KGE scores for both the
LSTM (0.02/− 0.2) and GloFAS (−0.02/− 0.61). For both
models, this is due to underprediction of a peak in the stream-
flow. It is of note that this basin produces zero discharge for
much of the time interval, and the peak discharge measures
only 24 m3 s−1, several orders of magnitude smaller than the
other basins in the figure – we come back to trends in the
model performance with basin characteristics in the follow-
ing section. The third plot (Fig. 6c) shows an example where
the LSTM has a very good performance (0.76/0.68) and out-
performs GloFAS (0.37/0.08). We observe that, although
GloFAS displays good correlation, the LSTM is quantita-
tively closer to observations. The last plot (Fig. 6d) shows
a case where GloFAS (0.84/0.70) outperforms the LSTM
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model (0.79/0.73) in the NSE score. One can infer that the
LSTM underestimates the bigger peak, but can overestimate
the lower peaks, while GloFAS shows the opposite behavior.

3.4 Geographic patterns

Lastly, we investigate the performance of the LSTM model
trained with global runoff data in the time-split configuration,
for different basin characteristics and geographic properties.

Table 4 shows statistics of NSE scores for each continen-
tal basin. We can see that regions that are under-represented
in the data (such as Africa and Australasia) have worse
scores, but that under-representation in terms of location
is not enough to predict poor performance. In particular,
the basins in Asia are well-modeled from only 38 exam-
ples, while Siberia is well-modeled from only 2 examples.
These results may be explained by the similarity of climate
conditions between these regions and other well-represented
regions. For example, conditions may be similar between
Siberia and the Canadian Arctic.

The global distribution of NSE scores for the gauges in
Table 4 can be seen in Fig. 7. From the map, we see the con-
trast between data-rich regions (North America and Europe)
and data-poorer regions (East Asia and central and northern
Africa).

We also investigate the aridity index, which is provided
in the HydroATLAS dataset (Linke et al., 2019), following
the dataset of Zomer et al. (2008). The aridity index is given
by the ratio between the mean annual precipitation and the
mean annual evapotranspiration, and is calculated on a per-
grid-cell basis. Hence, lower values of aridity index represent
arid climates and higher values represent humid climates. For
further discussion, one may refer to the newest version of the
dataset in Zomer et al. (2022). In our analysis, the aridity in-
dex has been found to be a strong predictor of the model’s
performance. Figure 8 shows a trend toward poorer perfor-
mance in drier regions (i.e., regions with lower aridity index),
consistent with findings in Feng et al. (2020), but now on a
global scale. (For context, the basin depicted in Fig. 6b has an
aridity index of 0.26.) This trend extends to other variables,
such as mean runoff, for which the model also shows poorer
performance in drier regions.

4 Discussion and conclusion

Long short-term-memory models have been shown to be the
state of the art for modeling streamflow in hydrological sys-
tems (Kratzert et al., 2019b), but most studies using these
models have so far been restricted to specific regions and
they have focused on representing the entire land hydrolog-
ical system as a single entity (Kratzert et al., 2019b; Koch
and Schneider, 2022). However, for integration into the land
surface models used in weather forecasting and climate mod-
eling, it is crucial for river models to demonstrate proficiency

in generalizing across basins and time scales globally, using
surface and sub-surface runoff data rather than precipitation
data. This necessity arises because traditional river models
in land surface models route water but leave the modeling
of snow, soil, and vegetation hydrological processes to other
model components. In this study, we have taken concrete
steps toward developing an ML model that can substitute tra-
ditional river routing models within LSMs.

We have trained and validated an LSTM in the task
of predicting streamflow from modeled runoff worldwide.
We began our analysis by contrasting the results from
a precipitation-driven model, which holistically represents
land hydrology, with those from a runoff-driven model. For
the United States, we found that an LSTM trained only to
route runoff performs comparably to one designed to simu-
late the entire land hydrology system, even when trained on
potentially less accurate and biased runoff data. Our inves-
tigation of the model’s generalization capabilities revealed
that a globally trained model, as opposed to one trained ex-
clusively using data from the USA, achieved superior perfor-
mance when both were fed runoff data in a time-split config-
uration. This improvement underscores the potential benefits
of incorporating diverse global data. However, when eval-
uating models trained in the basin-split configuration, the
performance gain was not as pronounced, highlighting the
complex challenge of global basin generalization. This chal-
lenge is exacerbated by imbalances in global data availability
and the wide range of possible climate conditions across the
globe, which may not be well-sampled in geographically lo-
calized training data (e.g., from the USA).

Additionally, our analysis revealed a correlation between
the model’s performance and the aridity index. While stream-
flow in arid basins can be modeled well by the LSTM, it is
also true that all basins with a poor NSE have a lower arid-
ity index. This suggests that drier regions pose challenges
for the LSTM model but that other basin features may af-
fect performance as well. The dependence on aridity may
be due to the model’s difficulty in capturing short-term pre-
cipitation events that trigger streamflow peaks in these areas
(Feng et al., 2020). Moreover, the ERA5-Land reanalysis is
driven with precipitation from ERA5, known to have biases
in the tropics (Lavers et al., 2022), which could lead to bi-
ases in the runoff of ERA5-Land in these regions. As a con-
sequence, our river model may be learning to correct these
biases, in addition to routing water. This is a possible pit-
fall for machine learning models trained with model output
and not with observed data. The LSTM model also under-
performed in regions likely to be under-represented in the
training data, such as in the African continent. Despite these
challenges, the model’s time generalizability was consistent
across different basin sizes (HydroSHEDS levels), even if
better basin generalizability was observed for bigger basins
(Appendix C). We highlight that the model does not need to
be recalibrated for the evaluation of different basin levels,
which correspond to different spatial resolutions of LSMs.

https://doi.org/10.5194/hess-29-3145-2025 Hydrol. Earth Syst. Sci., 29, 3145–3164, 2025



3156 M. Lima et al.: Streamflow modeling with LSTMs

Figure 6. Time series simulated by the LSTM model (pink) and GloFAS reanalysis (green), as well as observed time series from GRDC
gauges (blue) in four different basins. (a) Basin 6050344660 in HydroSHEDS level 05, located in Brazil, with gauge located at the Ita-
caiúnas River. (b) Basin 1061638580 in HydroSHEDS level 06, located in South Africa, with gauge located at the Seekoei River. (c) Basin
7050013170 in HydroSHEDS level 05, located in California, with gauge located at the Salinas River. (d) Basin 7060363050 in HydroSHEDS
level 06, located at the border between Canada and the United States, with gauge located at the Saint John River.

Table 4. Performance metrics for the LSTM model, trained with global runoff data in the time-split configuration, over the nine continental
basins defined by HydroSHEDS.

Continental basin NSE Number of basins

%NSE<0 MeanNSE>0 Median

Africa 25.33 0.3 0.19 75
Europe and Middle East 4.32 0.67 0.71 301
Siberia 0.0 0.72 0.72 2
Asia 5.26 0.56 0.59 38
Australasia 9.41 0.49 0.47 85
South America 10.0 0.57 0.58 170
North and Central America 10.04 0.56 0.54 528
Arctic (northern Canada) 0.0 0.69 0.7 101
Greenland – – – 0

We also took steps to compare our model performance
with the performance of other models. In general, this is chal-
lenging due to differences in experimental design, loss func-
tion choice, and data used. We highlight two main conclu-
sions, which we drew from our comparisons:

1. Using a similar dataset, experimental design, and LSTM
architecture, we found that a model trained with re-
analysis data (our USA time-split precipitation model)

had a significantly worse performance (a drop in me-
dian NSE from 0.73 to 0.52), compared with the LSTM
of Kratzert et al. (2019b), which was trained with ob-
servations. This indicates, unsurprisingly, that modeled
variables (e.g., precipitation or runoff from reanalysis)
suffer from larger errors than observed precipitation,
and that these errors affect the quality of the predicted
streamflow. An LSTM trained using modeled runoff, for
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Figure 7. Distribution of NSE scores for the LSTM model, trained globally in the time-split configuration. Each point corresponds to the
location of the gauge linked to the basins in HydroSHEDS levels 5, 6, or 7. The “*” is used to clarify that the range of NSE values is clipped
to greater than −1.0. We assigned the same color to all basins with a score less than −1.0 for simplicity.

Figure 8. Aridity index (a static attribute provided by HydroAT-
LAS) versus NSE score for the LSTM time-split model. Each small
square in the figure represents the amount of basins within the corre-
sponding ranges of NSE and aridity index in the test set. The aridity
index is defined as the ratio between mean annual precipitation and
mean annual evapotranspiration, hence lower values represent drier
basins. We have observed that lower NSE scores are preferentially
found in more arid basins.

which observations are not available, may learn both
to predict streamflow and to correct biases in modeled
runoff. Such biases may differ significantly in different
regions of the world, and an LSTM provided with ter-
rain particularities and climate characteristics of each
basin from static attributes should be capable of using

this information to correct runoff model errors. This is
undesirable, since it prohibits us from using streamflow
data to calibrate our runoff models. However, for our
use case of a river model routing water within an LSM,
and not modeling the entire land hydrology system, this
may be unavoidable.

2. The physics-based LISFLOOD model (GloFAS) is
more similar to our model in that it uses modeled runoff
(calculated internally) as a dynamic input to perform
streamflow routing. We have compared the models for
a subset of the gauges used to calibrate GloFAS (time-
split) and for a subset of gauges not used for calibra-
tion (basin-split). The LSTM model showed more accu-
rate simulations in both scenarios: gains in median NSE
from 0.56 to 0.64 (time-split experiment) and from 0.30
to 0.34 (basin-split experiment). Despite these average
differences, GloFAS shows superior fidelity to observa-
tions than the LSTM in some cases, while the LSTM is
superior in others. However, there are still some differ-
ences in experimental design between the two. A recal-
ibration of GloFAS using the same GRDC gauges that
we used in order to have a direct one-on-one compari-
son is beyond the scope of this work.

In order to integrate our model with an LSM, it must be
extended to enable inter-basin channel routing, and it must
respect physical principles such as mass conservation. Even
though approaches showing how to account for inter-basin
connections in a restricted region with ML models have ap-
peared (Moshe et al., 2020), physical models such as LIS-
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FLOOD for routing between basins are currently the stan-
dard for LSMs. One may interpret our work as the hills-
lope routing component of a complete routing model. In that
case, two possible ways to extend this to route water between
basins are to use a physics-based channel routing model or
to use similar neural networks to additionally perform river
channel routing. For the latter, designing training strategies
to mitigate error accumulation across connected basins may
be necessary. Moreover, incorporating architectural adjust-
ments to ensure mass conservation (e.g., Hoedt et al., 2021)
is a necessary step for incorporation in climate models.

In conclusion, we have demonstrated that an ML-based
river model exhibits basin and time generalizability, a re-
quirement for use in a global climate model. Our study
presents the first step toward using such a model in the LSM
component of climate models, as well as for short-, medium-
, and long-range hydrological forecasting using runoff from
LSMs within weather forecasting models. The results pre-
sented here motivate further research to extend these models
for comprehensive river routing.

Appendix A: List of static attributes used in the models

Table A1 lists the static attributes used in our models. The
area comes from GRDC’s catchments; all other variables
come from the HydroATLAS dataset. All these variables are
assumed to be constant in time.

Table A1. List of static attributes used in the models.

Variable name Description Unit

pre_mm_syr Mean precipitation mm
ari_ix_sav Aridity index –
area GRDC catchment’s area km2

ele_mt_sav Mean elevation m
snw_pc_syr Snow percentage cover –
slp_dg_sav Mean slope –
kar_pc_sse Karst percentage cover –
cly_pc_sav Clay percentage cover –
pet_mm_syr Mean potential evaporation mm
for_pc_sse Forest percentage cover –
snd_pc_sav Sand percentage cover –
slt_pc_sav Silt percentage cover –
gwt_cm_sav Ground water table depth cm
run_mm_syr Land surface runoff m
soc_th_sav Organic carbon content t ha−1

swc_pc_syr Soil water content –
sgr_dk_sav Stream gradient dmkm−1

cmi_ix_syr Climate moisture index –

Appendix B: LSTM architecture

As explained in Sect. 2.2, the LSTM model is a recurrent
neural network, where one cell is used recursively for a se-
quence length T of iterations. In the text, we have represented
this cell as a flexible parametrized model F . The following
equations describe the internal mechanism of such a function
(i.e., a forward pass in an LSTM cell at the t th iteration):

it = σ(Wixt +Uiht−1+ bi), (B1)
f t = σ(Wf xt +Ufht−1+ bf ), (B2)
gt = tanh(Wgxt +Ught−1+ bg), (B3)
ot = σ(Woxt +Uoht−1+ bo), (B4)
ct = f t � ct−1+ it �gt , (B5)
ht = ot � tanh(ct ), (B6)

where it , f t , gt , and ot are the input, forget, cell, and output
gates, respectively. Each of these gates has learnable weights
for both the inputs xt (represented by the matrix W) and hid-
den states ht (represented by the matrix U), as well as learn-
able biases (represented by the vector b). Observe that these
learnable parameters do not depend on time – even though
the result of each gate may depend on time with xt and ht ,
it uses the same learnable parameters, which are applied re-
cursively. The input, forget, and output gates are enclosed
by the sigmoid function σ and the cell gate is enclosed by
the hyperbolic tangent function tanh. Furthermore, in the ex-
pressions of cell state ct and the hidden state ht ,� represents
an element-wise multiplication. Figure B1 schematizes these
equations inside the LSTM cell.

Figure B1. Diagram of an LSTM cell, as defined in Eqs. (B1)–(B6).

Observe that, in comparison with Fig. 3, we explicitly
represent the cell state ct , which is also a “hidden” state
that influence subsequent iterations. The general idea of the
LSTM is to add or remove information on this cell state
through gates, which is what is written in Eq. (B5). In the
first term on the right side of the equation (f t � ct−1), the
forget gate f t (which is enclosed by a sigmoid function)
can remove (or add) information from the cell state ct by
multiplying each element of the vector by 0 (or 1). In the
second term (it �gt ), the input gate applies the same logic
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to the cell gate to remove or add information to the cell
state. For more intuition behind this architecture, we rec-
ommend the comprehensive text in https://colah.github.io/
posts/2015-08-Understanding-LSTMs/ (last access: 13 Au-
gust 2024).

Appendix C: NSE by HydroSHEDS level

In this section, we show the distribution of NSE scores for
each of the three HydroSHEDS levels used in the training.
The three levels differ in the typical size of basin areas. In
Fig. C1b, the consistency of the model is reassuring because
it shows that the model is able to adapt to different basin sizes
under the same training set. In spite of that, Fig. C1a shows
that the model generalizes better to unseen basins for larger
basins, as it has higher scores for levels 5 and 6 in compar-
ison with level 7 – even if the latter is better represented in
the training set. The LSTM in the basin-split configuration
slightly outperformed GloFAS under the NSE metric when
only evaluated in levels 5 and 6 – a median of 0.47 was ob-
served against a median of 0.45. Even so, GloFAS was still
better under the KGE metric – a median of 0.47 against 0.60.

Figure C1. Cumulative density functions for the NSE score of the LSTM in (a) basin-split and (b) time-split configurations for each of the
three HydroSHEDS levels used in the training set (5, 6, and 7).
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Appendix D: Mass balance

If there is no loss of water due to infiltration into deeper lay-
ers in the ground or evaporation into the atmosphere, the sum
of runoff over the area of a catchment should match the dis-
charge at the outlet when averaged over extended periods. We
calculate the absolute difference between the outflow from
each basin (normalized by its area) and the total runoff within
the corresponding catchment over a 9 year time window. The
results of this calculation are presented in Fig. D1 for stream-
flow (in blue): simulated by the LSTM (Fig. D1a), recorded
by observations from GRDC gauges (Fig. D1b), and pro-
vided by the GloFAS reanalysis (Fig. D1c). In each case, the
number of outliers (“No. of outliers”) represents the quantity
of data points falling outside the boundaries of the graphs.
We highlight that the runoff calculated internally by LIS-
FLOOD was not used here, but rather the one provided by
ERA5-Land, which was calculated by HTESSEL – a differ-
ent model forced with similar ERA5 data. Under these cir-
cumstances, the LSTM conserves mass at a level comparable
to the observations and a physical model. While this is a pos-
itive result, it implies that additional processes like evapora-
tion from rivers, re-infiltration of water into the ground, and
human interference may need to be understood and modeled
in order to achieve a closed water balance. One could expect
to find a better mass conservation from the physics-based
model, but it should be noted that GloFAS has parameters
that control mass loss (to underground storage, for example)
and the actual state of mass conservation can vary depending
on the version of runoff data that was used in the calculations.

We also depict the relative difference between the def-
initions of upstream area and catchment area for each of
these gauges (in pink). These relative differences are gener-
ally small. This implies that there is a good correspondence
between the upstream areas used by GloFAS for the calcu-
lation of streamflow from runoff inputs and the area used in
this study (provided by GRDC).
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Figure D1. Histograms of mass balance in blue and relative difference between area definitions in pink.

Code and data availability. All data used to generate our
training and test data are open source. HydroBASINS (Linke
et al., 2019), and HydroATLAS (Lehner and Grill, 2013)
can be found at https://www.hydrosheds.org (last access:
7 July 2025). ERA5-Land (Muñoz-Sabater et al., 2021) can be
found at https://doi.org/10.24381/cds.e2161bac (Muñoz Sabater,
2019). GRDC can be found at https://portal.grdc.bafg.de/
(GRDC Data Download, 2025). The GloFAS (Grimaldi
et al., 2022) data to benchmark our model can be found at
https://doi.org/10.24381/cds.a4fdd6b9. The source code for the
data engineering, the models, the extraction from the benchmark,
and the visualizations is released as Lima (2024) and can be found
in https://doi.org/10.5281/zenodo.13752864.
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