Articles | Volume 28, issue 3
https://doi.org/10.5194/hess-28-545-2024
https://doi.org/10.5194/hess-28-545-2024
Research article
 | 
08 Feb 2024
Research article |  | 08 Feb 2024

Leveraging gauge networks and strategic discharge measurements to aid the development of continuous streamflow records

Michael J. Vlah, Matthew R. V. Ross, Spencer Rhea, and Emily S. Bernhardt

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Modelling approaches
Multi-decadal fluctuations in root zone storage capacity through vegetation adaptation to hydro-climatic variability have minor effects on the hydrological response in the Neckar River basin, Germany
Siyuan Wang, Markus Hrachowitz, and Gerrit Schoups
Hydrol. Earth Syst. Sci., 28, 4011–4033, https://doi.org/10.5194/hess-28-4011-2024,https://doi.org/10.5194/hess-28-4011-2024, 2024
Short summary
Projected future changes in the cryosphere and hydrology of a mountainous catchment in the upper Heihe River, China
Zehua Chang, Hongkai Gao, Leilei Yong, Kang Wang, Rensheng Chen, Chuntan Han, Otgonbayar Demberel, Batsuren Dorjsuren, Shugui Hou, and Zheng Duan
Hydrol. Earth Syst. Sci., 28, 3897–3917, https://doi.org/10.5194/hess-28-3897-2024,https://doi.org/10.5194/hess-28-3897-2024, 2024
Short summary
On the importance of plant phenology in the evaporative process of a semi-arid woodland: could it be why satellite-based evaporation estimates in the miombo differ?
Henry M. Zimba, Miriam Coenders-Gerrits, Kawawa E. Banda, Petra Hulsman, Nick van de Giesen, Imasiku A. Nyambe, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 28, 3633–3663, https://doi.org/10.5194/hess-28-3633-2024,https://doi.org/10.5194/hess-28-3633-2024, 2024
Short summary
Regionalization of GR4J model parameters for river flow prediction in Paraná, Brazil
Louise Akemi Kuana, Arlan Scortegagna Almeida, Emílio Graciliano Ferreira Mercuri, and Steffen Manfred Noe
Hydrol. Earth Syst. Sci., 28, 3367–3390, https://doi.org/10.5194/hess-28-3367-2024,https://doi.org/10.5194/hess-28-3367-2024, 2024
Short summary
Evolution of river regimes in the Mekong River basin over 8 decades and the role of dams in recent hydrological extremes
Huy Dang and Yadu Pokhrel
Hydrol. Earth Syst. Sci., 28, 3347–3365, https://doi.org/10.5194/hess-28-3347-2024,https://doi.org/10.5194/hess-28-3347-2024, 2024
Short summary

Cited articles

Addor, N., Newman, A. J., Mizukami, N., and Clark, M. P.: The CAMELS data set: catchment attributes and meteorology for large-sample studies, Hydrol. Earth Syst. Sci., 21, 5293–5313, https://doi.org/10.5194/hess-21-5293-2017, 2017. 
Appelhans, T., Detsch, F., Reudenbach, C., and Woellauer, S.: mapview: Interactive Viewing of Spatial Data in R, https://CRAN.R-project.org/package=mapview (last access: 10 June 2023), 2022. 
Appling, A. P., Oliver, S. K., Read, J. S., Sadler, J. M., and Zwart, J.: Machine learning for understanding inland water quantity, quality, and ecology, in: Encyclopedia of Inland Waters (Second Edition), Elsevier, Oxford, ISBN 978-0-12-822041-2, 585–606, https://doi.org/10.1016/B978-0-12-819166-8.00121-3, 2022. 
Arriagada, P., Karelovic, B., and Link, O.: Automatic gap-filling of daily streamflow time series in data-scarce regions using a machine learning algorithm, J. Hydrol., 598, 126454, https://doi.org/10.1016/j.jhydrol.2021.126454, 2021. 
Arsenault, R., Brissette, F., and Martel, J.-L.: The hazards of split-sample validation in hydrological model calibration, J. Hydrol., 566, 346–362, https://doi.org/10.1016/j.jhydrol.2018.09.027, 2018. 
Download
Short summary
Virtual stream gauging enables continuous streamflow estimation where a gauge might be difficult or impractical to install. We reconstructed flow at 27 gauges of the National Ecological Observatory Network (NEON), informing ~199 site-months of missing data in the official record and improving that accuracy of official estimates at 11 sites. This study shows that machine learning, but also routine regression methods, can be used to supplement existing gauge networks and reduce monitoring costs.