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Abstract. Prediction of groundwater level is of immense im-
portance and challenges coastal aquifer management with
rapidly increasing climatic change. With the development of
artificial intelligence, data-driven models have been widely
adopted in hydrological process management. However, due
to the limitation of network framework and construction,
they are mostly adopted to produce only 1 time step in ad-
vance. Here, the temporal convolutional network (TCN) and
models based on long short-term memory (LSTM) were de-
veloped to predict groundwater levels with different leading
periods in a coastal aquifer. The initial data of 10 months,
monitored hourly in two monitoring wells, were used for
model training and testing, and the data of the following
3 months were used as prediction with 24, 72, 180, and
360 time steps (1, 3, 7, and 15 d) in advance. The histor-
ical precipitation and tidal-level data were incorporated as
input data. For the one-step prediction of the two wells, the
calculated R2 of the TCN-based models’ values were higher
and the root mean square error (RMSE) values were lower
than that of the LSTM-based model in the prediction stage
with shorter running times. For the advanced prediction, the
model accuracy decreased with the increase in the advancing
period from 1 to 3, 7, and 15 d. By comparing the simula-
tion accuracy and efficiency, the TCN-based model slightly
outperformed the LSTM-based model but was less efficient
in training time. Both models showed great ability to learn
complex patterns in advance using historical data with dif-
ferent leading periods and had been proven to be valid lo-
calized groundwater-level prediction tools in the subsurface
environment.

1 Introduction

As the economic development and population escalate in the
coastal area, the fresh groundwater needs to continue mount-
ing, and seawater intrusion has posed a great threat to the
availability of portable water resources globally (Baena-Ruiz
et al., 2018). In the United States, Mexico, Canada, Australia,
China, India, South Korea, Italy, and Greece, with dense pop-
ulation, many coastal aquifers have experienced salinization
caused by seawater intrusion (Barlow and Reichard, 2010;
Park et al., 2012; Pratheepa et al., 2015; Zhang et al., 2017;
Lu et al., 2013). Protection projects such as aquifer replenish-
ment can be constructed to alleviate seawater intrusion by ar-
tificially increasing groundwater recharge in the aquifer more
than what occurs naturally (Abdalla and Al-Rawahi, 2012;
Lu et al., 2019). The replenishment programs have been op-
erated in the developed areas such as Perth, Western Aus-
tralia, and California, USA (Garza-Díaz et al., 2019). The
infrastructures tend to be costly and out of reach for many
developing countries. A reliable seawater intrusion monitor-
ing and the predicting system is still essential and is recog-
nized as the most effective way of keeping fresh water from
seawater contamination (Xu and Hu, 2017).

In the past several decades, conventional numerical mod-
els have been widely utilized to simulate and predict ground-
water fluctuation dynamics and chemical variations (Bate-
laan et al., 2003; Dai et al., 2020; Huang et al., 2015; Li et
al., 2002). However, the difficulty of acquiring extensive hy-
drological and geological data and setting reasonable bound-
aries limits its application to seawater intrusion management.
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Meanwhile, the method is not suitable for simultaneously
adopting updated monitoring data and producing real-time
prediction. Under such circumstances, where the data source
is scarce, artificial intelligence technology has been proposed
in groundwater dynamic predictions. Artificial neutral net-
works (ANNs) have been greatly improved and has become
a robust tool for dealing with groundwater problems where
the flow is nonlinear and highly dynamic in nature (Maier
and Dandy, 2000). The conventional network model gener-
ally has defects such as high computational complexity, slow
training speed, and failure in retaining historical informa-
tion, making it hard to be enrolled in the long-term time-
series prediction (Cannas et al., 2006; Mei et al., 2017). To
solve this problem, researchers upgraded the conventional
networks by integrating them with methods like a genetic
algorithm (Mehr and Nourani, 2017; Ketabchi and Ataie-
Ashtiani, 2015), singular spectrum (Sahoo et al., 2017), and
wavelet transform (Gorgij et al., 2017; Seo et al., 2015;
Zhang et al., 2019). Singular spectrum analysis and wavelet
transform can help to preprocess the time-series data before
they are put into the neural networks to improve prediction
accuracy and efficiency.

With computing capacity development, deep learn-
ing (DL) has emerged as a very powerful time-series pre-
diction method. The DL models are particularly suitable for
time series of big data because they can automatically ex-
tract complex patterns without feature extraction preprocess-
ing steps (Torres et al., 2018). However, the generally fully
connected networks are not effective in capturing the tempo-
ral dependence of time series (Senthil Kumar et al., 2005).
Therefore, more specialized DL models, such as recurrent
neural networks (RNNs) (Rumelhart et al., 1986) and convo-
lutional neural networks (CNNs) (LeCun et al., 1998) have
been adopted in the field of time-series prediction (Feng et
al., 2020). Different from the backpropagation (BP) neural
network where the information flows from the input to the
output layer in one direction, the RNN preserves the informa-
tion from the previous step as input to the current step with
loops (Coulibaly et al., 2001). This allows the RNN to handle
time-series and other sequential data, but it is generally not
straightforward for a long-term calculation in practice (Ben-
gio et al., 1994). Therefore, the enhanced RNN model, long
short-term memory (LSTM) is proposed and capable of pro-
cessing high variable-length sequences, even with millions of
data points (Fischer and Krauss, 2018; Kratzert et al., 2019).
As one of the best deep neural network models in time-series
predicting, the LSTM has been widely used in the predic-
tion of temporal variations such as stock market predictions
(Fischer and Krauss, 2018), rainfall–runoff (Dubey et al.,
2021), and groundwater level (Solgi et al., 2021). Despite
substantial progress in hydrology prediction, these networks
still have issues of low training efficiency and low accuracy
(Zhan et al., 2022).

More recently, a variant of the CNN architecture known
as temporal convolutional networks (TCNs) has gained pop-

ularity (Bai et al., 2018). The prominent characteristic of a
TCN is its ability to capture long-term dependencies with-
out information loss (Cao et al., 2021). Meanwhile, it joints
a residual block structure to fix the disappearance of the gra-
dient in the deep network structure (Chen et al., 2020). With
proper modifications, the TCN is quite genetic and can eas-
ily be used to build a very deep and extensive network in
sequence modeling. In earth science, the TCN has been suc-
cessfully applied to time-series prediction tasks, including
multivariate time-series predicting for meteorological data
(Wan et al., 2019), probabilistic predicting (Chen et al., 2020)
and wind speed predicting (Gan et al., 2021). Researchers
suggest that the TCN convincingly has the advantage in pop-
ular DL models across a broad range of sequence modeling
tasks (Borovykh et al., 2018; Chen et al., 2020; Wan et al.,
2019). Another important subject is that these networks are
mostly used to predict variables in only one step, which is
not enough for the prediction of hydrological information in
management. Researches have adopted the method to pre-
dict the trends of El Niño–Southern Oscillation (ENSO) and
sea temperature (Yan et al., 2020; Jiang et al., 2021). How-
ever, the potential of TCNs has not been investigated in the
sequencing model of the hydrogeology field. Therefore, it is
worthy to explore their prediction abilities in leading periods.

The objective of this study is to develop real-time ad-
vance prediction climate–hydro hybrid data-driven models of
groundwater level in the coastal aquifer based on TCNs and
LSTM. The hourly processed tidal-level, precipitation and
groundwater-level data in monitoring wells of Laizhou Bay
are adopted as training data. The trained models are then uti-
lized to predict the groundwater-level variation in an advance
period of 1, 3, 7, and 15 d. The two models were further com-
pared in view of accuracy and efficiency. The rest of the pa-
per is organized as follows. Section 2 introduces the study
area and observational data. Section 3 illustrates the detailed
concepts of the TCN and LSTM, the experimental model set-
tings, and model evaluation criteria. Section 4 presents the
predicted results and discussions. Finally, the paper is con-
cluded in Sect. 5.

2 Study area and data processing

2.1 Site description

The study area is located on the south coast of Laizhou
Bay, along the Yangzi to Weifang section in the Shandong
province of China (Fig. 1). Laizhou Bay is one of the first
regions in China to be significantly impacted by seawater in-
trusion since the 1970s (Han et al., 2014; Zeng et al., 2016).
The area is a coastal plain, which contains a series of Cre-
taceous to modern sediments that cover the Paleozoic base-
ment. The sedimentary facies of coastal aquifer are alluvium,
pluvial, and marine sediments from south to north (Han et al.,
2011). According to the research of Xue et al. (2000), there
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Figure 1. Schematic figure of the study area with monitoring wells BH01–BH05.

have been three seawater intrusion and regression events in
the sea area of Laizhou Bay since the upper Pleistocene. The
transgression in the early upper Pleistocene formed the third
marine aquifer containing sedimentary water. This brine was
formed by evaporation and concentration of ancient seawater
and re-dissolution and mixing of salt (Dai and Samper, 2006;
Zhang et al., 2017). The monitoring wells BH01–BH05 are
distributed in the study area along a cross-section perpen-
dicular to the coastline. Among the wells, BH01 and BH05
have relatively integrated data in time and are distributed on
the two sides of the cross profile with distinguished annual
variation patterns, which are selected as examples for the de-
veloped models.

2.2 Data collection and pre-processing

The precipitation and tidal level are selected as the pri-
mary factors to affect the groundwater dynamics in the
coastal area. The data in the period of 2011 to 2012 with
groundwater-level observations of two wells are combined as
the input of the DL models. A total of 28 836 data items are
collected for monitoring wells. The variations of groundwa-
ter level and tidal level with precipitation are shown in Fig. 2.
The rainfall is concentrated from June to September and in
shortage from December to April. The tide in the study area
is irregular, mixed with a semi-diurnal variation. In the exper-
iments, 10 months of data from October 2011 to July 2012 is
first extracted for model training and testing. The rest of the
data from August 2012 to October 2012 is used to test model
prediction accuracy.

In addition, the magnitudes of meteorological and hydro-
logical variables have obvious temporal variations. To reduce

the negative impact on the model learning ability, especially
on the speed of gradient descent, all variables are normal-
ized to ensure that they remain at the same scale (Kratzert
et al., 2019). This pre-processing method ensures the sta-
ble convergence of parameters in the developed TCN- and
LSTM-based models and improve the simulation accuracy
of the model. The normalization formula is as follows:

x′i =
xi − xmin

xmax− xmin
, (1)

where xi represents the original data in time i; xmax and
xmin are the maximum and minimum variable values, respec-
tively. The output of the network is retransformed to obtain
the final groundwater-level prediction, which is an inverse
data-scaling process.

3 Methodology

3.1 Temporal convolutional network

The TCN is first proposed for video action segmentation
and detection by hierarchically capturing intermediate fea-
ture presentations. Then, the term is extended for sequential
data for a wide family of architectures with generic con-
volution (Bai et al., 2018; Lea et al., 2017). Suppose that
we have an input hydro-climate sequence at different times
x0, . . . , xT ; the goal of the modeling is to predict the cor-
responding groundwater level as outputs y0, . . . , yT at each
time. The problem could transfer to build a network f that
minimizes the function loss between observations and ac-
tual network outputs L [(y0, . . . , yT ), (ŷ0, . . . , ŷT )], where
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Figure 2. Time series of the variables in the study, including (a) precipitation, (b) tide, (c) groundwater level (GWL).

ŷ0, . . . , ŷT = f (x0, . . . , xT ). Currently, a typical TCN con-
sists of dilated, causal 1D full-convolutional layers with the
same input and output lengths. With a TCN, the prediction yt

depends only on the data from x0 and xt and does not include
the future data from xt and xT (Yan et al., 2020). With the
three key components of a TCN, it has two distinguishing
characteristics: (1) the TCN is able to map the same length
of output as the input sequence in the RNN; (2) the convolu-
tion involved in TCNs is causal, eliminating the influence of
future information on the output.

3.1.1 Causal dilated convolutions

In the TCN, the first advantage is accomplished by the archi-
tecture of a 1D full-convolutional network (FCN). Different
from the traditional CNN, the FCN transforms the fully con-
nected layers into the convolutional layers for the last lay-
ers, preserving the same length of output as that of the input
(Long et al., 2015). As shown in Fig. 3a, the length of the
hidden input layer and the length of the output layer is the
same. Some zero padding is needed in this step by adding
additional zero-valued entries with a kernel size length of 1
in each layer. The kernel size is the number of successive ele-
ments that are used to produce one element in the next layer.

To avoid information leakage from the future (after time t),
the TCN uses causal convolution instead of standard convo-
lution, where only the elements at or before time t in the

previous layer are adopted into the mapping of the output at
time t . Further, the dilated convolution is employed to cap-
ture long-term historical information by skipping a given step
size (dilation factor d) in each layer. For example, the dila-
tion factor d increases from 1 to 4 with the evolution of the
network depth (n) in an exponentially increasing pattern. In
this way, a very large receiving domain is created and all the
historical records in the input can be involved in the predic-
tion model with a deep network.

3.1.2 Residual connections

In a high-dimensional and long-term sequence, the network
structure could be very deep with increasing complicity and
cause a vanishing gradient. To solve this issue, a residual
block structure is introduced to replace the simple 1D causal
convolution layer so that the designed TCN structure is more
generic (He et al., 2016). The residual block in a TCN is
represented in Fig. 3b. It has two convolutional layers with
the same kernel size, dilation factor and non-linearity. To
solve non-linear models, the rectified linear unit (ReLU) is
added to the top of the convolutional layer (Nair and Hin-
ton, 2010). The weight normalization is applied between the
input of hidden layers (Salimans and Kingma, 2016). Mean-
while, a dropout is added after each dilated convolution for
regularization (Srivastava et al., 2014). For all connected in-
ner residual blocks, the channel widths of input and output
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Figure 3. Architectural elements in the proposed TCN. (a) The structure of causal dilated convolution. (b) The TCN residual block – a
1× 1 convolution is added when residual input and output have different dimensions; (c) framework of residual connection in the TCN.

are consistent. However, the width may be different between
the input of the first convolutional layer of the first residual
block and the output of the second convolutional layer of the
last residual block. Therefore, a 1× 1 convolution is added
in the first and last residual blocks to adjust the dimensions
of the residual tensor to the same. The output of the residual
block is represented by Ẑ(i) for the ith block.

3.1.3 Structure of TCN

A complete structure of TCN is illustrated in Fig. 3c. It con-
tains a series of proceeding residual blocks. The structural
characteristics make TCN a DL network model very suitable
for complex time-series prediction problems (Lara-Benítez
et al., 2020). The main advantage of TCNs is that, similar
to RNNs, they have flexible receptive fields and can deal
with various length inputs by a sliding 1D causal convolu-
tion kernel. Furthermore, because a TCN shares a convo-
lution kernel and has parallelism, it can process long se-
quences in parallel instead of sequential processing like an
RNN, so it has lower memory usage and shorter comput-
ing time than a cyclic network. Moreover, RNNs often have
the problems of gradient disappearance and gradient explo-
sion, which are mainly caused by sharing parameters in dif-
ferent periods, while TCNs use a standard backpropagation-
through-time algorithm (BPTT) for training, so there is little
gradient disappearance and explosion problems (Pascanu et
al., 2013). The detailed mathematical calculation and asso-
ciated information of the TCN architecture are referred to in
Bai et al. (2018).

3.2 Long short-term memory network

The LSTM is a special RNN model explicitly designed for
long-term dependence problems. As shown in Fig. 4a, the
RNN has a series of repeating modules that are recursively
connected in the evolution direction of the sequence. The
chain-like structure permits the RNN to retain important in-
formation in a “tanh” layer and produce the same length of
output ŷt as input xt . However, the short-length “remember
time” is not enough for groundwater prediction. Especially
for our hourly recorded data, a maximum time step of about
10 reported by Bengio et al. (1994) is unable to count the
effect of annual, seasonal, and even daily groundwater varia-
tion. Different from the simple layer in the RNN, the LSTM
has a more complicated repeating module with four interact-
ing layers.

The core idea of LSTM is the special structure to con-
trol the cell state in the module as shown in Fig. 4b. It in-
cludes a cell and an input gate it , a forget gate ft , and an
output gate ot . The information can flow down directly along
cells C without critical changes, therefore, preserving long-
term historical messages (J. Zhang et al., 2018). The three
gates control which data in a sequence are important to re-
tain or discard, and protect the relevant information passed
down in the cell to make predictions. The forget gate ft has
a sigmoid layer to determine which information is discarded
with a value between 0 and 1. The lower the value, the less in-
formation is added to the cell state (Ergen and Kozat, 2017).
In contrast to the forget gate, the input gate it decides what
information to retain in the cell state. It is composed of two
parts: a sigmoid layer and a tanh layer. The two layers are
combined to govern which values will be updated by gener-
ating a new candidate value C̃t . The old cell state Ct−1 can
then be updated into the new cell state Ct with a weighted
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Figure 4. Graphical representation for (a) chain-like structure of the RNN by assigning xt and ŷt as input and output. The self-connected
hidden units allow information to be passed from one step to the next; (b) LSTM’s memory block based on RNN. The hidden block includes
three gates (input it , forget ft , output ot ) and a cell state to select and pass the historical information.

function. Finally, the output gate ot determines which parts
of the cell state should be passed on to the next hidden state.
The detailed calculation of the LTSM can be referenced in
Lea et al. (2016).

3.3 Experimental study

The TCN- and LSTM-based models were developed sep-
arately for monitoring wells BH01 and BH05. Due to the
high complexity of the DL models, setting appropriate hyper-
parameters for the developed networks is very important.
Here, the impact of the size of the input window, the epoch
number, and the batch size was tested with different convo-
lutional architectures over the monitoring data (Lara-Benítez
et al., 2020). The learning dataset is first divided into two
parts: 80 % of the time-series data is used as the training set,
and 20 % of the data is utilized as the testing set. The effect
of different splitting strategies is further tested in Sect. 4.
With the increase in the epoch numbers, the curve gradu-
ally approaches the optimal fitting state from the initial non-
fitting state, but too many epochs frequently lead to over-
fitting of the neural network (Afaq and Rao, 2020). Mean-
while, the number of iterations generally increases for updat-
ing weights in the neural network. Therefore, the number of
epochs from 0 to 300 is evaluated. Batch size represents the
number of samples between model weight updates (Kreyen-

berg et al., 2019). The value of the batch size is often set
between one and hundreds. A larger batch size often leads
to faster convergence of the model but may lead to a less
ideal final weight set. To find the best balance between mem-
ory efficiency and capacity, the batch size should be care-
fully set to optimize the performance of the network model.
Besides these parameters, the number of filters in the TCN-
based and the hidden nodes in the LSTM-based model was
tested within reasonable ranges as well.

The 1, 3, 7, and 15 d leading prediction experiments were
further conducted to test the capacity of DL methods in pre-
dicting long-term groundwater levels in the coastal aquifer.
To eliminate the randomness of model training, all experi-
ments were repeated 5 times and the average values of each
index were compared. In all experiments, the average abso-
lute error (MAE) has been used as the loss function of net-
works (Lara-Benítez et al., 2020). The Adam optimizer has
an adaptive learning rate that can improve the convergence
speed of deep networks, which has been used to train the
models (Kingma and Ba, 2015).

3.4 Evaluation of model performance

Two evaluation metrics, coefficient of determination (R2)
and root mean square error (RMSE) are selected to quantify
the goodness of fit between model outputs and observations
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(Zhang et al., 2020). The two criteria are calculated using the
following equations:

RMSE=

√√√√ 1
N

N∑
i=1

(hi − yi)
2, (2)

R2
=

N∑
i=1

(
hi −h

)2
−

N∑
i=1

(hi − yi)
2

N∑
i=1

(
hi −h

)2 , (3)

where hi is the observed groundwater level at time i, yi is
the network prediction values at time i, h is the mean of the
observed groundwater levels, and n is the number of obser-
vations. The RMSE measures the prediction precision which
creates a positive value by squaring the errors. The RMSE
score is between [0, ∞]. If the RMSE approaches 0, the
model prediction is ideal; R2 measures the degree of model
replication results, ranging between [−∞, 1]. For the opti-
mal model prediction, the score of R2 is close to 1.

4 Results and discussions

4.1 Hyper-parameter trial experiments

4.1.1 Experiments of the TCN-based model

The TCN-based model was built on the Keras platform
using TensorFlow of Python as the backend. Taking the
groundwater-level prediction dataset in well BH01 as an ex-
ample, the trials were set up with a variety combination of
different hyper-parameters in the TCN-based model as illus-
trated in Table 1. With the fixed number of epochs, the sim-
ulation results of 32 filters were better than that of 16 and
64 filters. Meanwhile, under the condition of 32 filters, the
accuracy of the model decreased with the increasing batch
size. The results of the 16 batch sizes were better than that of
32 and 64 batches. Based on the above experimental results,
the influence of different numbers of epochs on the simula-
tion was further explored when the filters were 32 and the
batch size was 16, as shown in Fig. 5. The overall results
of the model were improved when the number of epochs in-
creased from 100 to 190, though the variation was not strictly
linear, and the variations became stable with minor fluctua-
tions when the number of epochs exceeded 200.

4.1.2 Experiments of the LSTM-based model

The number of epochs and hidden nodes are two key param-
eters affecting the simulation accuracy of LSTMs (D. Zhang
et al., 2018). Different hyper-parameter combinations were
tested as well as in the proposed TCN-based model with
groundwater levels in well BH01. The RMSE, R2 and run-
ning time are shown in Table 2. With a fixed number of hid-
den nodes, the results of 100 and 200 epochs were better

Table 1. The RMSE and R2 values between the observed and pre-
dicted groundwater levels in well BH01 with different numbers of
epochs, different numbers of filters, and different batch sizes. The
bold values represent the optimal hyper-parameters with the small-
est RMSE and the highest R2 scores in the TCN-based model.

Epoch Filters Batch RMSE R2 Time
size (m) (min)

100 32
16 0.0182 0.9904 1.29
32 0.0117 0.9876 1.05
64 0.0117 0.9875 0.78

200 16
16 0.0078 0.9946 2.41
32 0.0068 0.9959 1.75
64 0.0090 0.9942 1.19

200 32
16 0.0059 0.9970 2.58
32 0.0075 0.9948 2.01
64 0.0082 0.9938 1.51

200 64
16 0.0125 0.9906 3.68
32 0.0101 0.9907 3.21
64 0.0157 0.9775 2.76

300 32
16 0.0065 0.9955 3.8
32 0.0076 0.9946 3.01
64 0.0099 0.9904 2.22

Figure 5. The variation of RMSE and R2 values between the ob-
served and predicted groundwater levels of well BH01 with the in-
creasing number of the epochs when the number of filters is 32 and
the batch size is 16.

than that in the experiment with 300 epochs. A detailed vari-
ation of RMSE and R2 values with the increasing number
of hidden nodes and epochs is further illustrated in Fig. 6.
The figure shows that the RMSE and R2 have a decreasing
and increasing trend separately when the number of epochs
is greater than 150, but is reversed when it is larger than 240.
The variations of RMSE and R2 with increasing hidden
nodes have similar changes. Though an insufficient number
of neurons may decrease the learning ability of the network,
the results indicate that increasing training hyper-parameters
may not be necessary to ensure better prediction.

The trial experimental results present a similar fitting pat-
tern shared by the two kinds of networks. The growing value
of parameters dramatically increases the computational cost
in the network. For example, the time cost from 50 to 80 hid-
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Table 2. The RMSE and R2 values between the observed and pre-
dicted groundwater levels in well BH01 with different numbers of
epochs and hidden nodes. The bold values represent the optimal
hyper-parameters used in the proposed LSTM-based model.

Epoch Hidden RMSE R2 Time
nodes (min)

100

50 0.0104 0.9902 1.01
60 0.0098 0.9916 1.38
70 0.0095 0.9922 1.53
80 0.01 0.9913 1.75

200

50 0.0094 0.9922 1.91
60 0.0089 0.9931 2.59
70 0.0088 0.9932 2.96
80 0.0092 0.9925 3.28

300

50 0.0101 0.9903 2.86
60 0.0105 0.9901 3.85
70 0.0103 0.9907 4.29
80 0.0120 0.9872 4.92

Figure 6. The variation of RMSE and R2 values between the ob-
served and predicted groundwater levels of well BH01 with an
(a) increasing number of hidden nodes when the epoch equals 200
and an (b) increasing number of epochs when the hidden node is 50.

den nodes has increased about 1.7 times in each iteration trial
in the LSTM-based model. Finally, 200 epochs, 32 filters,
and 16 batch sizes were chosen as the optimal parameters in
the TCN. For the LSTM network, the number of epochs and
hidden nodes were chosen as 200 and 70, respectively.

4.2 Model performance and evaluation

The optimal hyper-parameters of the proposed TCN-based
model for groundwater-level predicting are shown in Table 1
(epoch= 200, filters= 32 and batch size= 16). Besides that,

the kernel size in each convolutional layer is set as 6, and the
dilations are 1, 2, 4, 8. For the LSTM-based model, the batch
size is set to 148 with epochs= 200 and nodes= 70. The
same hyper-parameters are then utilized to construct TCN
and LSTM architectures for the prediction of groundwater
level in different monitoring wells.

The one-step-ahead simulated groundwater level in the
training and testing and prediction stages by the two mod-
els are shown in Fig. 7. For both models, the simulated val-
ues completely capture the variation of groundwater levels
in monitoring wells with the overlapped plots. The R2 and
RMSE values of simulation results are listed in Table 3.
In the prediction stage, the values of RMSE are 0.0019
and 0.0166 for BH01 and BH05, and the values of R2 are
larger than 0.999 in the prediction for the TCN-based model.
For the LSTM-based model, the RMSE values are 0.0074
and 0.0588, and the R2 values are 0.9957 and 0.9980. These
metrics indicate that both models can “remember” the his-
torical records and produce true observations. The simula-
tion accuracy of TCN-based models is slightly higher than
the LSTM-based models. In addition, the running time of the
TCN-based model is 2.6 min, which is faster than that of the
TCN-based model.

4.3 Long-term leading time prediction

The TCN- and LSTM-based models were further adjusted
to predict the groundwater levels over 3 months ahead with
different leading periods. Prediction results with 1, 3, 7, and
15 d leading time with TCN- and LSTM-based models are
illustrated in Figs. 8 and 9 for wells BH01 and BH05, re-
spectively. The results show that the predicted groundwater
values have the same change trend as the actual groundwa-
ter level in monitoring wells. Both of the models are able to
capture the variation trend of groundwater levels with longer
leading periods of more than 1 time step in the two monitor-
ing wells.

To quantitatively compare the prediction accuracy of the
proposed TCN- and LSTM-based models, the results of two
evaluation metrics with the model running time are sum-
marized in Table 4. It can be learned that the R2 value
of TCN-based models decreased from 0.9386 to −0.1407
for well BH01 and from 0.9670 to 0.7271 for well BH05.
Correspondingly, an increase in RMSE values from 0.028
to 0.1209 and 0.0934 to 0.206 are observed for BH01 and
BH05, separately. A similar variation pattern is recognized
for the LSTM-based model with smaller R2 and higher
RMSE than that of the TCN-based model. Notably, the run-
ning time of advance prediction is much longer than that of a
single-step prediction. Meanwhile, with the increasing lead-
ing period, the time had been raised nonlinearly. Further, in
this process, the TCN-based model costs longer time than
that of the LSTM-based model.

The performance of the two networks was further eval-
uated with Taylor diagrams by taking different criteria as-
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Figure 7. The simulation results of groundwater level of monitoring wells BH01 and BH05 by TCN-based model. The dashed black line
divides the data into two groups: the training and testing dataset, and the prediction dataset.

Table 3. The model results for groundwater level in the training and testing and prediction stage.

Well Model Training and testing Prediction

MAE RMSE R2 MAE RMSE R2

BH01
TCN 0.0017 0.0068 0.9992 0.0009 0.0019 0.9997
LSTM 0.0053 0.0077 0.9990 0.0050 0.0074 0.9957

BH05
TCN 0.0070 0.0279 0.9981 0.0061 0.0166 0.9990
LSTM 0.0082 0.0116 0.9997 0.0168 0.0558 0.9980

Table 4. The model results for groundwater level in the long-term prediction.

Well Model Prediction Mins Model Prediction Mins

RMSE R2 RMSE R2

BH01

TCN-1 0.0280 0.9386 5.38 LSTM-1 0.0349 0.9047 3.76
TCN-3 0.0550 0.7638 16.1 LSTM-3 0.0640 0.6802 11.01
TCN-7 0.0741 0.5713 34.3 LSTM-7 0.0956 0.2874 26.27
TCN-15 0.1209 −0.1407 94.95 LSTM-15 0.1486 −0.7227 85.13

BH05

TCN-1 0.0934 0.9670 5.19 LSTM-1 0.1012 0.9613 3.78
TCN-3 0.1375 0.9285 16.18 LSTM-3 0.1086 0.9554 11.4
TCN-7 0.1084 0.9296 35.44 LSTM-7 0.2050 0.8406 26.2
TCN-15 0.2060 0.7271 80.46 LSTM-15 0.3515 0.5330 73.45
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Figure 8. The observed and predicted values of the groundwater level with TCN- and LSTM-based models for 1, 3, 7, and 15 d lead period
in monitoring well BH01.

Figure 9. The observed and predicted values of the groundwater level with TCN- and LSTM-based models for 1, 3, 7, and 15 d leading
period in monitoring well BH05.

pects, including standard deviation (SD), correlation coeffi-
cient (COR), and root mean square deviation (RMSD) into
account (Taylor, 2001). The comparisons of the TCN- and
LSTM-based models are shown in Fig. 10. As the metrics
are distributed away from the reference point (Ref), the de-
viation of prediction from observation is generally increased
with extending the leading period. Taking well BH05 as an
example, the prediction with 1 d (24 h prediction window) in
advance is the highest in agreement with the actual situation
in the two models. The 1 d leading prediction results have the
lowest RMSD values and highest R2 values for both models.

The prediction precision gradually decreases with the exten-
sion of leading time to 3, 7, and 15 d. For well BH01, an out-
of-trending point is observed. The 15 d prediction results of
the LSTM-based model are closer to the Ref point compared
with the TCN-based model. The reason is that the simula-
tion data are highly correlated with observations as shown in
Fig. 8.

Overall, the TCN- and LSTM-based models both have
strong prediction abilities in long-term hydrological time-
series data. Both models are able to provide accurate predic-
tions once they are trained. The simulation accuracy of the
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Figure 10. Taylor diagrams with statistical (SD, COR, RMSD) comparison results of the TCN-based and LSTM-based models for well
(a) BH01, (b) BH05.

TCN-based model is slightly better than that of the LSTM-
based model in the 3 months prediction, but the difference
is not significant with p > 0.05 in the t test. The causal di-
lated convolutions used by TCNs are proven to be good at
capturing long-term dependencies of time-series data. Mean-
while, the model precision decreases and the running time in-
creases with the raising leading period. The processing speed
of parallel convolution TCN-based models for long input se-
quences is slower than that of recurrent networks. This seems
to be a shortage in real-time monitoring and early warning.
A leading period shorter than 7 d is recommended to ensure
both the accuracy and efficiency of the models in real-time
monitoring and early warning.

From the groundwater-level variation, significant ground-
water decreasing trends can be observed in the irrigation sea-
son from March to June. Therefore, human activities, such as
groundwater pumping are potential reasons for groundwater-
level change in the study area. Here, the groundwater levels
were predicted based on the available data of precipitation
and tide. If the pumping data are available and considered in
the models, the prediction precision would be enhanced in
the models.

4.4 Influence of training set percentage

The data-driven methods are supported by data; however,
how much data are needed to build an effective model is
still a challenging problem (Reichstein et al., 2019). This is
because specific problems depend on application cases, data
features, and model features (Wunsch et al., 2021). Here, we
discuss the effect of the training set percentage on the TCN-
and LSTM-based models. In our study, the data are the data
from 2011 to 2012 that were monitored hourly. From 2011,
we set 20 % to 90 % training sets in turn, so as to gradually
expand the length of the training set.

Figure 11 shows the effect of the increased percentage of
the training set on the performance of the model. All ex-
periments were repeated five times, and the average values
of each index were compared. It can be seen that the per-

Figure 11. Influence of training set percentage on the performance
of the model for (a) BH01 and (b) BH05.

formance of the TCN-based model varied with the increase
in the percentage of the training set. When the training set
reached 80 %, the performance was relatively optimal. At the
same time, it can be seen that the performance of the LSTM-
based model tends to be stable when the training set reaches
80 % as well. Therefore, a training set evaluation is recom-
mended before the training and testing. We should carefully
evaluate and shorten the training dataset as much as possi-
ble when necessary. Finally, we set 80 % of the training set
length to simulate the coastal aquifer time-series data.

5 Conclusions

The TCN- and LSTM-based deep-learning models were pro-
posed in this paper to predict groundwater levels in a coastal
aquifer. Hyper-parameter searches were first conducted to
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obtain good architecture configurations. The results indicated
that a deeper, broader model does not necessarily guaran-
tee better predictions. The optimal configurations were then
adopted for the networks of all monitoring data. Both the
TCN- and LSTM- based models well captured the fluctuation
of groundwater levels and achieved satisfactory performance
on the prediction. Meanwhile, a decreasing precision is re-
vealed when the leading time increases in advance predic-
tion. In view of accuracy, the TCN-based model outperforms
the LSTM-based model but is less efficient in long-term
simulation. Thus, both models can be used as a promising
method for time-series prediction of hydrogeological data,
especially when the regional data are difficult to collect in a
complex system.
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