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Abstract. Quantifying continuous discharge can be diffi-
cult, especially for nascent monitoring efforts, due to the
challenges of establishing gauging locations, sensor proto-
cols, and installations. Some continuous discharge series
generated by the National Ecological Observatory Network
(NEON) during its pre- and early-operational phases (2015–
present) are marked by anomalies related to sensor drift,
gauge movement, and incomplete rating curves. Here, we in-
vestigate the potential to estimate continuous discharge when
discrete streamflow measurements are available at the site
of interest. Using field-measured discharge as truth, we re-
constructed continuous discharge for all 27 NEON stream
gauges via linear regression on nearby donor gauges and/or
prediction from neural networks trained on a large corpus of
established gauge data. Reconstructions achieved median ef-
ficiencies of 0.83 (Nash–Sutcliffe, or NSE) and 0.81 (Kling–
Gupta, or KGE) across all sites and improved KGE at 11 sites
versus published data, with linear regression generally out-
performing deep learning approaches due to the use of target
site data for model fitting rather than evaluation only. Esti-
mates from this analysis inform ∼ 199 site-months of miss-
ing data in the official record, and can be used jointly with
NEON data to enhance the descriptive and predictive value of
NEON’s stream data products. We provide 5 min composite
discharge series for each site that combine the best estimates
across modeling approaches and NEON’s published data.
The success of this effort demonstrates the potential to estab-
lish “virtual gauges”, sites at which continuous streamflow
can be accurately estimated from discrete measurements, by
transferring information from nearby donor gauges and/or
large collections of training data.

1 Introduction

Discharge, or streamflow, is a fundamental measure in hy-
drology, biogeochemistry, and river science more broadly. A
measure of water volume over time, discharge is used to infer
the theoretical watershed runoff (the depth of water “blanket-
ing” the land surface, or depth over time), which in turn is
integral to understanding watershed processes such as chem-
ical weathering (White and Blum, 1995). Accurate, and at
least daily, discharge estimates are essential components of
nearly any quantitative study of physical or chemical water-
shed or river processes at the ecosystem scale. Determina-
tions of solute fluxes (Bukaveckas et al. 1998), gas exchange
rates (Hall, 2016), ecosystem metabolism (Odum, 1956), and
sediment transport (Graf, 1984) all require well-constrained
estimates of discharge.

Despite its centrality to so many fields of study, dis-
charge is a notoriously difficult metric to capture on a reg-
ular basis, especially in free-flowing systems, as it may vary
greatly with annual cycles and weather events (Turnipseed
and Sauer, 2010). Established institutions like the United
States Geologic Survey (USGS), Environment and Climate
Change Canada (ECCC), and the National Water and Sanita-
tion Agency (ANA) in Brazil have honed their instrumen-
tation, methods, and monitoring locations over decades to
generate reasonable discharge estimates, even under extreme
conditions (Benson and Dalrymple, 1967; Hirsch and Costa,
2004); however, nascent and/or small-budget monitoring ef-
forts face several challenges. Critically, hundreds of these
efforts are constantly occurring within academic research
groups, municipalities, counties, and other entities building
smaller gauge networks with much less expertise and sup-
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port and smaller budgets than gauging programs supported
by dedicated national programs.

Not including purely model-based methods for discharge
prediction (Manning, 1891; Hsu et al., 1995; Durand et al.,
2023), automated discharge estimation requires the careful
construction of an empirical “rating curve” by which dis-
charge can be continuously inferred from the water level or
“stage” (but see Shen, 1981). To build such a relationship,
technicians must sample discharge and stage at points cov-
ering the range of observable flow, ideally including flood
stage. In dynamic systems, this rating curve must be regu-
larly updated. Point estimates of discharge can be collected
using acoustic Doppler current profiling (Moore et al., 2017),
manual flow meter profiling, or light-based methods (Wang,
1988) to determine the average cross-sectional velocity, or
via conservative tracer injections (Tazioli, 2011). In many
streams, two or more of these methods must be employed,
depending on the conditions (Turnipseed and Sauer, 2010).
During 10-year or 100-year floods, no method may be viable
or safe. Even under regular storm conditions, a technician
may be unable to mount a sampling effort quickly enough to
capture peak flow, or they may produce an inaccurate mea-
surement. As a result, rating curves may remain in a state
of insufficiency for years, during which time high discharge
estimates are unreliable, especially where they are made by
extrapolating beyond the observed maximum flow.

Gauge placement presents another obstacle to the rapid
deployment of discharge monitoring stations (Isaacson and
Coonrod, 2011). Stage measured via pressure transduction is
susceptible to bias and nonlinearity under turbulent flow con-
ditions (Horner et al., 2018). Sensors placed in a depositional
area may be buried by sediment, and installations in forested
watersheds or debris flow regions may be destroyed during
floods. Often, equipment must be relocated at least once be-
fore a new gauge site can be properly established. Even an es-
tablished stage–discharge rating curve must be regularly up-
dated and maintained because the bed of the river can change
as sediment is deposited or excavated, altering the relation-
ship between stage and flow.

For some studies aiming to quantify stream or watershed
processes that require continuous discharge time series, the
establishment of a high-quality monitoring station may be
infeasible. Where co-location of the site of interest with an
existing stream gauge is also infeasible, record-extension
(Hirsch, 1982; Nalley et al., 2020) and gap-filling (Harvey
et al., 2012; Arriagada et al., 2021) techniques cannot be
employed, as these rely on prior knowledge of the statisti-
cal properties of the discharge time series being augmented.
In such scenarios, streamflow reconstruction or prediction
techniques are suitable, as these may proceed a priori or
from minimal observation. Reconstruction typically involves
methods that leverage the correlation between a partially
measured target site and nearby “donor” (predictor) gauges.
Discharge may also be quantified in the absence of direct
measurements at the target location via statistical (Chokmani

and Ouarda, 2004), mechanistic (Regan et al., 2019), or ma-
chine learning (Kratzert et al., 2022) modeling techniques.

Here, we use both linear regression (ordinary least squares
(OLS), L2/ridge, segmented) and deep learning (long short-
term memory recurrent neural network, or LSTM-RNN)
approaches to reconstruct discharge from the early opera-
tional phase (2015–2022) of the National Ecological Ob-
servatory Network (NEON), a time during which site se-
lection issues and rating curve development rendered many
site-months of discharge estimates potentially unreliable
(Rhea et al., 2023a). Our goal was to achieve Kling–
Gupta efficiency (KGE) scores greater than those of the
official NEON continuous discharge product at as many
sites as possible. A secondary goal was to improve tempo-
ral coverage of the official record where it contains gaps.
For researchers intending to use NEON continuous dis-
charge data between 2015 and 2022, the results of this ef-
fort, as well as efforts by Rhea et al. (2023a), can en-
sure that data gaps and questionable periods in the offi-
cial record are replaced by high-quality estimates wherever
possible. We provide composite discharge series for all 27
NEON stream gauge locations, built from the best NEON-
published estimates and the best estimates generated by this
study (https://doi.org/10.6084/m9.figshare.c.6488065, Vlah
et al., 2023c). Composite series can be visualized at https:
//macrosheds.org/data/vlah_etal_2023_composites/ (last ac-
cess: 3 February 2024).

The success of this effort demonstrates the viability of
“virtual gauges” (sensu Philip and McLaughlin, 2018; not
to be confused with the “virtual staff gauges” of Seibert et
al., 2019). In this study, we use the term to describe sites at
which discrete discharge observations can be used to fit or
evaluate models that generate continuous flow. For accurate
results, field measurement campaigns should prioritize char-
acterizing the distribution of possible flow conditions, rather
than achieving any particular threshold number of observa-
tions. Methods like those presented could be used to reduce
the cost and simplify the process of establishing streamflow
monitoring sites, especially in river networks that are already
partially gauged.

2 Methods

2.1 Data selection, acquisition, and processing

We used the “neonUtilities” package (Lunch et al., 2022)
in R to retrieve NEON discharge data. Officially released
(NEON, 2023c) and provisional (NEON, 2023b) field mea-
surements were used to fit linear regression models and
evaluate all models, as these data were collected directly
by NEON technicians using a combination of state-of-the-
art methods, including acoustic Doppler current profiling
(ADCP; Moore et al., 2017), conservative salt tracer releases
(Tazioli, 2011), and flow meter measurements (Pantelakis et
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al., 2022). We used quality-controlled “finalQ” values where
available, or “totalQ” values (taken directly from the flowme-
ter) in their absence. We refer to NEON’s discharge field
measurements hereafter as, e.g., “the response variable” or
“response discharge time series” in the context of linear re-
gression or as the “target” variable in the context of machine
learning. In either context, we refer to the 27 NEON sites for
which discharge predictions were generated as “target sites”
or “target gauges” (Table 1).

Continuous discharge data (NEON, 2023a) were also re-
trieved via neonUtilities. We used RELEASE-2023 and not
provisional data in this case. These data were used to fine-
tune a subset of site-specific neural network models and to
construct composite discharge series. Provisional continuous
discharge data were not used. Evaluation results used to dis-
tinguish likely reliable vs. potentially unreliable subsets of
NEON’s RELEASE-2023 continuous discharge time series
per site-month were provided by Rhea et al. (2023a) and ac-
cessed through HydroShare (Rhea, 2023). Continuous ele-
vation of surface water data are available, but approximately
one-third of all site-months are marked by a disagreement be-
tween the reported surface elevation and the measured stage
or by likely sensor drift (Rhea et al. 2023a). We therefore
chose not to use surface elevation to inform our models,
though it no doubt contains predictive value.

Donor gauge data for linear regression analysis were
acquired primarily from the US Geological Survey’s Na-
tional Water Information System (NWIS), using the “dataRe-
trieval” package (DeCicco et al., 2022) in R. NWIS gauge
ID numbers are provided in cfg/donor_gauges.yml at the
GitHub and Zenodo links below. Additional donor gauge
data from Niwot Ridge LTER and Andrews Forest LTER
were retrieved from the MacroSheds dataset (Vlah et al.,
2023a) via the package “macrosheds” (Rhea et al., 2023b)
and from the EDI data portal (Johnson et al., 2020), respec-
tively.

We used the original CAMELS dataset (Newman et al.,
2014; Addor et al., 2017), the USGS National Hydro-
logic Model with Precipitation-Runoff Modeling System
(NHM-PRMS; hereafter NHM; Regan et al., 2019) and the
MacroSheds dataset as training data for neural network sim-
ulations of discharge data at each target site. CAMELS
watershed attributes were generated for MacroSheds and
NHM sites using the code provided at https://github.com/
naddor/camels (last access: 12 April 2023), except where
otherwise indicated in Table 2, and daily Daymet me-
teorological forcings (Thornton et al., 2022; sensu New-
man et al., 2015) were retrieved via Google Earth Engine
(Gorelick et al., 2017). All code for this project can be
found on GitHub at https://github.com/vlahm/neon_q_sim
(last access: 3 February 2024) or in the Zenodo archive at
https://doi.org/10.5281/zenodo.10067683 (Vlah, 2023). All
data sources and links are provided in Table A2.

2.2 Donor gauge selection

Candidate donor gauges were identified by visually exam-
ining an interactive map of NEON gauges, USGS gauges,
and MacroSheds gauges (https://macrosheds.org/ms_usgs_
etc_reference_map/megamap.html, last access: 3 Febru-
ary 2024), generated with the package “mapview” (Appel-
hans et al., 2022) in R. We also used the National Water
Dashboard of the USGS (https://dashboard.waterdata.usgs.
gov/app/nwd/en/?aoi=default, last access: 11 April 2023) to
identify active gauges in Alaska, USA. For each target site,
up to four donor gauge candidates were selected on the ba-
sis of spatial proximity and geographic similarity to the target
site (Fig. 1). Generally, no greater than this number of gauges
were even remotely reasonable candidates (i.e., within 50 km
of the target site; not in an urban area; not downstream of a
reservoir), but for one target site (MCRA) we had 10 nearby
candidate gauges to select from – all associated with the An-
drews Experimental Forest in western Oregon State, USA. In
this case, we chose three candidate sites representing catch-
ments upstream of the target site (GSWS08), downstream
of the target site on the MCRA mainstem (GSLOOK), and
downstream on a tributary of MCRA (GSWS01).

Barring gauges on reaches that are subject to overt human
influence, the exact methods used to choose donor gauges are
of little consequence so long as informative donor gauges are
not overlooked. In practice, there will usually be just a few, if
any, potential donor gauges available for a given location. If
multiple donor gauges are included in a regression, L2 reg-
ularization (ridge regression) should be used to account for
their covariance (see Sect. 2.4)

2.3 Target sites

All 27 lotic (flowing) aquatic sites associated with NEON
were included as target sites for discharge prediction in this
study (Fig. 1). The sites TOMB, BLWA, and FLNT are in-
stalled on major rivers, downstream of hydropower dams.
All other sites have been free of any dam influence since
2012 at the latest, and are designated “wadeable streams”
by NEON. In addition to the three sites above, hydrology at
BLUE, GUIL, KING, MCDI, and ARIK may be influenced
by agricultural activity, especially in the relatively arid Mid-
west (i.e., the states KS, CO, and OK). Continuous discharge
data for TOMB are provided by a nearby gauge of the US Ge-
ological Survey’s National Water Information System, and
are given at hourly intervals, rather than at NEON’s custom-
ary 1 min intervals.

2.4 Linear regression and model selection

All donor and response discharge time series were neglog
transformed (Eq. 1; Whittaker et al., 2005) before fitting lin-
ear regression models.

xneglog = sign(x) log(|x| + 1) (1)
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Figure 1. Map of target sites (NEON) and donor gauge candidates for three target sites: MCRA (McRae Creek, state of Oregon), REDB
(Red Butte Creek, state of Utah), and GUIL (Rio Guilarte, Puerto Rico). © OpenStreetMap contributors 2023. Distributed under the Open
Data Commons Open Database License (ODbL) v1.0.

Series were scaled by 1000 before transformation, in order
to reduce the disproportionate impact of adding one to every
value. Response observations were synchronized to the in-
terval of the predictor series by approximate datetime join,
allowing forward or backward timeshifts of up to 12 h if nec-
essary.

One of three forms of linear regression was employed at
each site, depending on the number and location of donor
gauges and the donor–target gauge relationships. For sites
with a single donor gauge (REDB, HOPB, BLUE, SYCA,
LECO), the considered predictors were discharge from the
donor gauge, a four-season categorical variable, and their in-
teraction. Additionally, an intercept parameter could be esti-
mated, or not, for each specification. Thus, up to six models
were fitted using OLS regression (Galton, 1886), ensuring
at least 15 observations per model parameter. At LECO, an
additional dummy variable was included to address an inter-
cept change due to a wildfire in November 2016. The best
model was selected via 10-fold cross-validation, minimizing
the mean squared error (MSE). MSE, being a squared-error
term, disproportionately penalizes the inaccurate prediction
of high discharge values and helps to balance against the rel-
ative rarity of high discharge measurements in the field data.
At site SYCA, the log-log relationship between discharge at
the target gauge and a single donor gauge exhibited a dis-
tinct breakpoint, and segmented least-squares regression was
used (R package “segmented”; Muggeo, 2008). At all other

sites (19 in total), predictors included discharge series from
2–4 donor gauges, season, and all interactions. To control
overfitting and shrink covarying coefficients toward zero, we
used L2 regularization (ridge regression; Gruber, 2017) via
the R package “glmnet” (Friedman et al., 2010). As with
the other regression approaches, 10-fold cross-validation and
MSE loss were used for model parameter selection – in this
case for the value of the penalty hyperparameter λ, which
was set to the mean across folds of λ producing the mini-
mum cross-validated error. Unlike OLS and segmented re-
gression, ridge regression uses biased estimators that com-
plicate the calculation of prediction intervals. We generated
95 % prediction intervals for ridge regression discharge es-
timates using the 95th percentiles of 1000 bootstrap predic-
tions at each prediction point, which were generated from
1000 resamples of the fitting data stratified by season. We
emphasize that these prediction intervals should be conser-
vative estimates of the true uncertainty, as they do not fully
account for uncertainty due to bias (Goeman et al., 2012).

For each site, we fitted two sets of models as described
above, one with discharge scaled by watershed area (i.e.,
“specific discharge” in the surface water hydrology sense)
prior to transformation and one without areal scaling. Only
one model from each set was ultimately selected for each
target site; this was done on the basis of the Kling–Gupta ef-
ficiency (KGE; Gupta et al., 2009), a composite model effi-
ciency metric that incorporates measures of correlation, vari-
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Table 1. Target sites for discharge prediction. See https://www.neonscience.org/field-sites (last access: 15 Julu 2023) for more information.

Site code Full name State (USA) Watershed area (km2) Mean watershed elevation (m)

TOMB Lower Tombigbee River AL 47085.3 20
BLWA Black Warrior River AL 16159.4 22
FLNT Flint River GA 14999.4 30
ARIK Arikaree River CO 2631.8 1179
BLUE Blue River OK 322.2 289
SYCA Sycamore Creek AZ 280.3 645
OKSR Oksrukuyik Creek AK 57.8 766
PRIN Pringle Creek TX 48.9 253
BLDE Blacktail Deer Creek WY 37.8 2053
CARI Caribou Creek AK 31.0 225
MCDI McDiffett Creek KS 22.6 396
REDB Red Butte Creek UT 16.7 1694
MAYF Mayfield Creek AL 14.4 77
KING Kings Creek KS 13.0 324
HOPB Lower Hop Brook MA 11.9 203
LEWI Lewis Run VA 11.9 152
BIGC Upper Big Creek CA 10.9 1197
GUIL Rio Guilarte PR 9.6 551
LECO LeConte Creek TN 9.1 579
MART Martha Creek WA 6.3 337
WLOU West St Louis Creek CO 4.9 2908
CUPE Rio Cupeyes PR 4.3 157
MCRA McRae Creek OR 3.9 876
COMO Como Creek CO 3.6 3021
TECR Teakettle Creek – Watershed 2 CA 3.0 2011
POSE Posey Creek VA 2.0 276
WALK Walker Branch TN 1.1 264

ance, and bias. We also report the percent bias and Nash–
Sutcliffe efficiency (NSE; Nash and Sutcliffe, 1970), a mea-
sure of predictive accuracy that implicitly compares predic-
tions to a mean-only reference model.

Predictions were generated for all time points during
which data were available at the selected donor gauges. At
target site COMO, a secondary model omitting one donor
gauge was able to produce 36 % more predictions than the
selected model, so our predicted discharge at COMO is a
composite of both models, with the better model’s predic-
tions preferred where available. We were unable to locate
sub-daily donor gauge data near COMO, so regression pre-
dictions for this site were generated at daily intervals. Re-
gression predictions for all other sites were generated at sub-
daily intervals matching the coarsest interval across predictor
gauges – generally 15 min, though it should be noted that in
most cases these predictions were interpolated to 5 min for
our composite discharge product.

2.5 Neural network setup and operation

Supplementing the linear regression methods described
above, we simulated discharge data at all 27 target sites using
long short-term memory recurrent neural networks (LSTM-

RNNs; hereafter “LSTMs”; Hochreiter and Schmidhuber,
1997). Four LSTM strategies were employed, all of which
involved training on a large and diverse corpus of stream
discharge data (Table 3). Two of these strategies included
further finetuning to the time-series dynamics of each tar-
get site in turn. Due to the relative scarcity of field-measured
discharge observations (between 39 and 213 per site; mean
122), none were used in LSTM training. Instead, these mea-
surements were used only to evaluate predictions. LSTMs
trained in this study are intended only for discharge predic-
tion within the temporal and spatial bounds of NEON’s early
operational phase, not for forecasting or application to other
sites. Therefore, all available daily training data were used as
such; no validation set was kept for hyperparameter tuning,
and no holdout set of daily estimates was kept for evalua-
tion (note that split-sample designs may be undesirable more
generally: Arsenault et al., 2018; Guo et al., 2018; Shen et
al., 2022). See Kratzert et al. (2019b) and Read et al. (2019)
for split-sample considerations in the context of a generalist
and process-guided generalist LSTM, respectively.

After a hyperparameter search routine, described below,
potentially skilled models were identified as those achieving
at least 0.5 KGE and 0.4 NSE. The best-performing poten-
tially skilled LSTM for each site (if applicable) was then
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re-trained 30 times, forming an ensemble. Ensembles were
trained for 18 of 27 sites. LSTM predictions included in our
composite discharge product are means taken across the dis-
tributions of ensemble point predictions. Uncertainty bounds
were computed as the 2.5 % and 97.5 % quantiles of these
distributions. LSTM skill was evaluated on the basis of mean
ensemble efficiency (KGE) with respect to field-measured
discharge (Table A1).

Daily discharge time series (training data) and field-
measured discharge were scaled by watershed area. For each
predicted day, LSTMs received five dynamic Daymet mete-
orological forcing variables and 11 static watershed attribute
summary statistics (Table 2). Multitask learning (Caruana,
1998; Sadler et al., 2022) was found to improve discharge
prediction broadly in a preliminary analysis, so Daymet min-
imum air temperature was used as a secondary target vari-
able. Kratzert et al. (2019a) found that a maximum of about
150 preceding days were able to influence the LSTM output
in a similar prediction problem, so we set the input sequence
length to 200 d to ensure full utilization of available informa-
tion. In other words, for each day of prediction, the model
was able to leverage information from the preceding 200 d.

We employed the four different training pipelines de-
scribed in Table 3. Of the 671 CAMELS watersheds (i.e.,
basins), we used a subset of 531 with undisputed areas of
less than 2000 km2 (Newman et al., 2017). For finetuning
data, we used version 1 of the MacroSheds dataset (Vlah
et al., 2023a). We excluded MacroSheds sites outside North
America and those with a coastal or urban hydrological in-
fluence, for a total of 133 sites out of the 169 that are cur-
rently available. We chose MacroSheds sites for finetuning
because the MacroSheds and NEON datasets focus primarily
on small watersheds, often smaller than 10 km2 in area, while
only eight CAMELS watersheds are smaller than 10 km2

and most are larger than 100 km2 (Vlah et al., 2023a). The
daily mean discharge computed from NEON’s continuous
discharge product was used, but only for those site-months
deemed Tier 1 or Tier 2 by Rhea et al. (2023a), alongside
MacroSheds data for finetuning.

For the process-guided strategies, we used NHM estimates
for all reaches coinciding with a CAMELS or MacroSheds
gauge, for a total of 551 reaches. Only nine target sites on
relatively high-order streams were amenable to the process-
guided specialist approach, as these sites are on reaches large
enough to be modeled by the NHM. The most recent version
of the NHM at the time of this writing provides discharge
estimates beginning in 1980 and ending in 2016, just before
the installation of most NEON target sites.

LSTMs were configured in R and trained using v1.3.0 of
the NeuralHydrology library in Python (Kratzert et al., 2022;
Van Rossum and Drake, 2009) on the Duke Compute Cluster
at Duke University, Durham, NC, USA. All trained models
used the Adam optimizer (Kingma and Ba, 2014) and Neu-
ralHydrology’s “NSE loss” function after an initial evalua-
tion in which we compared it to the MSE and root mean

squared error (Table 4). Learning was annealed using a se-
ries of three fixed rates for pretraining and for round one of
finetuning according to Eq. (2):

r =


a, eε{0, . . ., [E3 ]}
a
10 , eε{[E3 ], . . ., [

2E
3 ]}

a
100 , eε{[ 2E3 ], . . .,E},

(2)

where r is the learning rate, a is any power of 10 between 0.1
and 10−7, and E is the number of training epochs. Learning
rate was annealed using a series of two fixed rates for round
two of finetuning according to Eq. (3):

r =

{
a
10 , eε{0, . . ., [E2 ]}
a

100 , eε{[E2 ], . . .,E}.
(3)

Learning rate and other hyperparameters were selected via
an inexhaustive (pseudo) grid search (Table 4), i.e., we spec-
ified a sequence of possible values for each hyperparame-
ter and randomly selected from them to specify 30 models
for each generalist. For each site, one specialist model was
then configured to further finetune each of the 30 generalists,
again using a partial grid search to define any mutable hyper-
parameters. Otherwise, hyperparameters were inherited from
the previous training period (Table 4). Due to our incomplete
hyperparameter search procedure, better combinations prob-
ably exist. We elected not to exhaustively pursue optimal hy-
perparameter combinations due to the computational demand
of a full grid search and a lack of access via NeuralHydrol-
ogy to callback methods necessary for implementation of a
true random search (Bergstra and Bengio, 2012).

All LSTM models were outfitted with fully connected,
single-layer embedding networks to efficiently encode in-
puts as fixed-length numerical vectors (Arsov and Mirceva,
2019). Separate embedding networks were used for static and
dynamic inputs, with 20 neurons for static inputs and 200
neurons for dynamic inputs. All embedding neurons used the
hyperbolic tangent activation function. Another advantage of
embedding networks in the context of the NeuralHydrology
library is that they provide one of few opportunities to in-
troduce dropout, which can improve training efficiency and
reduce overfitting (Srivastava et al., 2014).

2.6 Composite discharge data product

This study generated time-series predictions of discharge for
each lotic NEON site using up to three distinct processes:
linear regression on absolute discharge, linear regression on
specific discharge, and one of four LSTM strategies. We pro-
vide regression predictions wherever applicable (24 of 27
sites). LSTM predictions are provided only for sites that had
promising model performance after a hyperparameter search
and for which ensemble models were therefore trained (18
of 27). All model outputs and results from this study are
archived at https://doi.org/10.6084/m9.figshare.c.6488065
(Vlah et al., 2023c).
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Table 2. LSTM input data. ∗Attribute tested as an afterthought but not included in this study due to a negligible improvement in the trial
parameter search.

Meteorological forcing data (watershed-average time series)

Maximum air temp 2 m daily maximum air temperature (◦C)

Precipitation Mean daily precipitation (mm d−1)

Solar radiation Daily surface-incident solar radiation (W m−2)

Vapor pressure Near-surface daily average vapor pressure (Pa)

PET Potential evapotranspiration (mm); estimated using Priestley–Taylor
formulation with gridded alpha product (Aschonitis et al., 2017)

Watershed attributes (statistics computed over full record)

Precipitation mean Mean daily precipitation (mm d−1)

PET mean Mean daily potential evapotranspiration (mm d−1); estimated using
Priestley–Taylor formulation with gridded alpha product (Aschonitis et
al., 2017)

Aridity index Ratio of PET mean to Precipitation mean

Precip seasonality Seasonality of precipitation; estimated by representing annual precipi-
tation and temperature as sine waves. Positive values indicate summer
peaks, while negative values indicate winter peaks. Values near 0 indi-
cate uniform precipitation throughout the year.

Snow fraction Fraction of precipitation falling on days with temp < 0 ◦C

High precipitation fre-
quency

Frequency of high-precipitation days (days with ≥ 5× mean daily pre-
cipitation)

High precip duration Average duration of high precipitation events (number of consecutive
days ≥ 5× mean daily precipitation)

Low precip frequency Frequency of dry days (days with precipitation < 1 mm d−1)

Low precip duration Average duration of dry periods (number of consecutive days with pre-
cipitation < 1 mm d−1)

Elevation Catchment mean elevation (m)

Slope Catchment mean slope (m km−1)

Area Catchment area (km2)

Source∗ Binary indicator for NHM estimates – process-guided LSTMs only.

Target data (time series)

Discharge Specific discharge, or discharge normalized by watershed area. The
same quantity may be referred to as “runoff” in other studies (mm d−1).

Minimum air temp 2 m daily minimum air temperature (◦C)

In addition to predictions from individual model-
ing strategies, we provide an analysis-ready discharge
dataset for all 27 sites that splices the best avail-
able predictions across methods – including published
NEON estimates (NEON, 2023a) – into composite se-
ries (https://doi.org/10.6084/m9.figshare.c.6488065, Vlah et
al., 2023c), which can be visualized interactively at https:

//macrosheds.org/data/vlah_etal_2023_composites/ (last ac-
cess: 3 February 2024). Composite series for each NEON
site begin at the start of site operation and extend to at most
30 September 2021, the last date included in the 2023 re-
lease of NEON’s continuous discharge product. We also pro-
vide individual model predictions extending through 2022. A
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Table 3. LSTM model training pipelines used in the simulation of discharge at target sites. Here, “NEON” refers to NEON’s continuous
discharge product, RELEASE-2023, with quality-flagged estimates and < Tier-2 site-months (according to Rhea et al., 2023a) removed. n/a
– not applicable.

Model type Phase 1 Phase 2 Phase 3

Generalist Pretrain on CAMELS Finetune on
MacroSheds + NEON

n/a

Specialist Pretrain on CAMELS Finetune on
MacroSheds + NEON

Finetune on NEON tar-
get site

Process-guided
generalist

Pretrain on CAMELS
+ CAMELS-NHM

Finetune on
MacroSheds +
MacroSheds-NHM +

NEON + NEON-NHM

n/a

Process-guided
specialist

Pretrain on CAMELS
+ CAMELS-NHM

Finetune on
MacroSheds +
MacroSheds-NHM +

NEON + NEON-NHM

Finetune on NHM esti-
mates for target site

Table 4. LSTM hyperparameter search space for all model types, and the selected values (bold) used for pretraining. These were observed
to allow for both malleability and high performance of subsequent finetuning iterations over nearly 2000 exploratory LSTM trials. The
relationship of a to learning_rate is defined in Eqs. (2) and (3). See the NeuralHydrology documentation for parameter definitions: https:
//neuralhydrology.readthedocs.io/en/latest/usage/config.html (last access: 25 May 2023).

LSTM parameter Pretrain Finetune 1 Finetune 2 (specialists only)

hidden_size 20, 30, 40, 50 20, 30, 40, 50 20, 30, 40, 50
output_dropout 0.1, 0.2, 0.3, 0.4, 0.5, 0.6 0.2, 0.3, 0.4, 0.5 0.2, 0.3, 0.4, 0.5
learning_rate a 10−2, 10−3, 10−4, 10−5 10−2, 10−3, 10−4, 10−5 10−2, 10−3, 10−4, 10−5

batch_size 32, 64, 128, 256, 512, 1024 32, 64, 128, 256, 512 32, 64, 128, 256, 512
epochs 20, 30, 40, 50, 60 20, 30, 40 10, 20, 30
finetune_modules N/A head, lstm, head & lstm head, lstm
target_variables discharge, discharge & min air temp discharge, discharge & min air temp discharge, discharge & min air temp
loss NSE, MSE, RMSE NSE, MSE, RMSE NSE, MSE, RMSE

complete list of products from this study, and their links, can
be found in Table A3.

To construct composite series, we first distinguished
“good” site-months of NEON discharge estimates as those
categorized as Tier 1 or Tier 2 by Rhea et al. (2023a). For a
NEON site-month to meet the requirements for at least Tier
2, four requirements must be met. The linear relationship be-
tween stage, determined from pressure transducer readings,
and field-measured gauge height must score at least 0.9 NSE.
The transducer-derived stage series must also pass a drift test
relative to gauge height, but only if sufficient data exist to
perform such a test. The rating curve used to relate stage
to discharge must score at least 0.75 NSE, and fewer than
30 % of predicted discharge values may exceed the range
of measured discharge used to build the curve. See Rhea et
al. (2023a) for further details.

Although only 50 % of NEON’s RELEASE-2023 esti-
mates are classified as Tier 1 or Tier 2, the remainder may
still be of high analytical value if NEON’s quality control in-
dicators and uncertainty bounds are observed. We also stress

that NEON rating curves and protocols improved over the
course of its early operational phase and continue to do so.

We then ranked the available predictions for each site, as-
signing a rank of 1 either to predictions from linear regres-
sion or to NEON’s continuous data product, depending on
the overall KGE and NSE against the field-measured dis-
charge. KGE was considered first and used to determine pref-
erence, except in cases where the difference between NSE
scores was greater than that between KGE scores and oppo-
site in sign. Rank 2 predictions were then used to fill gaps
of 12 or more hours in the rank 1 series, but only “good”
NEON site-months were included. Only after this first round
of gap-filling were the remaining NEON data incorporated,
with site-years achieving at least 0.5 KGE and 0.5 NSE
against the field-measured discharge being used to fill still-
remaining gaps. Finally, daily LSTM predictions (placed at
12:00:00 UTC on the day of prediction) were used to fill any
recalcitrant gaps, but only if produced by an ensemble model
achieving at least 0.5 KGE and 0.5 NSE across all field dis-
charge observations. Note that while such benchmarks are in
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common use (Moriasi et al., 2015), the efficiency that any
model can or should achieve varies substantially with the
hydroclimate and watershed characteristics of a given site
(Seibert et al., 2018). We provide all data and code for mod-
ifying the composite discharge product in accordance with
alternative benchmarks as users see fit. After visual examina-
tion of composite series plots, we chose to prefer NEON pre-
dictions to linear regression predictions at site ARIK, “good”
or not, due to frequent sharp discontinuities between the two
predicted series. See Table A1 for an account of the linear
regression and LSTM methods used in the construction of
ensemble series.

The prevailing interval varies across data sources used
to assemble our composite discharge product from 1 min
(NEON) to 1 d (LSTM predictions; regression predictions
at site COMO). Regression predictions were primarily gen-
erated at 15 min intervals, and their timestamps are always
divisible by 15 min. Around the prevailing NEON interval
there is considerable variation due to data gaps and sen-
sor reconfigurations, both across sites and across the tem-
poral ranges of each site’s record. To reduce the complexity
associated with irregular time-series analysis, we synchro-
nized the interval across data sources to 5 min. Regression
estimates were linearly interpolated to 5 min, though gaps
larger than 15 min were not interpolated. NEON estimates
were first smoothed with a triangular moving average win-
dow of 15 min to remove unrealistic minute-to-minute noise
associated with Bayesian error propagation. They were then
interpolated the same way as the regression estimates and
finally downsampled to 5 min, with some timestamps being
shifted by up to 2 min. For example, for a sampling duration
of 30 min, a sample taken at 00:03:00 would be shifted by
2 min by rounding each timestamp up to the nearest minute
divisible by 5.

3 Results

A performance comparison of linear regression on discharge
from donor gauges and four LSTM strategies is shown in
Figs. 2 and A1 and detailed in Table A1. Via linear regres-
sion, we were able to produce 15 min discharge estimates at
11 sites with overall KGE scores higher than those of pub-
lished series (Fig. 2). At four of the same sites, we achieved
a higher KGE via LSTM methods, which generated daily
discharge series. Of the 10 sites at which the published dis-
charge KGE was less than 0.8, we improved five sites to
above that mark (mean 0.932, n= 5).

For 12 of 27 sites, linear regression on specific discharge
(i.e., scaled by watershed area) provided the most accurate
discharge predictions, while linear regression on absolute
discharge performed better at the other 12 sites with donor
gauges. LSTM models (as proper ensembles) outperformed
linear regression at only two sites. In general, linear re-
gression provided more accurate predictions than all LSTM

methods. Linear regression on absolute discharge produced
estimates with a median NSE of 0.848 and a median KGE
of 0.806 across sites (n= 24; Table 5). Linear regression on
specific discharge produced similar median scores (Table 5),
but with deviations of up to 0.05 NSE and 0.08 KGE at indi-
vidual sites.

Linear regression was not applicable at sites TECR, BIGC,
or WLOU due to the lack of donor gauges contemporary
with target gauge data. Donor gauges associated with Kings
River Experimental Watersheds exist within close proximity
to TECR and BIGC, but we were unable to access up-to-date
discharge records for these gauges.

The process-guided specialist LSTM yielded predictions
on par with those of the other LSTM strategies in terms of
KGE (median 0.652; n= 9), but performed worst of the four
in terms of NSE (median 0.329; n= 9). Conversely, the spe-
cialist performed better than the generalist in terms of NSE
but not KGE. The process-guided specialist LSTM strategy
was viable at nine sites for which discharge estimates were
available from the National Hydrologic Model.

In addition to improvements in accuracy, estimates from
this study inform ∼ 5981 site-days (75 %) of missing data
in the official discharge record (Fig. 3), though it should be
noted that they also omit ∼ 4486 site-days otherwise present
in NEON’s official record. Omissions occur wherever obser-
vations are missing from the records of one or more donor
gauges, and LSTM methods did not achieve the desired effi-
ciencies. Approximately 1221 site-days are missing from the
official record and from our reconstructions.

Estimated discharge time series from this study are of
practical value for any researcher using NEON continuous
discharge data, especially for those sites and site-months at
which published data from NEON’s early operational phase
may be unreliable (Rhea et al., 2023a). Figure 4 shows that
official records at sites REDB and LEWI are compromised
by disagreements (erratic sections of gray lines) between
pressure transducer stage readings and manual gauge height
recordings, as discussed in Rhea et al. (2023a). Red lines
show improved estimates via linear regression on discharge
from donor gauges. Sites FLNT and WALK show generally
close agreement between NEON discharge and our regres-
sion estimates, but the uncertainty associated with high dis-
charge values should be noted.

4 Discussion

This study was designed to produce high-quality estimates of
continuous discharge for NEON stream gauges, especially at
10 gauges for which the KGE of published continuous dis-
charge was lower than 0.8, over the full record, when com-
pared to field-measured discharge. A secondary goal was to
improve temporal coverage of the official discharge record
where possible.
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Figure 2. Efficiency of five stream discharge prediction methods and NEON’s published continuous discharge product at 27 NEON gauge
locations versus field-measured discharge. Small, white triangles represent the max/min KGE of the published discharge by water year
(1 October through 30 September) with at least five field measurements (or two for site OKSR). KGE was computed on all available
observation–estimate pairs except those with quality flags (dischargeFinalQF or dischargeFinalQFSciRvw of 1). For the best-performing
LSTM method at all sites except TECR, FLNT, REDB, WALK, POSE, and KING, the displayed KGE is averaged over 30 ensemble runs
with identical hyperparameters. For the sites just named, the performance of a chosen method after ensembling dropped below that of at
least one other method’s optimal KGE from the parameter search. For all other LSTM site–method pairs, which were not ensembled, the
displayed performance is that of the best model trained during the parameter search phase. Sites are ordered by the KGE of the NEON
continuous discharge. See Table 3 for LSTM model definitions. A KGE of 1 is a perfect prediction, while a KGE of −0.41 is similar in skill
to prediction from the mean. Negative values are truncated at −0.05 in this plot to improve visualization.

Table 5. Performance of five stream discharge prediction methods, and the official continuous discharge time-series data, across n of 27
NEON gauge locations (final column). For both the Nash–Sutcliffe and Kling–Gupta efficiency coefficients, a value of 1 indicates perfect
prediction. A value of 0 NSE indicates that the predictive skill is equivalent to prediction from the mean, while a negative NSE is worse than
mean prediction. This threshold lies at approximately−0.41 for KGE (Knoben et al., 2019). “Linreg” is linear regression on the donor gauge
discharge series, and “scaled” means that the predictor and response discharge were scaled by their respective watershed areas.

NSE KGE

Model/data Median Mean Min Max Median Mean Min Max n

Official record 0.880 0.417 −9.95 0.989 0.839 0.711 −1.50 0.964 27
Linreg 0.848 0.760 −0.038 0.993 0.806 0.746 −0.697 0.988 24
Linreg scaled 0.847 0.757 −0.037 0.993 0.807 0.743 −0.695 0.989 24
Generalist LSTM 0.473 −18.8 −498 0.904 0.634 −0.220 −20.2 0.852 26
Specialist LSTM 0.477 −12.6 −307 0.920 0.556 −0.256 −15.7 0.895 25
Process-guided generalist LSTM 0.434 −31.3 −824 0.848 0.618 −0.453 −26.4 0.869 26
Process-guided specialist LSTM 0.329 −92.0 −831 0.749 0.652 −2.40 −26.5 0.866 9

We treat NEON field-measured discharge as truth, which
means there are 39–213 observations for each target site. Al-
though these numbers represent a tremendous investment of
time and technical effort, they do not meet the high data vol-
ume requirements for most machine learning approaches, so
we used field discharge only to evaluate, rather than train,
LSTM models. By contrast, in linear regression, regardless
of the details of any particular method, we ultimately fit a
line to the relationship between donor gauge data and field
measurements at each target site. Because the linear regres-
sion models are allowed to “see” all of the target site data
(after a model is selected via cross-validation), they have a

powerful advantage over the LSTM approaches, which in
this context must essentially treat target watersheds as if they
are ungauged. Furthermore, whereas the LSTM models must
parameterize each day of prediction individually, the regres-
sion models need only parameterize relationships between
flow regimes. Still, if given enough training data, including
examples of watersheds and streams similar to each of those
modeled in this study, the LSTM approaches would eventu-
ally close the performance gap. See Figs. A2, A3, A4, A5,
A7, and A8 for linear regression diagnostics.

In this study, discharge estimates produced by linear re-
gression were more accurate than those generated by LSTM
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Figure 3. Durations of missing values (gaps) in NEON’s 2023 release of continuous discharge time series, illustrating gaps filled or informed
by estimates from this analysis. All officially published values are shown, including those with quality control flags. Sites are ordered as in
Fig. 2. Gaps smaller than 6 h are not indicated. Figure A10 is the same, but with a fixed and labeled x axis.

models in 21 of 23 comparisons (Fig. 2). This demonstrates
the value of existing gauge networks in advancing discharge
estimation at newly or partially gauged locations; however,
there is a limit to the predictive potential of linear regres-
sion methods, as they depend on a strong correlation between
streamflow at target and donor gauges. In principle, there is
no such limit for machine learning approaches, which are in-
stead limited by the quality and quantity of training data.

The process-guided specialist LSTM yielded predictions
on par with those of the other LSTM strategies in terms

of KGE, but performed worst of the four in terms of NSE,
possibly indicating that information gleaned from NHM es-
timates helped this strategy to accurately capture discharge
variance and reduce prediction bias without ultimately im-
proving the correlation between predictions and observa-
tions. Unlike KGE, NSE only explicitly captures this latter
metric (Nash and Sutcliffe, 1970; Gupta et al., 2009). Con-
versely, the specialist performed better than the generalist in
terms of NSE but not KGE, suggesting that information con-
tained in NEON’s continuous discharge product was of dis-
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Figure 4. Best linear regression predictions of continuous discharge for four NEON gauge-years compared with official NEON discharge
data. All officially published values are shown, including those with quality control flags, indicated by black marks on the lower border. Light
red bands represent 95 % prediction intervals. NEON uncertainty is not shown.

proportionate predictive value relative to each of correlation,
variance, and bias, favoring correlation.

The specialist may have been affected by data filtering
choices. After filtering NEON continuous discharge for rat-
ing curve issues, drift, and quality flags, relatively few daily
estimates were available for some sites (47–1642). Annual
and seasonal variation in meteorological forcings and dis-
charge in NEON sites’ generally small, often mountainous
watersheds may be large enough that finetuning a pretrained
LSTM on a few hundred days of site-specific data reduces its
ability to generalize at that site. Our specialist LSTM strat-
egy in particular might be improved with a broader hyper-
parameter search, especially one that explores smaller learn-
ing rates. Ideally, site-specific finetuning should enable bet-
ter prediction by allowing the network to assimilate informa-
tion unique to the target site without corrupting previously
learned generalities. For validation plots of all ensembled
LSTMs, see Fig. A6.

The process-guided specialist LSTM strategy was viable
at nine sites for which discharge estimates were available
from the National Hydrologic Model. By using a mecha-
nistic (i.e., process-based) model with higher spatial reso-
lution than the NHM, it should be possible to apply this
process-guided approach at more of the NEON sites. A po-
tentially stronger process-guided approach would use mech-
anistic model predictions as features (predictors), rather than
training targets, but that would require mechanistic model
predictions concurrent with discharge series at target sites,
whereas NHM predictions at the time of this writing are
available only through the year 2016. For a summary of

process-guided deep learning strategies, see the “Integrating
Design” subsection of Appling et al. (2022).

We caution that evaluation scores for both NEON’s pub-
lished estimates and ours are computed on a small fraction
of each series for which both an estimate and a direct field
measurement are available (39–213 per site), and that mea-
surements tend to be collected disproportionately at low flow.
This often occurs for practical reasons such as site access and
technician safety, but may also reflect a need to characterize
the low-flow variability of the stage–discharge relationship
in streams with unstable low-flow hydrologic controls, such
as unconsolidated bed material.

Whatever the reason for less sampling at high flow, any
model attempting to use field measurements to reconstruct
continuous discharge will estimate with greater uncertainty
at high flow than at low, and users of our composite dis-
charge product should observe uncertainties associated with
estimates from all methods. Mechanistic models that proceed
from physical principles, or data-driven approaches that can
generalize from prior observations, do not in principle suf-
fer this disadvantage, as they do not depend on observations
from a target site. However, these approaches may not reli-
ably generate strong predictions at all sites or under all con-
ditions (Razavi and Coulibaly, 2013; Kratzert et al., 2019b),
and may produce erratic point estimates where conditions di-
verge from past observations. Hybrid approaches that suc-
cessfully leverage field measurements, as well as physical
principles or learned relationships, are likely to yield well-
constrained predictions where our efforts did not.
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This study demonstrates that, in proximity to established
streamflow gauges, even simple statistical methods can be
used to generate accurate, continuous discharge at “virtual
gauges” where discrete discharge has been measured. The
number of field measurements across sites in this study varies
from 39 to 213, but the number required for virtual gaug-
ing may be substantially smaller than even the minimum
of this range. If the discharge relationships between a tar-
get site and all donor gauges were perfectly linear or log-
linear, they could in principle be established with only two
precise measurements at the target site. More important than
the quantity is the distribution of measurements across flow
conditions, which should be sufficient to fully characterize
all modeled discharge relationships and their linearity or lack
thereof (Sauer, 2002; Zakwan et al., 2017). Concretely, we
advocate for “storm chasing”, or disproportionately seeking
to sample discharge under high-flow conditions and during
both rising and falling limbs of storm events, rather than rou-
tine sampling. Observed NEON flow conditions relative to
predicted discharge can be seen in Fig. A9. See Philip and
McLaughlin (2018) for further commentary on establishing
a virtual gauge network, and see Seibert and Beven (2009)
and Pool and Seibert (2021) for information on the number
and statistical properties of discharge samples required to es-
tablish strong stage–discharge or discharge–discharge rela-
tionships.

5 Conclusions

Using linear regression on donor gauge data and LSTM-
RNNs, we reconstructed continuous discharge at 5 min
and/or daily frequency for the 27 stream and river mon-
itoring locations of the National Ecological Observatory
Network (NEON) over the water years 2015–2022. Rel-
ative to field-measured discharge used as ground truth,
our estimates achieve higher Kling–Gupta efficiency than
NEON’s official continuous discharge at 11 sites. We also
provide continuous discharge estimates for ∼ 199 site-
months for which no official values have been published.
Estimates from this study can be used in conjunction
with officially released NEON continuous discharge data
to enhance the analytical potential of NEON’s river and
stream data products during its early operational phase.
Toward that end, we provide composite discharge series
for each site, incorporating the best available estimates
across all methods used in this study and NEON’s published
estimates. Considering the lag of up to 2.5 years before
provisional discharge data become fully quality controlled
and officially released by NEON, our methods may also
be used to increase the rate at which discharge-associated
stream chemistry, dissolved gas, and water quality products
become fully usable by the community. All data and results
from this study can be downloaded from the Figshare collec-
tion at https://doi.org/10.6084/m9.figshare.c.6488065.

Composite series can be visualized interactively at
https://macrosheds.org/data/vlah_etal_2023_composites/
(last access: 3 February 2024). All code nec-
essary to reproduce this analysis is archived at
https://doi.org/10.5281/zenodo.10067683 (Vlah, 2023b).
A complete list of products and URLs can be found in
Table A3.

In general, linear regression methods produced more accu-
rate discharge estimates (median KGE: 0.79; median NSE:
0.81; n= 24 sites) than LSTM approaches due to the fact
that regression models were able to fully leverage avail-
able field measurements as well as highly informative donor
gauge data. Nonetheless, LSTM methods achieved a me-
dian ensemble KGE of 0.71 and an NSE of 0.56 across
18 sites, making their estimates a valuable supplement. Al-
though LSTM-generated discharge series are of daily fre-
quency, some users will prefer them to higher-resolution re-
gression estimates, as the latter may be subject to error in the
event of highly localized precipitation events affecting either
donor or target gauges, but not both.

Improvements to our design could be made in several
ways. LSTM models could be exposed to additional training
data, such as the recently published Caravan compendium
of CAMELS offshoots (Kratzert et al., 2023) or future ex-
pansions of the MacroSheds dataset (Vlah et al., 2023a).
Neural networks trained on sub-daily inputs might be better
equipped to exploit atmospheric–hydrological dynamics that
respond to both daily and annual cycles. Linear regression
methods too might be improved with the use of additional
predictors, such as continuous water level or precipitation.

The success of simple statistical methods in generating
high-quality continuous discharge time series demonstrates
the viability of “virtual gauges”, or locations at which a
small number of field discharge measurements in proximity
to one or more established gauges provide a basis for contin-
uous discharge estimation in lieu of a gauging station. Virtual
gauges have the potential to greatly expand the spatial cov-
erage of continuous discharge data throughout the USA and
any richly gauged region of the world.
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Appendix A

Table A1. Methods from this study used in the construction of composite discharge series. Composite series also incorporate the NEON
continuous discharge product DP4.00130.001 (NEON, 2023a). “linreg” is linear regression, “glmnet” is ridge regression, “lm” is OLS
regression, “segmented” is segmented regression, “abs” is absolute discharge, “spec” is specific discharge, and “pgdl” is process-guided
deep learning.

Site Linreg KGE Linreg NSE Linreg method LSTM KGE LSTM NSE LSTM method

FLNT 0.989 0.980 glmnet_spec 0.664 0.507 generalist
TOMB 0.970 0.993 glmnet_abs
HOPB 0.966 0.937 lm_abs 0.852 0.704 generalist
BLUE 0.962 0.932 lm_spec 0.746 0.567 specialist
REDB 0.946 0.973 lm_abs 0.511 0.551 generalist_pgdl
KING 0.935 0.888 glmnet_abs
LEWI 0.929 0.875 glmnet_abs 0.848 0.724 specialist
SYCA 0.919 0.938 segmented_spec
MCDI 0.912 0.897 glmnet_spec
LECO 0.877 0.833 lm_spec
MCRA 0.868 0.866 glmnet_spec 0.723 0.531 generalist
MART 0.811 0.706 glmnet_spec 0.779 0.566 generalist
POSE 0.803 0.648 glmnet_spec
MAYF 0.787 0.806 glmnet_abs 0.586 0.666 generalist
BLWA 0.779 0.892 glmnet_abs
COMO 0.771 0.806 glmnet_composite_spec
BLDE 0.744 0.863 glmnet_abs 0.744 0.687 generalist
CARI 0.721 0.637 glmnet_abs
GUIL 0.692 0.653 glmnet_abs
ARIK 0.674 0.596 glmnet_abs
CUPE 0.663 0.728 glmnet_spec
WALK 0.607 0.532 glmnet_spec
BIGC 0.895 0.827 specialist
WLOU 0.778 0.596 generalist_pgdl
TECR 0.711 0.904 generalist
PRIN
OKSR
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Table A2. Model input data used in this study.

Resource Description Source/link

NEON discharge field
collection

Discharge measurements from
field-based surveys

NEON (2023b, c)

NEON continuous dis-
charge

Discharge calculated from a rat-
ing curve and sensor measure-
ments of water level

NEON (2023a)

User-focused eval-
uation of NEON
streamflow estimates

Three-tier classification of the
reliability of NEON continuous
discharge by site-month

https://www.nature.com/articles/s41597-023-01983-w (Rhea et al.,
2023b)

CAMELS-US dataset Catchment Attributes, Meteo-
rology (and streamflow) for
Large-sample Studies

https://gdex.ucar.edu/dataset/camels.html (Newman et al., 2022)

National Hydrologic
Model (NHM)

USGS infrastructure that, when
coupled with the Precipitation-
Runoff Modeling System, can
produce streamflow simulations
at local to national scale

https://www.usgs.gov/mission-areas/water-resources/science/
national-hydrologic-model-infrastructure (Regan et al., 2019)

MacroSheds A synthesis of long-term bio-
geochemical, hydroclimatic,
and geospatial data from small
watershed ecosystem studies

https://doi.org/
10.6073/pasta/c8d6d29703f14735bf24cd8cebe91f24 (Vlah et al.,
2023b)

Daymet Gridded estimates of daily
weather parameters

https://doi.org/
10.3334/ORNLDAAC/2129 (Thornton et al., 2022)

HJ Andrews Experi-
mental Forest stream
discharge

Stream discharge in gauged wa-
tersheds, 1949 to present

https://doi.org/
10.6073/PASTA/0066D6B04E736AF5F234D95D97EE84F3 (Johnson
et al., 2020)

USGS National Water
Information System

Streamflow and associated
data for thousands of gauged
streams and rivers within the
USA

https://waterdata.usgs.gov/nwis, e.g., https://waterdata.usgs.gov/
monitoring-location/06879100/ (U.S. Geological Survey, 2016)

https://doi.org/10.5194/hess-28-545-2024 Hydrol. Earth Syst. Sci., 28, 545–573, 2024

https://www.nature.com/articles/s41597-023-01983-w
https://gdex.ucar.edu/dataset/camels.html
https://www.usgs.gov/mission-areas/water-resources/science/national-hydrologic-model-infrastructure
https://www.usgs.gov/mission-areas/water-resources/science/national-hydrologic-model-infrastructure
https://doi.org/10.6073/pasta/c8d6d29703f14735bf24cd8cebe91f24
https://doi.org/10.3334/ORNLDAAC/2129
https://doi.org/10.6073/PASTA/0066D6B04E736AF5F234D95D97EE84F3
https://waterdata.usgs.gov/nwis
https://waterdata.usgs.gov/monitoring-location/06879100/
https://waterdata.usgs.gov/monitoring-location/06879100/


560 M. J. Vlah et al.: Leveraging gauge networks and strategic discharge measurements

Table A3. Products of this study.

Product Description Link

Composite dis-
charge time se-
ries

Analysis-ready CSVs combin-
ing the best available discharge
estimates across linear regres-
sion and LSTM approaches
from this study, and NEON’s
published data

https://doi.org/
10.6084/m9.figshare.c.6488065 (Vlah et al., 2023c)

Composite dis-
charge plots

Interactive plots of our compos-
ite discharge product

https://macrosheds.org/data/vlah_etal_2023_composites (Vlah,
2023a)

All model out-
puts and results

Complete predictions from all
linear regression and LSTM
models, run results, and diag-
nostics

https://doi.org/
10.6084/m9.figshare.c.6488065 (Vlah et al., 2023c)

All model input
data

Donor gauge streamflow, train-
ing data for LSTMs, model con-
figurations, etc.

https://doi.org/
10.6084/m9.figshare.c.6488065 (Vlah et al., 2023c)

All code asso-
ciated with this
paper

Zenodo archive of GitHub
repository

https://doi.org/
10.5281/zenodo.10067683 (Vlah, 2023)

All figures
associated with
this paper

High-resolution images of all
figures from the main body and
appendix

https://doi.org/
10.6084/m9.figshare.c.6488065 (Vlah et al., 2023c)

Figure A1. Efficiency of five stream discharge prediction methods and NEON’s published continuous discharge product at 27 NEON gauge
locations versus field-measured discharge. Small, white triangles represent the max/min NSE of the published discharge by water year (1 Oc-
tober through 30 September) with at least five field measurements (or two for site OKSR). NSE was computed on all available observation–
estimate pairs except those with quality flags (dischargeFinalQF or dischargeFinalQFSciRvw of 1). For the best-performing LSTM method,
at all sites except TECR, FLNT, REDB, WALK, POSE, and KING, displayed NSE is averaged over 30 ensemble runs with identical hyper-
parameters. For the sites just named, the performance of a chosen method after ensembling dropped below that of at least one other method’s
optimal NSE from the parameter search. For all other LSTM site–method pairs, which were not ensembled, the displayed performance is that
of the best model trained during the parameter search phase. Sites are ordered by the NSE of NEON continuous discharge. See Table 3 for
LSTM model definitions. An NSE of 1 is a perfect prediction, while an NSE of 0 is equivalent in skill to prediction from the mean. Negative
values are truncated at −0.05 in this plot to improve visualization.
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Figure A2. Observed (field) discharge vs. predictions from linear regression on specific discharge (i.e., scaled by watershed area).

https://doi.org/10.5194/hess-28-545-2024 Hydrol. Earth Syst. Sci., 28, 545–573, 2024



562 M. J. Vlah et al.: Leveraging gauge networks and strategic discharge measurements

Figure A3. Observed (field) discharge vs. predictions from linear regression on absolute discharge (i.e., not scaled by watershed area).
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Figure A4. Marginal relationships between donor and target gauges for regression on specific discharge. Regression lines are shown only
for single-donor regressions fitted via OLS. Site SYCA, here exhibiting a breakpoint, was modeled with segmented regression, and thus the
regression line shown has no relevance.
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Figure A5. Marginal relationships between donor and target gauges for regression on absolute discharge. Regression lines are shown only
for single-donor regressions fitted via OLS. Site SYCA, here exhibiting a breakpoint, could not be fitted via segmented regression in the
context of absolute discharge.
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Figure A6. Observed (field) discharge vs. ensembled LSTM predictions.
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Figure A7. Diagnostic plots for the four sites modeled by OLS regression on specific discharge.
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Figure A8. Diagnostic plots for the four sites modeled by OLS regression on absolute discharge.
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Figure A9. Density of NEON-estimated discharge (blue) relative to field-measured discharge observations (red marks).
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Figure A10. Durations of missing values (gaps) in NEON’s 2023 release of continuous discharge time series, illustrating gaps filled or
informed by estimates from this analysis. All officially published values are shown, including those with quality control flags. Sites are
ordered as in Fig. 2. Gaps smaller than 6 h are not indicated.
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