Articles | Volume 27, issue 1
https://doi.org/10.5194/hess-27-303-2023
https://doi.org/10.5194/hess-27-303-2023
Research article
 | Highlight paper
 | 
13 Jan 2023
Research article | Highlight paper |  | 13 Jan 2023

Droughts can reduce the nitrogen retention capacity of catchments

Carolin Winter, Tam V. Nguyen, Andreas Musolff, Stefanie R. Lutz, Michael Rode, Rohini Kumar, and Jan H. Fleckenstein

Related authors

Graphical representation of global water models
Hannes Müller Schmied, Simon Newland Gosling, Marlo Garnsworthy, Laura Müller, Camelia-Eliza Telteu, Atiq Kainan Ahmed, Lauren Seaby Andersen, Julien Boulange, Peter Burek, Jinfeng Chang, He Chen, Lukas Gudmundsson, Manolis Grillakis, Luca Guillaumot, Naota Hanasaki, Aristeidis Koutroulis, Rohini Kumar, Guoyong Leng, Junguo Liu, Xingcai Liu, Inga Menke, Vimal Mishra, Yadu Pokhrel, Oldrich Rakovec, Luis Samaniego, Yusuke Satoh, Harsh Lovekumar Shah, Mikhail Smilovic, Tobias Stacke, Edwin Sutanudjaja, Wim Thiery, Athanasios Tsilimigkras, Yoshihide Wada, Niko Wanders, and Tokuta Yokohata
Geosci. Model Dev., 18, 2409–2425, https://doi.org/10.5194/gmd-18-2409-2025,https://doi.org/10.5194/gmd-18-2409-2025, 2025
Short summary
The ISIMIP Groundwater Sector: A Framework for Ensemble Modeling of Global Change Impacts on Groundwater
Robert Reinecke, Annemarie Bäthge, Ricarda Dietrich, Sebastian Gnann, Simon N. Gosling, Danielle Grogan, Andreas Hartmann, Stefan Kollet, Rohini Kumar, Richard Lammers, Sida Liu, Yan Liu, Nils Moosdorf, Bibi Naz, Sara Nazari, Chibuike Orazulike, Yadu Pokhrel, Jacob Schewe, Mikhail Smilovic, Maryna Strokal, Yoshihide Wada, Shan Zuidema, and Inge de Graaf
EGUsphere, https://doi.org/10.5194/egusphere-2025-1181,https://doi.org/10.5194/egusphere-2025-1181, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Century-long reconstruction of gridded phosphorus surplus across Europe (1850–2019)
Masooma Batool, Fanny J. Sarrazin, and Rohini Kumar
Earth Syst. Sci. Data, 17, 881–916, https://doi.org/10.5194/essd-17-881-2025,https://doi.org/10.5194/essd-17-881-2025, 2025
Short summary
Changes in water quality and ecosystem processes at extreme summer low flow of 2018 with high-frequency sensors
Jingshui Huang, Dietrich Borchardt, and Michael Rode
EGUsphere, https://doi.org/10.5194/egusphere-2025-656,https://doi.org/10.5194/egusphere-2025-656, 2025
Short summary
OLIGOTREND, towards a global database of multi-decadal chlorophyll-a and water quality timeseries for rivers, lakes and estuaries
Camille Minaudo, Andras Abonyi, Carles Alcaraz, Jacob Diamond, Nicholas J. K. Howden, Michael Rode, Estela Romero, Vincent Thieu, Fred Worrall, Qian Zhang, and Xavier Benito
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-58,https://doi.org/10.5194/essd-2025-58, 2025
Preprint under review for ESSD
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Theory development
Causal relationships of vegetation productivity with root zone water availability and atmospheric dryness at the catchment scale
Guta Wakbulcho Abeshu, Hong-Yi Li, Mingjie Shi, and L. Ruby Leung
Hydrol. Earth Syst. Sci., 29, 1847–1864, https://doi.org/10.5194/hess-29-1847-2025,https://doi.org/10.5194/hess-29-1847-2025, 2025
Short summary
Annual memory in the terrestrial water cycle
Wouter R. Berghuijs, Ross A. Woods, Bailey J. Anderson, Anna Luisa Hemshorn de Sánchez, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 29, 1319–1333, https://doi.org/10.5194/hess-29-1319-2025,https://doi.org/10.5194/hess-29-1319-2025, 2025
Short summary
Can system dynamics explain long-term hydrological behaviors? The role of endogenous linking structure
Xinyao Zhou, Zhuping Sheng, Kiril Manevski, Rongtian Zhao, Qingzhou Zhang, Yanmin Yang, Shumin Han, Jinghong Liu, and Yonghui Yang
Hydrol. Earth Syst. Sci., 29, 159–177, https://doi.org/10.5194/hess-29-159-2025,https://doi.org/10.5194/hess-29-159-2025, 2025
Short summary
Catchment hydrological response and transport are affected differently by precipitation intensity and antecedent wetness
Julia L. A. Knapp, Wouter R. Berghuijs, Marius G. Floriancic, and James W. Kirchner
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-371,https://doi.org/10.5194/hess-2024-371, 2024
Revised manuscript accepted for HESS
Short summary
Characterizing nonlinear, nonstationary, and heterogeneous hydrologic behavior using ensemble rainfall–runoff analysis (ERRA): proof of concept
James W. Kirchner
Hydrol. Earth Syst. Sci., 28, 4427–4454, https://doi.org/10.5194/hess-28-4427-2024,https://doi.org/10.5194/hess-28-4427-2024, 2024
Short summary

Cited articles

Andersen, C. B., Lewis, G. P., and Sargent, K. A.: Influence of wastewater-treatment effluent on concentrations and fluxes of solutes in the Bush River, South Carolina, during extreme drought conditions, Environ. Geosci., 11, 28–41, https://doi.org/10.1306/eg.10200303017, 2004. 
Bieroza, M., Bergström, L., Ulén, B., Djodjic, F., Tonderski, K., Heeb, A., Svensson, J., and Malgeryd, J.: Hydrologic Extremes and Legacy Sources Can Override Efforts to Mitigate Nutrient and Sediment Losses at the Catchment Scale, J. Environ. Qual., 48, 1314–1324, https://doi.org/10.2134/jeq2019.02.0063, 2019. 
Burt, T. P., Worrall, F., Howden, N. J. K., and Anderson, M. G.: Shifts in discharge-concentration relationships as a small catchment recover from severe drought, Hydrol. Process., 29, 498–507, https://doi.org/10.1002/hyp.10169, 2015. 
Campbell, C. A. and Biederbeck, V. O.: Changes in mineral N and numbers of bacteria and actinomycetes during two years under wheat-fallow in Southwestern Saskatchewan, Can. J. Soil Sci., 62, 125–137, https://doi.org/10.4141/cjss82-014, 1982. 
Casquin, A., Dupas, R., Gu, S., Couic, E., Gruau, G., and Durand, P.: The influence of landscape spatial configuration on nitrogen and phosphorus exports in agricultural catchments, Landsc. Ecol., 36, 3383–3399, https://doi.org/10.1007/s10980-021-01308-5, 2021. 
Download
Executive editor
Understanding how catchments respond to change is a central theme of the work of many hydrologists around the world, however, it is fair to say that the vast majority of these studies have focused on water quantity. This study is unique in that it represents a very detailed treatment of how water quality changes due to drought, which is a topic that is becoming ever so important with the rapid changes happening in warming climate for many regions of the world. The authors very cleverly combine both complex models and data-driven analyses to elucidate the effects of extreme drought on river water quality.
Short summary
The increasing frequency of severe and prolonged droughts threatens our freshwater resources. While we understand drought impacts on water quantity, its effects on water quality remain largely unknown. Here, we studied the impact of the unprecedented 2018–2019 drought in Central Europe on nitrate export in a heterogeneous mesoscale catchment in Germany. We show that severe drought can reduce a catchment's capacity to retain nitrogen, intensifying the internal pollution and export of nitrate.
Share