Articles | Volume 27, issue 1
https://doi.org/10.5194/hess-27-83-2023
https://doi.org/10.5194/hess-27-83-2023
Research article
 | 
02 Jan 2023
Research article |  | 02 Jan 2023

Advance prediction of coastal groundwater levels with temporal convolutional and long short-term memory networks

Xiaoying Zhang, Fan Dong, Guangquan Chen, and Zhenxue Dai

Related authors

Bayesian performance evaluation of evapotranspiration models based on eddy covariance systems in an arid region
Guoxiao Wei, Xiaoying Zhang, Ming Ye, Ning Yue, and Fei Kan
Hydrol. Earth Syst. Sci., 23, 2877–2895, https://doi.org/10.5194/hess-23-2877-2019,https://doi.org/10.5194/hess-23-2877-2019, 2019
Short summary

Related subject area

Subject: Groundwater hydrology | Techniques and Approaches: Modelling approaches
Data-driven modelling of hydraulic-head time series: results and lessons learned from the 2022 Groundwater Time Series Modelling Challenge
Raoul A. Collenteur, Ezra Haaf, Mark Bakker, Tanja Liesch, Andreas Wunsch, Jenny Soonthornrangsan, Jeremy White, Nick Martin, Rui Hugman, Ed de Sousa, Didier Vanden Berghe, Xinyang Fan, Tim J. Peterson, Jānis Bikše, Antoine Di Ciacca, Xinyue Wang, Yang Zheng, Maximilian Nölscher, Julian Koch, Raphael Schneider, Nikolas Benavides Höglund, Sivarama Krishna Reddy Chidepudi, Abel Henriot, Nicolas Massei, Abderrahim Jardani, Max Gustav Rudolph, Amir Rouhani, J. Jaime Gómez-Hernández, Seifeddine Jomaa, Anna Pölz, Tim Franken, Morteza Behbooei, Jimmy Lin, and Rojin Meysami
Hydrol. Earth Syst. Sci., 28, 5193–5208, https://doi.org/10.5194/hess-28-5193-2024,https://doi.org/10.5194/hess-28-5193-2024, 2024
Short summary
The impact of future changes in climate variables and groundwater abstraction on basin-scale groundwater availability
Steven Reinaldo Rusli, Victor F. Bense, Syed M. T. Mustafa, and Albrecht H. Weerts
Hydrol. Earth Syst. Sci., 28, 5107–5131, https://doi.org/10.5194/hess-28-5107-2024,https://doi.org/10.5194/hess-28-5107-2024, 2024
Short summary
Assessing groundwater level modelling using a 1-D convolutional neural network (CNN): linking model performances to geospatial and time series features
Mariana Gomez, Maximilian Nölscher, Andreas Hartmann, and Stefan Broda
Hydrol. Earth Syst. Sci., 28, 4407–4425, https://doi.org/10.5194/hess-28-4407-2024,https://doi.org/10.5194/hess-28-4407-2024, 2024
Short summary
Short high-accuracy tritium data time series for assessing groundwater mean transit times in the vadose and saturated zones of the Luxembourg Sandstone aquifer
Laurent Gourdol, Michael K. Stewart, Uwe Morgenstern, and Laurent Pfister
Hydrol. Earth Syst. Sci., 28, 3519–3547, https://doi.org/10.5194/hess-28-3519-2024,https://doi.org/10.5194/hess-28-3519-2024, 2024
Short summary
Laboratory heat transport experiments reveal grain size and flow velocity dependent local thermal non-equilibrium effects
Haegyeong Lee, Manuel Gossler, Kai Zosseder, Philipp Blum, Peter Bayer, and Gabriel C. Rau
EGUsphere, https://doi.org/10.5194/egusphere-2024-1949,https://doi.org/10.5194/egusphere-2024-1949, 2024
Short summary

Cited articles

Abdalla, O. A. and Al-Rawahi, A. S.: Groundwater recharge dams in arid areas as tools for aquifer replenishment and mitigating seawater intrusion: example of AlKhod, Oman, Environ. Earth Sci., 69, 1951–1962, 2013. 
Afaq, S. and Rao, S.: Significance of epochs on training a neural network, Int. J. Scient. Technol. Res., 9, 485–488, 2020. 
Baena-Ruiz, L., Pulido-Velazquez, D., Collados-Lara, A.-J., Renau-Pruñonosa, A., and Morell, I.: Global assessment of seawater intrusion problems (status and vulnerability), Water Resour. Manage., 32, 2681–2700, 2018. 
Bai, S., Kolter, J. Z., and Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling, arXiv preprint arXiv:1803.01271, https://doi.org/10.48550/arXiv.1803.01271, 2018. 
Barlow, P. M. and Reichard, E. G.: Saltwater intrusion in coastal regions of North America, Hydrogeol. J., 18, 247–260, 2010. 
Download
Short summary
In a data-driven framework, groundwater levels can generally only be calculated 1 time step ahead. We discuss the advance prediction with longer forecast periods rather than single time steps by constructing a model based on a temporal convolutional network. Model accuracy and efficiency were further compared with an LSTM-based model. The two models derived in this study can help people cope with the uncertainty of what might occur in hydrological scenarios under the threat of climate change.