Articles | Volume 27, issue 1
https://doi.org/10.5194/hess-27-83-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-27-83-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Advance prediction of coastal groundwater levels with temporal convolutional and long short-term memory networks
Xiaoying Zhang
Institute of Intelligent Simulation and Early Warning for
Subsurface Environment, Jilin University, Changchun, China
College of Construction Engineering, Jilin University, Changchun,
China
Fan Dong
Institute of Intelligent Simulation and Early Warning for
Subsurface Environment, Jilin University, Changchun, China
College of Construction Engineering, Jilin University, Changchun,
China
Guangquan Chen
Key Laboratory of Marine Sedimentology and Environmental Geology,
First Institute of Oceanography, State Oceanic Administration, Qingdao, China
Zhenxue Dai
CORRESPONDING AUTHOR
Institute of Intelligent Simulation and Early Warning for
Subsurface Environment, Jilin University, Changchun, China
College of Construction Engineering, Jilin University, Changchun,
China
Related authors
No articles found.
Junjun Chen, Zhenxue Dai, Shangxian Yin, Mingkun Zhang, and Mohamad Reza Soltanian
Hydrol. Earth Syst. Sci., 29, 4251–4279, https://doi.org/10.5194/hess-29-4251-2025, https://doi.org/10.5194/hess-29-4251-2025, 2025
Short summary
Short summary
Balancing exploration and exploitation in conventional inversion algorithms is challenging. We evaluated the effectiveness of tandem neural network architecture (TNNA) in addressing this challenge. Inversion problems with different heterogeneous scenarios were designed to compare TNNA with four metaheuristic algorithms. Results show that TNNA significantly improves computational efficiency and accuracy, offering a promising framework for developing robust inversion algorithms.
Huijun Li, Lin Zhu, Gaoxuan Guo, Yan Zhang, Zhenxue Dai, Xiaojuan Li, Linzhen Chang, and Pietro Teatini
Nat. Hazards Earth Syst. Sci., 21, 823–835, https://doi.org/10.5194/nhess-21-823-2021, https://doi.org/10.5194/nhess-21-823-2021, 2021
Short summary
Short summary
We propose a method that integrates fuzzy set theory and a weighted Bayesian model to evaluate the hazard probability of land subsidence based on Interferometric Synthetic Aperture Radar technology. The proposed model can represent the uncertainty and ambiguity in the evaluation process, and results can be compared to traditional qualitative methods.
Cited articles
Abdalla, O. A. and Al-Rawahi, A. S.: Groundwater recharge dams in arid areas as tools for aquifer replenishment and mitigating seawater intrusion: example of AlKhod, Oman, Environ. Earth Sci., 69, 1951–1962, 2013.
Afaq, S. and Rao, S.: Significance of epochs on training a neural network,
Int. J. Scient. Technol. Res., 9, 485–488, 2020.
Baena-Ruiz, L., Pulido-Velazquez, D., Collados-Lara, A.-J., Renau-Pruñonosa, A., and Morell, I.: Global assessment of seawater intrusion problems (status and vulnerability), Water Resour. Manage., 32,
2681–2700, 2018.
Bai, S., Kolter, J. Z., and Koltun, V.: An empirical evaluation of generic
convolutional and recurrent networks for sequence modeling, arXiv preprint
arXiv:1803.01271, https://doi.org/10.48550/arXiv.1803.01271, 2018.
Barlow, P. M. and Reichard, E. G.: Saltwater intrusion in coastal regions of
North America, Hydrogeol. J., 18, 247–260, 2010.
Batelaan, O., De Smedt, F., and Triest, L.: Regional groundwater discharge:
phreatophyte mapping, groundwater modelling and impact analysis of land-use
change, J. Hydrol., 275, 86–108, 2003.
Bengio, Y., Simard, P., and Frasconi, P.: Learning long-term dependencies
with gradient descent is difficult, IEEE T. Neural Netw., 5, 157–166, 1994.
Borovykh, A., Bohte, S., and Oosterlee, C. W.: Dilated convolutional neural
networks for time series forecasting, J. Comput. Financ., 22, 73–101, https://doi.org/10.21314/JCF.2019.358, 2018.
Cannas, B., Fanni, A., See, L., and Sias, G.: Data preprocessing for river
flow forecasting using neural networks: wavelet transforms and data
partitioning, Phys. Chem. Earth, 31, 1164–1171, 2006.
Cao, Y., Ding, Y., Jia, M., and Tian, R.: A novel temporal convolutional
network with residual self-attention mechanism for remaining useful life
prediction of rolling bearings, Reliab. Eng. Syst. Safe., 215, 107813, https://doi.org/10.1016/j.ress.2021.107813, 2021.
Chen, Y., Kang, Y., Chen, Y., and Wang, Z.: Probabilistic forecasting with
temporal convolutional neural network, Neurocomputing, 399, 491–501, 2020.
Coulibaly, P., Anctil, F., Aravena, R., and Bobée, B.: Artificial neural
network modeling of water table depth fluctuations, Water Resour. Res., 37,
885–896, 2001.
Dai, Z. and Samper, J.: Inverse modeling of water flow and multicomponent
reactive transport in coastal aquifer systems, J. Hydrol., 327, 447–461, 2006.
Dai, Z., Xu, L., Xiao, T., McPherson, B., Zhang, X., Zheng, L., Dong, S.,
Yang, Z., Soltanian, M. R., and Yang, C.: Reactive chemical transport simulations of geologic carbon sequestration: Methods and applications,
Earth-Sci. Rev., 208, 103265, https://doi.org/10.1016/j.earscirev.2020.103265, 2020.
Dubey, A. K., Kumar, A., García-Díaz, V., Sharma, A. K., and Kanhaiya, K.: Study and analysis of SARIMA and LSTM in forecasting time series data, Sustain. Energ. Technol. Assess., 47, 101474, https://doi.org/10.1016/j.seta.2021.101474, 2021.
Ergen, T. and Kozat, S. S.: Efficient online learning algorithms based on
LSTM neural networks, IEEE T. Neural Netw. Learn. Syst., 29, 3772–3783, 2017.
Feng, N., Geng, X., and Qin, L.: Study on MRI medical image segmentation
technology based on CNN-CRF model, IEEE Access, 8, 60505–60514, 2020.
Fischer, T. and Krauss, C.: Deep learning with long short-term memory networks for financial market predictions, Eur. J. Oper. Res., 270, 654–669,
2018.
Gan, Z., Li, C., Zhou, J., and Tang, G.: Temporal convolutional networks
interval prediction model for wind speed forecasting, Elect. Power Syst. Res., 191, 106865, https://doi.org/10.1016/j.epsr.2020.106865, 2021.
Garza-Díaz, L. E., DeVincentis, A. J., Sandoval-Solis, S., Azizipour, M., Ortiz-Partida, J. P., Mahlknecht, J., Cahn, M., Medellín-Azuara, J., Zaccaria, D., and Kisekka, I.: Land-use optimization for sustainable agricultural water management in Pajaro Valley, California, J. Water Resour.
Pl. Manage.-ASCE, 145, 05019018, https://doi.org/10.1061/(ASCE)WR.1943-5452.0001117, 2019.
Gorgij, A. D., Kisi, O., and Moghaddam, A. A.: Groundwater budget forecasting, using hybrid wavelet-ANN-GP modelling: a case study of Azarshahr Plain, East Azerbaijan, Iran, Hydrol. Res., 48, 455–467, 2017.
Han, D., Kohfahl, C., Song, X., Xiao, G., and Yang, J.: Geochemical and
isotopic evidence for palaeo-seawater intrusion into the south coast aquifer of Laizhou Bay, China, Appl. Geochem., 26, 863–883, 2011.
Han, D., Song, X., Currell, M. J., Yang, J., and Xiao, G.: Chemical and
isotopic constraints on evolution of groundwater salinization in the coastal
plain aquifer of Laizhou Bay, China, J. Hydrol., 508, 12–27, 2014.
He, K., Zhang, X., Ren, S., and Sun, J.: Deep residual learning for image
recognition, Proc. IEEE, 770–778, 2016.
Huang, F.-K., Chuang, M.-H., Wang, G. S., and Yeh, H.-D.: Tide-induced
groundwater level fluctuation in a U-shaped coastal aquifer, J. Hydrol.,
530, 291–305, 2015.
Jiang, Y., Zhao, M., Zhao, W., Qin, H., Qi, H., Wang, K., and Wang, C.:
Prediction of sea temperature using temporal convolutional network and LSTM-GRU network, Complex Eng. Syst., 1, 9, https://doi.org/10.20517/ces.2021.03, 2021.
Ketabchi, H. and Ataie-Ashtiani, B.: Evolutionary algorithms for the optimal
management of coastal groundwater: A comparative study toward future
challenges, J. Hydrol., 520, 193–213, 2015.
Kingma, D. P. and Ba, J: Adam: A method for stochastic optimization, in: International Conference on Learning Representations (ICLR), ICLR 2015, 7–9 May 2015, San Diego, CA, USA, https://doi.org/10.48550/arXiv.1412.6980, 2015.
Kratzert, F., Herrnegger, M., Klotz, D., Hochreiter, S., and Klambauer, G.:
NeuralHydrology–interpreting LSTMs in hydrology, in: Explainable AI:
Interpreting, explaining and visualizing deep learning, Springer, 347–362,
https://doi.org/10.1007/978-3-030-28954-6_19, 2019.
Kreyenberg, P. J., Bauser, H. H., and Roth, K.: Velocity field estimation on
density-driven solute transport with a convolutional neural network, Water
Resour. Res., 55, 7275–7293, 2019.
Lara-Benítez, P., Carranza-García, M., Luna-Romera, J. M., and Riquelme, J. C.: Temporal convolutional networks applied to energy-related
time series forecasting, Appl. Sci., 10, 2322, https://doi.org/10.3390/app10072322, 2020.
Lea, C., Vidal, R., Reiter, A., and Hager, G. D.: Temporal convolutional networks: A unified approach to action segmentation, in: Computer Vision – ECCV 2016 Workshops, Lecture Notes in Computer Science, edited by: Hua, G. and Jégou, H., Springer, Cham, https://doi.org/10.1007/978-3-319-49409-8_7, 2016.
Lea, C., Flynn, M. D., Vidal, R., Reiter, A., and Hager, G. D.: Temporal Convolutional Networks for Action Segmentation and Detection, in: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 21–26 July 2017, Honolulu, HI, USA, 1003–1012, https://doi.org/10.1109/CVPR.2017.113,
2017.
LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P.: Gradient-based learning
applied to document recognition, Proc. IEEE, 86, 2278–2324, 1998.
Li, H., Jiao, J. J., Luk, M., and Cheung, K.: Tide-induced groundwater level
fluctuation in coastal aquifers bounded by L-shaped coastlines, Water Resour. Res., 38, 6-1–6-8, 2002.
Long, J., Shelhamer, E., and Darrell, T.: Fully convolutional networks for semantic segmentation, in: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 7–12 June 2015, Boston, MA, USA, 3431–3440, https://doi.org/10.1109/CVPR.2015.7298965, 2015.
Lu, C., Werner, A. D., and Simmons, C. T.: Threats to coastal aquifers, Nat. Clim. Change, 3, 605–605, 2013.
Lu, C., Cao, H., Ma, J., Shi, W., Rathore, S. S., Wu, J., and Luo, J.: A
proof-of-concept study of using a less permeable slice along the shoreline to increase fresh groundwater storage of oceanic islands: Analytical and experimental validation, Water Resour. Res., 55, 6450–6463, 2019.
Maier, H. R. and Dandy, G. C.: Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and
applications, Environ. Model. Softw., 15, 101–124, 2000.
Mehr, A. D. and Nourani, V.: A Pareto-optimal moving average-multigene genetic programming model for rainfall-runoff modelling, Environ. Model.
Softw., 92, 239–251, 2017.
Mei, Y., Tan, G., and Liu, Z.: An improved brain-inspired emotional learning
algorithm for fast classification, Algorithms, 10, 70, https://doi.org/10.3390/a10020070, 2017.
Nair, V. and Hinton, G. E.: Rectified linear units improve restricted boltzmann machines, in: Proceedings of the 27th International Conference on Machine Learning (ICML-10), 21–24 June 2010, Haifa, Israel, 807–814,
https://doi.org/10.5555/3104322.3104425, 2010.
Park, Y., Lee, J.-Y., Kim, J.-H., and Song, S.-H.: National scale evaluation
of groundwater chemistry in Korea coastal aquifers: evidences of seawater
intrusion, Environ. Earth Sci., 66, 707–718, 2012.
Pascanu, R., Mikolov, T., and Bengio, Y.: On the difficulty of training recurrent neural networks, in: International conference on machine learning, in: Proceedings of the 30th International Conference on Machine Learning (PMLR), 16–21 June 2013, Atlanta, GA, USA, 1310–1318, https://doi.org/10.48550/arXiv.1211.5063, 2013.
Pratheepa, V., Ramesh, S., Sukumaran, N., and Murugesan, A.: Identification
of the sources for groundwater salinization in the coastal aquifers of
Southern Tamil Nadu, India, Environ. Earth Sci., 74, 2819–2829, 2015.
Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., and
Carvalhais, N.: Deep learning and process understanding for data-driven
Earth system science, Nature, 566, 195–204, 2019.
Rumelhart, D. E., Hinton, G. E., and Williams, R. J.: Learning representations by back-propagating errors, Nature, 323, 533–536, 1986.
Sahoo, S., Russo, T., Elliott, J., and Foster, I.: Machine learning algorithms for modeling groundwater level changes in agricultural regions of
the US, Water Resour. Res., 53, 3878–3895, 2017.
Salimans, T. and Kingma, D. P.: Weight normalization: A simple reparameterization to accelerate training of deep neural networks, Adv.
Neural Inform. Process. Syst., 29, 901–909, 2016.
Senthil Kumar, A., Sudheer, K., Jain, S., and Agarwal, P.: Rainfall-runoff
modelling using artificial neural networks: comparison of network types, Hydrol. Process., 19, 1277–1291, 2005.
Seo, Y., Kim, S., Kisi, O., and Singh, V. P.: Daily water level forecasting
using wavelet decomposition and artificial intelligence techniques, J.
Hydrol., 520, 224–243, 2015.
Solgi, R., Loáiciga, H. A., and Kram, M.: Long short-term memory neural
network (LSTM-NN) for aquifer level time series forecasting using in-situ
piezometric observations, J. Hydrol., 601, 126800, https://doi.org/10.1016/j.jhydrol.2021.126800, 2021.
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting, J. Mach. Learn. Res., 15, 1929–1958, 2014.
Taylor, K. E.: Summarizing multiple aspects of model performance in a single
diagram, J. Geophys. Res.-Atmos., 106, 7183–7192, 2001.
Torres, J. F., Troncoso, A., Koprinska, I., Wang, Z., and Martínez-Álvarez, F.: Deep learning for big data time series forecasting applied to solar power, in: Proceedings of the international joint conference SOCO'18-CISIS'18-ICEUTE'18, Springer International Publishing, Cham, 123–133, https://doi.org/10.1007/978-3-319-94120-2_12, 2018.
Wan, R., Mei, S., Wang, J., Liu, M., and Yang, F.: Multivariate temporal
convolutional network: A deep neural networks approach for multivariate time
series forecasting, Electronics, 8, 876, https://doi.org/10.3390/electronics8080876, 2019.
Wunsch, A., Liesch, T., and Broda, S.: Groundwater level forecasting with artificial neural networks: a comparison of long short-term memory (LSTM), convolutional neural networks (CNNs), and non-linear autoregressive networks with exogenous input (NARX), Hydrol. Earth Syst. Sci., 25, 1671–1687, https://doi.org/10.5194/hess-25-1671-2021, 2021.
Xu, Z. and Hu, B. X.: Development of a discrete-continuum VDFST-CFP numerical model for simulating seawater intrusion to a coastal karst aquifer with a conduit system, Water Resour. Res., 53, 688–711, 2017.
Xue, Y., Wu, J., Ye, S., and Zhang, Y.: Hydrogeological and hydrogeochemical
studies for salt water intrusion on the south coast of Laizhou Bay, China,
Groundwater, 38, 38–45, 2000.
Yan, J., Mu, L., Wang, L., Ranjan, R., and Zomaya, A. Y.: Temporal convolutional networks for the advance prediction of ENSO, Sci. Rep., 10,
1–15, 2020.
Zeng, X., Wu, J., Wang, D., and Zhu, X.: Assessing the pollution risk of a
groundwater source field at western Laizhou Bay under seawater intrusion,
Environ. Res., 148, 586–594, 2016.
Zhan, C., Dai, Z., Soltanian, M. R., and Zhang, X.: Stage-wise stochastic
deep learning inversion framework for subsurface sedimentary structure
identification, Geophys. Res. Lett., 49, e2021GL095823, https://doi.org/10.1029/2021GL095823, 2022.
Zhang, D., Lin, J., Peng, Q., Wang, D., Yang, T., Sorooshian, S., Liu, X.,
and Zhuang, J.: Modeling and simulating of reservoir operation using the
artificial neural network, support vector regression, deep learning algorithm, J. Hydrol., 565, 720–736, 2018.
Zhang, J., Zhu, Y., Zhang, X., Ye, M., and Yang, J.: Developing a Long
Short-Term Memory (LSTM) based model for predicting water table depth in
agricultural areas, J. Hydrol., 561, 918–929, 2018.
Zhang, J., Zhang, X., Niu, J., Hu, B. X., Soltanian, M. R., Qiu, H., and
Yang, L.: Prediction of groundwater level in seashore reclaimed land using
wavelet and artificial neural network-based hybrid model, J. Hydrol., 577,
123948, https://doi.org/10.1016/j.jhydrol.2019.123948, 2019.
Zhang, X., Miao, J., Hu, B. X., Liu, H., Zhang, H., and Ma, Z.: Hydrogeochemical characterization and groundwater quality assessment in
intruded coastal brine aquifers (Laizhou Bay, China), Environ. Sci. Pollut.
Res., 24, 21073–21090, 2017.
Zhang, X., Dong, F., Dai, H., Hu, B. X., Qin, G., Li, D., Lv, X., Dai, Z.,
and Soltanian, M. R.: Influence of lunar semidiurnal tides on groundwater
dynamics in estuarine aquifers, Hydrogeol. J., 28, 1419–1429, 2020.
Short summary
In a data-driven framework, groundwater levels can generally only be calculated 1 time step ahead. We discuss the advance prediction with longer forecast periods rather than single time steps by constructing a model based on a temporal convolutional network. Model accuracy and efficiency were further compared with an LSTM-based model. The two models derived in this study can help people cope with the uncertainty of what might occur in hydrological scenarios under the threat of climate change.
In a data-driven framework, groundwater levels can generally only be calculated 1 time step...