Articles | Volume 27, issue 13
https://doi.org/10.5194/hess-27-2437-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-27-2437-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Assessment of the interactions between soil–biosphere–atmosphere (ISBA) land surface model soil hydrology, using four closed-form soil water relationships and several lysimeters
Laboratoire de Géologie, CNRS UMR 8538, École Normale Supérieure, PSL University, IPSL, Paris, France
Centre National de Recherches Météorologiques, Université de Toulouse, Météo-France, CNRS UMR 3589, Toulouse, France
Bertrand Decharme
Centre National de Recherches Météorologiques, Université de Toulouse, Météo-France, CNRS UMR 3589, Toulouse, France
Florence Habets
Laboratoire de Géologie, CNRS UMR 8538, École Normale Supérieure, PSL University, IPSL, Paris, France
Christine Delire
Centre National de Recherches Météorologiques, Université de Toulouse, Météo-France, CNRS UMR 3589, Toulouse, France
Noële Enjelvin
Laboratoire Sols et Environnement – GISFI, UMR 1120, Université de Lorraine, Vandœuvre-lès-Nancy, France
Paul-Olivier Redon
Andra, Direction RD, Centre de Meuse/Haute-Marne, 55290 Bure, France
Pierre Faure-Catteloin
CNRS, LIEC, Université de Lorraine, 54000 Nancy, France
Patrick Le Moigne
Centre National de Recherches Météorologiques, Université de Toulouse, Météo-France, CNRS UMR 3589, Toulouse, France
Related authors
Antoine Sobaga, Bertrand Decharme, Florence Habets, Christine Delire, Noële Enjelvin, Paul-Olivier Redon, Pierre Faure-Catteloin, and Patrick Le Moigne
EGUsphere, https://doi.org/10.5194/egusphere-2022-274, https://doi.org/10.5194/egusphere-2022-274, 2022
Preprint archived
Short summary
Short summary
Seven instrumented lysimeters are used to assess the simulation of the soil water dynamic in one land surface model. Three water potential and hydraulic conductivity closed-form equations including one mixed form are evaluated. The mixed form is more relevant to simulate drainage especially during intense drainage events. Soil profile heterogeneity of one parameter of the closed-form equations is shown to be important.
Aurélien Mirebeau, Cécile de Munck, Bertrand Bonan, Christine Delire, Aude Lemonsu, Valéry Masson, and Stephan Weber
Geosci. Model Dev., 18, 5329–5349, https://doi.org/10.5194/gmd-18-5329-2025, https://doi.org/10.5194/gmd-18-5329-2025, 2025
Short summary
Short summary
The greening of cities is recommended to limit the effects of climate change. In particular, green roofs can provide numerous environmental benefits, such as urban cooling, water retention, and carbon sequestration. The aim of this research is to develop a new module for calculating green roof CO2 fluxes within a model that can already simulate hydrological and thermal processes of such roofs. The calibration and evaluation of this module take advantage of long-term experimental data.
Guillaume Evin, Benoit Hingray, Guillaume Thirel, Agnès Ducharne, Laurent Strohmenger, Lola Corre, Yves Tramblay, Jean-Philippe Vidal, Jérémie Bonneau, François Colleoni, Joël Gailhard, Florence Habets, Frédéric Hendrickx, Louis Héraut, Peng Huang, Matthieu Le Lay, Claire Magand, Paola Marson, Céline Monteil, Simon Munier, Alix Reverdy, Jean-Michel Soubeyroux, Yoann Robin, Jean-Pierre Vergnes, Mathieu Vrac, and Eric Sauquet
EGUsphere, https://doi.org/10.5194/egusphere-2025-2727, https://doi.org/10.5194/egusphere-2025-2727, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
Explore2 provides hydrological projections for 1,735 French catchments. Using QUALYPSO, this study assesses uncertainties, including internal variability. By the end of the century, low flows are projected to decline in southern France under high emissions, while other indicators remain uncertain. Emission scenarios and regional climate models are key uncertainty sources. Internal variability is often as large as climate-driven changes.
Rubaya Pervin, Scott Robeson, Mallory Barnes, Stephen Sitch, Anthony Walker, Ben Poulter, Fabienne Maignan, Qing Sun, Thomas Colligan, Sönke Zaehle, Kashif Mahmud, Peter Anthoni, Almut Arneth, Vivek Arora, Vladislav Bastrikov, Liam Bogucki, Bertrand Decharme, Christine Delire, Stefanie Falk, Akihiko Ito, Etsushi Kato, Daniel Kennedy, Jürgen Knauer, Michael O’Sullivan, Wenping Yuan, and Natasha MacBean
EGUsphere, https://doi.org/10.5194/egusphere-2025-2841, https://doi.org/10.5194/egusphere-2025-2841, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Drylands contribute more than a third of the global vegetation productivity. Yet, these regions are not well represented in global vegetation models. Here, we tested how well 15 global models capture annual changes in dryland vegetation productivity. Models that didn’t have vegetation change over time or fire have lower variability in vegetation productivity. Models need better representation of grass cover types and their coverage. Our work highlights where and how these models need to improve.
Bertrand Decharme
EGUsphere, https://doi.org/10.5194/egusphere-2025-3262, https://doi.org/10.5194/egusphere-2025-3262, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
This study resolves a key inconsistency in how Earth system models represent the physical properties of soil organic matter in land surface models. It introduces a new method to compute its volumetric fraction and physical effects using standard input data and soil mixture theory. Validated with experimental mixtures and field observations, the proposed framework improves the physical realism of soil property estimates.
Amali A. Amali, Clemens Schwingshackl, Akihiko Ito, Alina Barbu, Christine Delire, Daniele Peano, David M. Lawrence, David Wårlind, Eddy Robertson, Edouard L. Davin, Elena Shevliakova, Ian N. Harman, Nicolas Vuichard, Paul A. Miller, Peter J. Lawrence, Tilo Ziehn, Tomohiro Hajima, Victor Brovkin, Yanwu Zhang, Vivek K. Arora, and Julia Pongratz
Earth Syst. Dynam., 16, 803–840, https://doi.org/10.5194/esd-16-803-2025, https://doi.org/10.5194/esd-16-803-2025, 2025
Short summary
Short summary
Our study explored the impact of anthropogenic land-use change (LUC) on climate dynamics, focusing on biogeophysical (BGP) and biogeochemical (BGC) effects using data from the Land Use Model Intercomparison Project (LUMIP) and the Coupled Model Intercomparison Project Phase 6 (CMIP6). We found that LUC-induced carbon emissions contribute to a BGC warming of 0.21 °C, with BGC effects dominating globally over BGP effects, which show regional variability. Our findings highlight discrepancies in model simulations and emphasize the need for improved representations of LUC processes.
Sophie Barthelemy, Bertrand Bonan, Miquel Tomas-Burguera, Gilles Grandjean, Séverine Bernardie, Jean-Philippe Naulin, Patrick Le Moigne, Aaron Boone, and Jean-Christophe Calvet
Hydrol. Earth Syst. Sci., 29, 2321–2337, https://doi.org/10.5194/hess-29-2321-2025, https://doi.org/10.5194/hess-29-2321-2025, 2025
Short summary
Short summary
A drought index is developed that quantifies drought on an annual scale, making it applicable to monitoring clay shrinkage damage to buildings. A comparison with the number of insurance claims for subsidence shows that the presence of trees near individual houses must be taken into account. Significant soil moisture droughts occurred in France in 2003, 2018, 2019, 2020, and 2022. Particularly high index values are observed in 2022. It is found that droughts will become more severe in the future.
Bertrand Decharme and Jeanne Colin
Earth Syst. Dynam., 16, 729–752, https://doi.org/10.5194/esd-16-729-2025, https://doi.org/10.5194/esd-16-729-2025, 2025
Short summary
Short summary
Our study uses a global climate model to investigate how groundwater and floodplains influence today's climate. We found that these continental water sources, often overlooked in climate models, can influence precipitation, temperature, and land surface hydrology. This research contributes to a better understanding of the dynamics of the Earth system and highlights the importance of considering interactions between hydrology and the atmosphere.
Konstantin Gregor, Benjamin F. Meyer, Tillmann Gaida, Victor Justo Vasquez, Karina Bett-Williams, Matthew Forrest, João P. Darela-Filho, Sam Rabin, Marcos Longo, Joe R. Melton, Johan Nord, Peter Anthoni, Vladislav Bastrikov, Thomas Colligan, Christine Delire, Michael C. Dietze, George Hurtt, Akihiko Ito, Lasse T. Keetz, Jürgen Knauer, Johannes Köster, Tzu-Shun Lin, Lei Ma, Marie Minvielle, Stefan Olin, Sebastian Ostberg, Hao Shi, Reiner Schnur, Urs Schönenberger, Qing Sun, Peter E. Thornton, and Anja Rammig
EGUsphere, https://doi.org/10.5194/egusphere-2025-1733, https://doi.org/10.5194/egusphere-2025-1733, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
Geoscientific models are crucial for understanding Earth’s processes. However, they sometimes do not adhere to highest software quality standards, and scientific results are often hard to reproduce due to the complexity of the workflows. Here we gather the expertise of 20 modeling groups and software engineers to define best practices for making geoscientific models maintainable, usable, and reproducible. We conclude with an open-source example serving as a reference for modeling communities.
Eric Sauquet, Guillaume Evin, Sonia Siauve, Ryma Aissat, Patrick Arnaud, Maud Bérel, Jérémie Bonneau, Flora Branger, Yvan Caballero, François Colléoni, Agnès Ducharne, Joël Gailhard, Florence Habets, Frédéric Hendrickx, Louis Héraut, Benoît Hingray, Peng Huang, Tristan Jaouen, Alexis Jeantet, Sandra Lanini, Matthieu Le Lay, Claire Magand, Louise Mimeau, Céline Monteil, Simon Munier, Charles Perrin, Olivier Robelin, Fabienne Rousset, Jean-Michel Soubeyroux, Laurent Strohmenger, Guillaume Thirel, Flore Tocquer, Yves Tramblay, Jean-Pierre Vergnes, and Jean-Philippe Vidal
EGUsphere, https://doi.org/10.5194/egusphere-2025-1788, https://doi.org/10.5194/egusphere-2025-1788, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
The Explore2 project has provided an unprecedented set of hydrological projections in terms of the number of hydrological models used and the spatial and temporal resolution. The results have been made available through various media. Under the high-emission scenario, the hydrological models mostly agree on the decrease in seasonal flows in the south of France, confirming its hotspot status, and on the decrease in summer flows throughout France, with the exception of the northern part of France.
Tanguy Ronan Lunel, Belen Marti, Aaron Boone, and Patrick Le Moigne
EGUsphere, https://doi.org/10.5194/egusphere-2024-3562, https://doi.org/10.5194/egusphere-2024-3562, 2025
Short summary
Short summary
Modelling evapotranspiration is essential for understanding the water cycle. While irrigation is known to increase evapotranspiration, it is less known that it also modifies local weather, which can in turn partially reduce evapotranspiration. This latter phenomenon is overlooked in some land surface model configurations. This study investigates and quantifies the impact of this oversight, showing that land surface models overestimate evapotranspiration by about 25% for crops in irrigated areas.
Clémentine Chirol, Geoffroy Séré, Paul-Olivier Redon, Claire Chenu, and Delphine Derrien
SOIL, 11, 149–174, https://doi.org/10.5194/soil-11-149-2025, https://doi.org/10.5194/soil-11-149-2025, 2025
Short summary
Short summary
This work maps both current soil organic carbon (SOC) stocks and the SOC that can be realistically added to soils over 25 years under a scenario of management strategies promoting plant productivity. We consider how soil type influences current and maximum SOC stocks regionally. Over 25 years, land use and management have the strongest influence on SOC accrual, but certain soil types have disproportionate SOC stocks at depths that need to be preserved.
Théo Brivoal, Virginie Guemas, Martin Vancoppenolle, Clément Rousset, and Bertrand Decharme
EGUsphere, https://doi.org/10.5194/egusphere-2024-3220, https://doi.org/10.5194/egusphere-2024-3220, 2025
Short summary
Short summary
Snow in polar regions is key to sea ice formation and the Earth's climate, but current climate models simplify snow cover on sea ice. This study integrates an intermediate complexity snow-physics scheme into a sea-ice model designed for climate applications. We show that modelling the temporal changes in properties such as the density and thermal conductivity of the snow layers leads to a more accurate representation of heat transfer between the underlying sea ice and the atmosphere.
Alexis Jeantet, Jean-Pierre Vergnes, Simon Munier, and Florence Habets
EGUsphere, https://doi.org/10.5194/egusphere-2025-93, https://doi.org/10.5194/egusphere-2025-93, 2025
Short summary
Short summary
The AquiFR hydrogeological modelling plateform is forced by 36 climate projections in order to simulate future groundwater levels over France. The results show significant scatters between regional climate models and RCPs. Overall, a rise in groundwater levels, affecting most of the study area, is the dominant signal. Four storylines have been selected to to illustrate the impacts of worst-case scenarios and help decision-makers to adopt sustainable groundwater management policies.
Daniele Peano, Deborah Hemming, Christine Delire, Yuanchao Fan, Hanna Lee, Stefano Materia, Julia E. M .S. Nabel, Taejin Park, David Wårlind, Andy Wiltshire, and Sönke Zaehle
EGUsphere, https://doi.org/10.5194/egusphere-2024-4114, https://doi.org/10.5194/egusphere-2024-4114, 2025
Short summary
Short summary
Earth System Models are the principal tools for scientists to study past, present, and future climate changes. This work investigates the ability of a set of them to represent the observed changes in vegetation, which are vital to estimating the impact of future climate mitigation and adaptation strategies. This study highlights the main limitations in correctly representing vegetation variability. These tools still need further development to improve our understanding of future changes.
Silvana Ramos Buarque, Bertrand Decharme, Alina Lavinia Barbu, and Laurent Franchisteguy
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-451, https://doi.org/10.5194/essd-2024-451, 2025
Preprint under review for ESSD
Short summary
Short summary
The Crocus-ERA5 snow dataset supports Arctic snow monitoring and contributes to the Arctic Report Card. It improves on its predecessor with higher spatial resolution (0.25° vs. 0.75°), enhancing topographic and land cover detail. The product’s performance is assessed in terms of snow depth and extent compared to in situ observations and satellite data. The findings show a notable improvement, though biases remain, particularly in boreal forests, where the model tends to overestimate spring melt.
Tanguy Lunel, Maria Antonia Jimenez, Joan Cuxart, Daniel Martinez-Villagrasa, Aaron Boone, and Patrick Le Moigne
Atmos. Chem. Phys., 24, 7637–7666, https://doi.org/10.5194/acp-24-7637-2024, https://doi.org/10.5194/acp-24-7637-2024, 2024
Short summary
Short summary
During the summer in Catalonia, a cool wind, the marinada, blows into the eastern Ebro basin in the afternoon. This study investigates its previously unclear dynamics using observations and a meteorological model. It is found to be driven by a cool marine air mass that flows over the mountains into the basin. The study shows how the sea breeze, upslope winds, larger weather patterns and irrigation play a prominent role in the formation and characteristics of the marinada.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Peter Landschützer, Corinne Le Quéré, Ingrid T. Luijkx, Glen P. Peters, Wouter Peters, Julia Pongratz, Clemens Schwingshackl, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone R. Alin, Peter Anthoni, Leticia Barbero, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Bertrand Decharme, Laurent Bopp, Ida Bagus Mandhara Brasika, Patricia Cadule, Matthew A. Chamberlain, Naveen Chandra, Thi-Tuyet-Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Xinyu Dou, Kazutaka Enyo, Wiley Evans, Stefanie Falk, Richard A. Feely, Liang Feng, Daniel J. Ford, Thomas Gasser, Josefine Ghattas, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Matthew Hefner, Jens Heinke, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Andrew R. Jacobson, Atul Jain, Tereza Jarníková, Annika Jersild, Fei Jiang, Zhe Jin, Fortunat Joos, Etsushi Kato, Ralph F. Keeling, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Xin Lan, Nathalie Lefèvre, Hongmei Li, Junjie Liu, Zhiqiang Liu, Lei Ma, Greg Marland, Nicolas Mayot, Patrick C. McGuire, Galen A. McKinley, Gesa Meyer, Eric J. Morgan, David R. Munro, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin M. O'Brien, Are Olsen, Abdirahman M. Omar, Tsuneo Ono, Melf Paulsen, Denis Pierrot, Katie Pocock, Benjamin Poulter, Carter M. Powis, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Roland Séférian, T. Luke Smallman, Stephen M. Smith, Reinel Sospedra-Alfonso, Qing Sun, Adrienne J. Sutton, Colm Sweeney, Shintaro Takao, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Hiroyuki Tsujino, Francesco Tubiello, Guido R. van der Werf, Erik van Ooijen, Rik Wanninkhof, Michio Watanabe, Cathy Wimart-Rousseau, Dongxu Yang, Xiaojuan Yang, Wenping Yuan, Xu Yue, Sönke Zaehle, Jiye Zeng, and Bo Zheng
Earth Syst. Sci. Data, 15, 5301–5369, https://doi.org/10.5194/essd-15-5301-2023, https://doi.org/10.5194/essd-15-5301-2023, 2023
Short summary
Short summary
The Global Carbon Budget 2023 describes the methodology, main results, and data sets used to quantify the anthropogenic emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land ecosystems, and the ocean over the historical period (1750–2023). These living datasets are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Julia Pfeffer, Anny Cazenave, Alejandro Blazquez, Bertrand Decharme, Simon Munier, and Anne Barnoud
Hydrol. Earth Syst. Sci., 27, 3743–3768, https://doi.org/10.5194/hess-27-3743-2023, https://doi.org/10.5194/hess-27-3743-2023, 2023
Short summary
Short summary
The GRACE (Gravity Recovery And Climate Experiment) satellite mission enabled the quantification of water mass redistributions from 2002 to 2017. The analysis of GRACE satellite data shows here that slow changes in terrestrial water storage occurring over a few years to a decade are severely underestimated by global hydrological models. Several sources of errors may explain such biases, likely including the inaccurate representation of groundwater storage changes.
Patrick Le Moigne, Eric Bazile, Anning Cheng, Emanuel Dutra, John M. Edwards, William Maurel, Irina Sandu, Olivier Traullé, Etienne Vignon, Ayrton Zadra, and Weizhong Zheng
The Cryosphere, 16, 2183–2202, https://doi.org/10.5194/tc-16-2183-2022, https://doi.org/10.5194/tc-16-2183-2022, 2022
Short summary
Short summary
This paper describes an intercomparison of snow models, of varying complexity, used for numerical weather prediction or academic research. The results show that the simplest models are, under certain conditions, able to reproduce the surface temperature just as well as the most complex models. Moreover, the diversity of surface parameters of the models has a strong impact on the temporal variability of the components of the simulated surface energy balance.
Antoine Sobaga, Bertrand Decharme, Florence Habets, Christine Delire, Noële Enjelvin, Paul-Olivier Redon, Pierre Faure-Catteloin, and Patrick Le Moigne
EGUsphere, https://doi.org/10.5194/egusphere-2022-274, https://doi.org/10.5194/egusphere-2022-274, 2022
Preprint archived
Short summary
Short summary
Seven instrumented lysimeters are used to assess the simulation of the soil water dynamic in one land surface model. Three water potential and hydraulic conductivity closed-form equations including one mixed form are evaluated. The mixed form is more relevant to simulate drainage especially during intense drainage events. Soil profile heterogeneity of one parameter of the closed-form equations is shown to be important.
Simon Munier and Bertrand Decharme
Earth Syst. Sci. Data, 14, 2239–2258, https://doi.org/10.5194/essd-14-2239-2022, https://doi.org/10.5194/essd-14-2239-2022, 2022
Short summary
Short summary
This paper presents a new global-scale river network at 1/12°, generated automatically and assessed over the 69 largest basins of the world. A set of hydro-geomorphological parameters are derived at the same spatial resolution, including a description of river stretches (length, slope, width, roughness, bankfull depth), floodplains (roughness, sub-grid topography) and aquifers (transmissivity, porosity, sub-grid topography). The dataset may be useful for hydrology modelling or climate studies.
Pierre Friedlingstein, Matthew W. Jones, Michael O'Sullivan, Robbie M. Andrew, Dorothee C. E. Bakker, Judith Hauck, Corinne Le Quéré, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Josep G. Canadell, Philippe Ciais, Rob B. Jackson, Simone R. Alin, Peter Anthoni, Nicholas R. Bates, Meike Becker, Nicolas Bellouin, Laurent Bopp, Thi Tuyet Trang Chau, Frédéric Chevallier, Louise P. Chini, Margot Cronin, Kim I. Currie, Bertrand Decharme, Laique M. Djeutchouang, Xinyu Dou, Wiley Evans, Richard A. Feely, Liang Feng, Thomas Gasser, Dennis Gilfillan, Thanos Gkritzalis, Giacomo Grassi, Luke Gregor, Nicolas Gruber, Özgür Gürses, Ian Harris, Richard A. Houghton, George C. Hurtt, Yosuke Iida, Tatiana Ilyina, Ingrid T. Luijkx, Atul Jain, Steve D. Jones, Etsushi Kato, Daniel Kennedy, Kees Klein Goldewijk, Jürgen Knauer, Jan Ivar Korsbakken, Arne Körtzinger, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Sebastian Lienert, Junjie Liu, Gregg Marland, Patrick C. McGuire, Joe R. Melton, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Tsuneo Ono, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Thais M. Rosan, Jörg Schwinger, Clemens Schwingshackl, Roland Séférian, Adrienne J. Sutton, Colm Sweeney, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco Tubiello, Guido R. van der Werf, Nicolas Vuichard, Chisato Wada, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Chao Yue, Xu Yue, Sönke Zaehle, and Jiye Zeng
Earth Syst. Sci. Data, 14, 1917–2005, https://doi.org/10.5194/essd-14-1917-2022, https://doi.org/10.5194/essd-14-1917-2022, 2022
Short summary
Short summary
The Global Carbon Budget 2021 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Francesco Piccioni, Céline Casenave, Bruno Jacques Lemaire, Patrick Le Moigne, Philippe Dubois, and Brigitte Vinçon-Leite
Earth Syst. Dynam., 12, 439–456, https://doi.org/10.5194/esd-12-439-2021, https://doi.org/10.5194/esd-12-439-2021, 2021
Short summary
Short summary
Small lakes are ecosystems highly impacted by climate change. Here, the thermal regime of a small, shallow lake over the past six decades was reconstructed via 3D modelling. Significant changes were found: strong water warming in spring and summer (0.7 °C/decade) as well as increased stratification and thermal energy for cyanobacteria growth, especially in spring. The strong spatial patterns detected for stratification might create local conditions particularly favourable to cyanobacteria bloom.
Daniele Peano, Deborah Hemming, Stefano Materia, Christine Delire, Yuanchao Fan, Emilie Joetzjer, Hanna Lee, Julia E. M. S. Nabel, Taejin Park, Philippe Peylin, David Wårlind, Andy Wiltshire, and Sönke Zaehle
Biogeosciences, 18, 2405–2428, https://doi.org/10.5194/bg-18-2405-2021, https://doi.org/10.5194/bg-18-2405-2021, 2021
Short summary
Short summary
Global climate models are the scientist’s tools used for studying past, present, and future climate conditions. This work examines the ability of a group of our tools in reproducing and capturing the right timing and length of the season when plants show their green leaves. This season, indeed, is fundamental for CO2 exchanges between land, atmosphere, and climate. This work shows that discrepancies compared to observations remain, demanding further polishing of these tools.
Thibault Guinaldo, Simon Munier, Patrick Le Moigne, Aaron Boone, Bertrand Decharme, Margarita Choulga, and Delphine J. Leroux
Geosci. Model Dev., 14, 1309–1344, https://doi.org/10.5194/gmd-14-1309-2021, https://doi.org/10.5194/gmd-14-1309-2021, 2021
Short summary
Short summary
Lakes are of fundamental importance in the Earth system as they support essential environmental and economic services such as freshwater supply. Despite the impact of lakes on the water cycle, they are generally not considered in global hydrological studies. Based on a model called MLake, we assessed both the importance of lakes in simulating river flows at global scale and the value of their level variations for water resource management.
Richard Essery, Hyungjun Kim, Libo Wang, Paul Bartlett, Aaron Boone, Claire Brutel-Vuilmet, Eleanor Burke, Matthias Cuntz, Bertrand Decharme, Emanuel Dutra, Xing Fang, Yeugeniy Gusev, Stefan Hagemann, Vanessa Haverd, Anna Kontu, Gerhard Krinner, Matthieu Lafaysse, Yves Lejeune, Thomas Marke, Danny Marks, Christoph Marty, Cecile B. Menard, Olga Nasonova, Tomoko Nitta, John Pomeroy, Gerd Schädler, Vladimir Semenov, Tatiana Smirnova, Sean Swenson, Dmitry Turkov, Nander Wever, and Hua Yuan
The Cryosphere, 14, 4687–4698, https://doi.org/10.5194/tc-14-4687-2020, https://doi.org/10.5194/tc-14-4687-2020, 2020
Short summary
Short summary
Climate models are uncertain in predicting how warming changes snow cover. This paper compares 22 snow models with the same meteorological inputs. Predicted trends agree with observations at four snow research sites: winter snow cover does not start later, but snow now melts earlier in spring than in the 1980s at two of the sites. Cold regions where snow can last until late summer are predicted to be particularly sensitive to warming because the snow then melts faster at warmer times of year.
Lena R. Boysen, Victor Brovkin, Julia Pongratz, David M. Lawrence, Peter Lawrence, Nicolas Vuichard, Philippe Peylin, Spencer Liddicoat, Tomohiro Hajima, Yanwu Zhang, Matthias Rocher, Christine Delire, Roland Séférian, Vivek K. Arora, Lars Nieradzik, Peter Anthoni, Wim Thiery, Marysa M. Laguë, Deborah Lawrence, and Min-Hui Lo
Biogeosciences, 17, 5615–5638, https://doi.org/10.5194/bg-17-5615-2020, https://doi.org/10.5194/bg-17-5615-2020, 2020
Short summary
Short summary
We find a biogeophysically induced global cooling with strong carbon losses in a 20 million square kilometre idealized deforestation experiment performed by nine CMIP6 Earth system models. It takes many decades for the temperature signal to emerge, with non-local effects playing an important role. Despite a consistent experimental setup, models diverge substantially in their climate responses. This study offers unprecedented insights for understanding land use change effects in CMIP6 models.
Patrick Le Moigne, François Besson, Eric Martin, Julien Boé, Aaron Boone, Bertrand Decharme, Pierre Etchevers, Stéphanie Faroux, Florence Habets, Matthieu Lafaysse, Delphine Leroux, and Fabienne Rousset-Regimbeau
Geosci. Model Dev., 13, 3925–3946, https://doi.org/10.5194/gmd-13-3925-2020, https://doi.org/10.5194/gmd-13-3925-2020, 2020
Short summary
Short summary
The study describes how a hydrometeorological model, operational at Météo-France, has been improved. Particular emphasis is placed on the impact of climatic data, surface, and soil parametrizations on the model results. Model simulations and evaluations carried out on a variety of measurements of river flows and snow depths are presented. All improvements in climate, surface data, and model physics have a positive impact on system performance.
Cited articles
Alcamo, J., Döll, P., Henrichs, T., Kaspar, F., Lehner, B., Rösch, T., and Siebert, S.: Development and testing of the WaterGAP 2 global model of water use and availability, Hydrolog. Sci. J., 48, 317–337, 2003. a
Assouline, S.: Rainfall-Induced Soil Surface Sealing: A Critical Review of
Observations, Conceptual Models, and Solutions, Vadose Zone J., 3, 570–591, https://doi.org/10.2136/vzj2004.0570, 2004. a
Bauser, H., Riedel, L., Berg, D., Troch, P., and Roth, K.: Challenges with
effective representations of heterogeneity in soil hydrology based on local
water content measurements, Vadose Zone J., 19, e20040, https://doi.org/10.1002/vzj2.20040, 2020. a
Beven, K. and Germann, P.: Macropores and Water Flow in Soils, Water Resour. Res., 18, 1311–1325, https://doi.org/10.1029/WR018i005p01311, 1982. a
Blöschl, G., Bierkens, M. F., Chambel, A., et al.: Twenty-three unsolved problems in hydrology (UPH) – a community perspective, Hydrolog. Sci. J., 64, 1141–1158, 2019. a
Blyth, E., Gash, J., Lloyd, A., Pryor, M., Weedon, G. P., and Shuttleworth, J.: Evaluating the JULES land surface model energy fluxes using FLUXNET data,
J. Hydrometeorol., 11, 509–519, 2010. a
Boone, A. and Etchevers, P.: An Intercomparison of Three Snow Schemes of
Varying Complexity Coupled to the Same Land Surface Model: Local-Scale
Evaluation at an Alpine Site, J. Hydrometeorol., 2, 374–394,
https://doi.org/10.1175/1525-7541(2001)002<0374:AIOTSS>2.0.CO;2, 2001. a
Braud, I., Dantas-Antonino, A., Vauclin, M., Thony, J., and Ruelle, P.: A
simple soil-plant-atmosphere transfer model (SiSPAT) development and field
verification, J. Hydrol., 166, 213–250, https://doi.org/10.1016/0022-1694(94)05085-C, 1995. a, b, c, d
Braud, I., Chaffard, V., Coussot, C., Galle, S., Juen, P., Alexandre, H.,
Baillion, P., Battais, A., Boudevillain, B., Branger, F., Brissebrat, G.,
Cailletaud, R., Cochonneau, G., Decoupes, R., Desconnets, J.-C., Dubreuil,
A., Fabre, J., Gabillard, S., Gerard, M.-F., Grellet, S., Herrmann, A.,
Laarman, O., Lajeunesse, E., Le Henaff, G., Lobry, O., Mauclerc, A.,
Paroissien, J.-B., Pierret, M.-C., Silvera, N., and Squividant, H.: Building
the information system of the French Critical Zone Observatories network:
Theia/OZCAR-IS, Hydrolog. Sci. J., 67, 1–19, https://doi.org/10.1080/02626667.2020.1764568, 2020. a
Bredehoeft, J. D.: The water budget myth revisited: why hydrogeologists model, Groundwater, 40, 340–345, https://doi.org/10.1111/j.1745-6584.2002.tb02511.x, 2002. a
Brown, G. G., Barois, I., and Lavelle, P.: Regulation of soil organic matter
dynamics and microbial activityin the drilosphere and the role of
interactionswith other edaphic functional domains Paper presented at the 16th World Congress of Soil Science, 20–26 August 1998, Montpellier, France,
Eur. J. Soil Biol., 36, 177–198, https://doi.org/10.1016/S1164-5563(00)01062-1, 2000. a
Brunner, P., Therrien, R., Renard, P., Simmons, C. T., and Franssen, H.-J. H.: Advances in understanding river-groundwater interactions, Rev. Geophys., 55, 818–854, https://doi.org/10.1002/2017RG000556, 2017. a
Burdine, N.: Relative Permeability Calculations From Pore Size Distribution
Data, J. Petrol. Technol., 5, 71–78, https://doi.org/10.2118/225-G, 1953. a, b
Calvet, J.-C.: Investigating soil and atmospheric plant water stress using
physiological and micrometeorological data, Agr. Forest Meteorol., 103, 229–247, https://doi.org/10.1016/S0168-1923(00)00130-1, 2000. a
Calvet, J.-C. and Soussana, J.-F.: Modelling CO2-enrichment effects using an interactive vegetation SVAT scheme, Agr. Forest Meteorol., 108,
129–152, https://doi.org/10.1016/S0168-1923(01)00235-0, 2001. a
Calvet, J.-C., Noilhan, J., Roujean, J.-L., Bessemoulin, P., Cabelguenne, M.,
Olioso, A., and Wigneron, J.-P.: An interactive vegetation SVAT model tested
against data from six contrasting sites, Agr. Forest Meteorol., 92, 73–95, https://doi.org/10.1016/S0168-1923(98)00091-4, 1998. a, b
Carrick, S., Rogers, G., Cameron, K., Malcolm, B., and Payne, J.: Testing large area lysimeter designs to measure leaching under multiple urine patches, NZ J. Agricult. Res., 60, 205–215, 2017. a
Clapp, R. B. and Hornberger, G. M.: Empirical equations for some soil hydraulic properties, Water Resour. Res., 14, 601–604,
https://doi.org/10.1029/WR014i004p00601, 1978. a, b, c, d
Cosby, B. J., Hornberger, G. M., Clapp, R. B., and Ginn, T. R.: A Statistical Exploration of the Relationships of Soil Moisture Characteristics to the Physical Properties of Soils, Water Resour. Res., 20, 682–690, https://doi.org/10.1029/WR020i006p00682, 1984. a, b, c, d
Darvishzadeh, R., Skidmore, A., Schlerf, M., Atzberger, C., Corsi, F., and Cho, M.: LAI and chlorophyll estimation for a heterogeneous grassland using
hyperspectral measurements, ISPRS J. Photogram. Remote Sens., 63, 409–426, https://doi.org/10.1016/j.isprsjprs.2008.01.001, 2008. a
Deardorff, J. W.: Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation, J. Geophys. Res.-Oceans, 83, 1889–1903, 1978. a
Decharme, B., Brun, E., Boone, A., Delire, C., Le Moigne, P., and Morin, S.:
Impacts of snow and organic soils parameterization on northern Eurasian soil
temperature profiles simulated by the ISBA land surface model, The
Cryosphere, 10, 853–877, https://doi.org/10.5194/tc-10-853-2016, 2016. a, b
Decharme, B., Delire, C., Minvielle, M., Colin, J., Vergnes, J.-P., Alias, A., Saint-Martin, D., Séférian, R., Sénési, S., and Voldoire, A.: Recent
Changes in the ISBA-CTRIP Land Surface System for Use in the CNRM-CM6 Climate
Model and in Global Off-Line Hydrological Applications, J. Adv. Model. Earth Syst., 11, 1207–1252, https://doi.org/10.1029/2018MS001545, 2019. a, b, c
Delire, C., Séférian, R., Decharme, B., Alkama, R., Calvet, J.-C., Carrer,
D., Gibelin, A.-L., Joetzjer, E., Morel, X., Rocher, M., and Tzanos, D.: The
Global Land Carbon Cycle Simulated With ISBA-CTRIP: Improvements Over the
Last Decade, J. Adv. Model. Earth Syst., 12, e2019MS001886, https://doi.org/10.1029/2019MS001886, 2020. a
De Rosnay, P., Polcher, J., Laval, K., and Sabre, M.: Integrated
parameterization of irrigation in the land surface model ORCHIDEE. Validation
over Indian Peninsula, Geophys. Res. Lett., 30, 1986, https://doi.org/10.1029/2003GL018024, 2003. a
Dettmann, U., Andrews, F., and Donckels, B.: Package “SoilHyP”, https://cloud.r-project.org/ (last access: 1 June 2023), 2022. a
Döll, P. and Fiedler, K.: Global-scale modeling of groundwater recharge, Hydrol. Earth Syst. Sci., 12, 863–885, https://doi.org/10.5194/hess-12-863-2008, 2008. a
Dourado Neto, D., de Jong van Lier, Q., van Genuchten, M., Reichardt, K.,
Metselaar, K., and Nielsen, D.: Alternative Analytical Expressions for the
General van Genuchten–Mualem and van Genuchten–Burdine Hydraulic Conductivity Models, Vadose Zone J., 10, 618–623, https://doi.org/10.2136/vzj2009.0191, 2011. a
Durner, W.: Hydraulic conductivity estimation for soils with heterogeneous pore structure, Water Resour. Res., 30, 211–223, 1994. a
Farthing, M. W. and Ogden, F. L.: Numerical Solution of Richards' Equation: A
Review of Advances and Challenges, Soil Sci. Soc. Am. J., 81, 1257–1269, https://doi.org/10.2136/sssaj2017.02.0058, 2017. a
Fatichi, S., Or, D., Walko, R., Vereecken, H., Young, M., Ghezzehei, T., Hengl, T., Kollet, S., Agam, N., and Avissar, R.: Soil structure is an important omission in Earth System Models, Nat. Commun., 11,
522, https://doi.org/10.1038/s41467-020-14411-z, 2020. a
Fisher, R. A.: Statistical methods for research workers, in: Breakthroughs in
statistics, Springer, 66–70, ISBN: 9788130701332, 1992. a
Gaillardet, J., Braud, I., Hankard, F., Anquetin, S., Bour, O., Dorfliger, N., de Dreuzy, J., Galle, S., Galy, C., Gogo, S., Gourcy, L., Habets, F.,
Laggoun, F., Longuevergne, L., Le Borgne, T., Naaim-Bouvet, F., Nord, G.,
Simonneaux, V., Six, D., Tallec, T., Valentin, C., Abril, G., Allemand, P.,
Arènes, A., Arfib, B., Arnaud, L., Arnaud, N., Arnaud, P., Audry, S.,
Comte, V. B., Batiot, C., Battais, A., Bellot, H., Bernard, E., Bertrand, C.,
Bessière, H., Binet, S., Bodin, J., Bodin, X., Boithias, L., Bouchez,
J., Boudevillain, B., Moussa, I. B., Branger, F., Braun, J. J., Brunet, P.,
Caceres, B., Calmels, D., Cappelaere, B., Celle-Jeanton, H., Chabaux, F.,
Chalikakis, K., Champollion, C., Copard, Y., Cotel, C., Davy, P., Deline, P.,
Delrieu, G., Demarty, J., Dessert, C., Dumont, M., Emblanch, C., Ezzahar, J.,
Estèves, M., Favier, V., Faucheux, M., Filizola, N., Flammarion, P.,
Floury, P., Fovet, O., Fournier, M., Francez, A. J., Gandois, L., Gascuel,
C., Gayer, E., Genthon, C., Gérard, M. F., Gilbert, D., Gouttevin, I.,
Grippa, M., Gruau, G., Jardani, A., Jeanneau, L., Join, J. L., Jourde, H.,
Karbou, F., Labat, D., Lagadeuc, Y., Lajeunesse, E., Lastennet, R., Lavado,
W., Lawin, E., Lebel, T., Le Bouteiller, C., Legout, C., Lejeune, Y., Le Meur, E., Le Moigne, N., Lions, J., Lucas, A., Malet, J. P., Marais-Sicre, C., Maréchal, J. C., Marlin, C., Martin, P., Martins, J., Martinez, J. M., Massei, N., Mauclerc, A., Mazzilli, N., Molénat, J.,
Moreira-Turcq, P., Mougin, E., Morin, S., Ngoupayou, J. N., Panthou, G.,
Peugeot, C., Picard, G., Pierret, M. C., Porel, G., Probst, A., Probst,
J. L., Rabatel, A., Raclot, D., Ravanel, L., Rejiba, F., René, P.,
Ribolzi, O., Riotte, J., Rivière, A., Robain, H., Ruiz, L., Sanchez-Perez, J. M., Santini, W., Sauvage, S., Schoeneich, P., Seidel, J. L., Sekhar, M., Sengtaheuanghoung, O., Silvera, N., Steinmann, M., Soruco,
A., Tallec, G., Thibert, E., Lao, D. V., Vincent, C., Viville, D., Wagnon,
P., and Zitouna, R.: OZCAR: The French Network of Critical Zone
Observatories, Vadose Zone J., 17, 180067, https://doi.org/10.2136/vzj2018.04.0067, 2018. a
Garrigues, S., Olioso, A., Carrer, D., Decharme, B., Calvet, J., Martin, E.,
Moulin, S., and Marloie, O.: Impact of climate, vegetation, soil and crop
management variables on multi-year ISBA-A-gs simulations of evapotranspiration over a mediterranean crop site, Geosci. Model Dev., 8, 3033–3053, https://doi.org/10.5194/gmd-8-3033-2015, 2015. a
Garrigues, S., Boone, A. A., Decharme, B., Olioso, A., Albergel, C., Calvet,
J.-C., Moulin, S., Buis, S., and Martin, E.: Impacts of the Soil Water
Transfer Parameterization on the Simulation of Evapotranspiration over a
14-Year Mediterranean Crop Succession, J. Hydrometeorol., 19, 3–25, https://doi.org/10.1175/JHM-D-17-0058.1, 2018. a
Gebler, S., Hendricks Franssen, H. J., Pütz, T., Post, H., Schmidt, M., and Vereecken, H.: Actual evapotranspiration and precipitation measured by
lysimeters: A comparison with eddy covariance and tipping bucket, Hydrol.
Earth Syst. Sci., 19, 2145–2161, https://doi.org/10.5194/hess-19-2145-2015, 2015. a
Gebler, S., Hendricks Franssen, H. J., Kollet, S. J., Qu, W., and Vereecken, H.: High resolution modelling of soil moisture patterns with TerrSysMP: A comparison with sensor network data, J. Hydrol., 547, 309–331,
https://doi.org/10.1016/j.jhydrol.2017.01.048, 2017. a
Gelati, E., Decharme, B., Calvet, J.-C., Minvielle, M., Polcher, J., Fairbairn, D., and Weedon, G. P.: Hydrological assessment of atmospheric forcing uncertainty in the Euro-Mediterranean area using a land surface model, Hydrol. Earth Syst. Sci., 22, 2091–2115,
https://doi.org/10.5194/hess-22-2091-2018, 2018. a
Gibelin, A.-L., Calvet, J.-C., Roujean, J.-L., Jarlan, L., and Los, S. O.:
Ability of the land surface model ISBA-A-gs to simulate leaf area index at
the global scale: Comparison with satellites products, J. Geophys. Res.-Atmos., 111, D18102, https://doi.org/10.1029/2005JD006691, 2006. a
Goudriaan, J., van Laar, H. H., van Keulen, H., and Louwerse, W.:
Photosynthesis, CO2 and Plant Production, Springer US, Boston, MA, 107–122, https://doi.org/10.1007/978-1-4899-3665-3_10, 1985. a
Groh, J., Stumpp, C., Lücke, A., Pütz, T., Vanderborght, J., and Vereecken,
H.: Inverse Estimation of Soil Hydraulic and Transport Parameters of Layered
Soils from Water Stable Isotope and Lysimeter Data, Vadose Zone J., 17,
170168, https://doi.org/10.2136/vzj2017.09.0168, 2018. a
Haddeland, I., Clark, D. B., Franssen, W., Ludwig, F., Voß, F., Arnell, N. W., Bertrand, N., Best, M., Folwell, S., Gerten, D., Gomes, S., Gosling, S. N., Hagemann, S., Hanasaki, N., Harding, R., Heinke, J., Kabat, P., Koirala, S., Oki, T., Polcher, J., Stacke, T., Viterbo, P., Weedon, G. P., and Yeh, P.: Multimodel Estimate of the Global Terrestrial Water Balance: Setup and First Results, J. Hydrometeorol., 12, 869–884, https://doi.org/10.1175/2011JHM1324.1, 2011. a
Haines, W. B.: Studies in the physical properties of soil. V. The hysteresis
effect in capillary properties, and the modes of moisture distribution
associated therewith, J. Agricult. Sci., 20, 97–116, 1930. a
Harbaugh, A. W.: MODFLOW-2005, the US Geological Survey modular ground-water
model: the ground-water flow process, US Department of the Interior, US Geological Survey, Reston, VA, http://water.usgs.gov/software/ground_water.html/ (last access: 1 June 2023), 2005. a
Hazelton, P. and Murphy, B.: Interpreting soil test results: What do all the
numbers mean?, CSIRO publishing, ISBN: 9781523109418, 2016. a
Healy, R. and Cook, P.: Using Groundwater Levels to Estimate Recharge, Hydrogeol. J., 10, 91–109, https://doi.org/10.1007/s10040-001-0178-0, 2002. a
Hengl, T., Mendes de Jesus, J., Heuvelink, G. B. M., Ruiperez Gonzalez, M.,
Kilibarda, M., Blagotić, A., Shangguan, W., Wright, M. N., Geng, X.,
Bauer-Marschallinger, B., Guevara, M. A., Vargas, R., MacMillan, R. A.,
Batjes, N. H., Leenaars, J. G. B., Ribeiro, E., Wheeler, I., Mantel, S., and
Kempen, B.: SoilGrids250m: Global gridded soil information based on machine
learning, PLOS ONE, 12, 1–40, https://doi.org/10.1371/journal.pone.0169748, 2017. a
Huot, H., Morel, J.-L., and Simonnot, M.-O.: Pedogenetic Trends in Soils formed in Technogenic Materials, Soil Sci., 180, 182–192, https://doi.org/10.1097/SS.0000000000000135, 2015. a
Jackson, R. B., Canadell, J., Ehleringer, J. R., Mooney, H. A., Sala, O. E.,
and Schulze, E. D.: A global analysis of root distributions for terrestrial
biomes, Oecologia, 108, 389–411, https://doi.org/10.1007/BF00333714, 1996. a
Jacobs, C., van den Hurk, B., and de Bruin, H.: Stomatal behaviour and
photosynthetic rate of unstressed grapevines in semi-arid conditions, Agr. Forest Meteorol., 80, 111–134, https://doi.org/10.1016/0168-1923(95)02295-3, 1996. a
Jhorar, R., Van Dam, J., Bastiaanssen, W., and Feddes, R.: Calibration of
effective soil hydraulic parameters of heterogeneous soil profiles, J. Hydrol., 285, 233–247, 2004. a
Joetzjer, E., Delire, C., Douville, H., Ciais, P., Decharme, B., Carrer, D.,
Verbeeck, H., De Weirdt, M., and Bonal, D.: Improving the ISBACC land surface model simulation of water and carbon fluxes and stocks over the
Amazon forest, Geosci. Model Dev., 8, 1709–1727,
https://doi.org/10.5194/gmd-8-1709-2015, 2015. a, b
Kattge, J., Bönisch, G., Díaz, S., Lavorel, S., Prentice, I. C., Leadley, P.,
Tautenhahn, S., and Werner, G.: TRY plant trait database – enhanced coverage and open access, Global Change Biol., 26, 119–188, https://doi.org/10.1111/gcb.14904, 2020. a
Keshavarzi, M., Baker, A., Kelly, B., and Andersen, M.: River–groundwater
connectivity in a karst system, Wellington, New South Wales, Australia,
Hydrogeol. J., 25, 557, https://doi.org/10.1007/s10040-016-1491-y, 2016. a
King, D. D., Stengel, P., and Jamagne, M.: Soil mapping and soil monitoring: state of progress and use in France, https://hal.inrae.fr/hal-02841513 (last access: 1 June 2023), 1999. a
Kosugi, K.: Three-parameter lognormal distribution model for soil water
retention, Water Resour. Res., 30, 891–901, 1994. a
Leij, F. J., Haverkamp, R., Fuentes, C., Zatarain, F., and Ross, P. J.: Soil
Water Retention, Soil Sci. Soc. Am. J., 69, 1891–1901, https://doi.org/10.2136/sssaj2004.0226, 2005. a
Lemaire, J., Mora, V., Faure, P., Hanna, K., Buès, M., and Simonnot, M.-O.:
Chemical oxidation efficiency for aged, PAH-contaminated sites: An
investigation of limiting factors, J. Environ. Chem. Eng., 7, 103061, https://doi.org/10.1016/j.jece.2019.103061, 2019. a
Le Moigne P.: SURFEX scientific documentation, SURFEX v8.1, Issue 3, Météo-France, Toulouse, France, https://www.umr-cnrm.fr/surfex/IMG/pdf/surfex_scidoc_v8.1.pdf (last access: 1 May 2023), 2018.
Le Moigne, P., Besson, F., Martin, E., Boé, J., Boone, A., Decharme, B., Etchevers, P., Faroux, S., Habets, F., Lafaysse, M., Leroux, D., and Rousset-Regimbeau, F.: The latest improvements with SURFEX v8.0 of the Safran–Isba–Modcou hydrometeorological model for France, Geosci. Model Dev., 13, 3925–3946, https://doi.org/10.5194/gmd-13-3925-2020, 2020. a, b, c
Lenhard, R. J., Parker, J. C., and Mishra, S.: On the Correspondence between Brooks‐Corey and van Genuchten Models, J. Irrig. Drain. Eng., 115, 744–751, https://doi.org/10.1061/(ASCE)0733-9437(1989)115:4(744), 1989. a, b, c
Leyval, C., Beguiristain, T., Enjelvin, N., Faure, P., Lorgeoux, C., and Putz, T.: Long term fate of multi-contamination within the context of natural attenuation and climatic conditions: a collaborative study in TERENO and SFI lysimeters, in: TERENO International Conference, Berlin, Germany, 8 October 2018, https://hal.univ-lorraine.fr/hal-03178142 (last access: 1 June 2023), 2018. a
Liu, H., Lei, T. W., Zhao, J., Yuan, C. P., Fan, Y. T., and Qu,
L. Q.: Effects of rainfall intensity and antecedent soil water content on
soil infiltrability under rainfall conditions using the run off-on-out
method, J. Hydrol., 396, 24–32, https://doi.org/10.1016/j.jhydrol.2010.10.028, 2011. a
Ma, Q., Hook, J. E., and Ahuja, L. R.: Influence of three-parameter conversion methods between van Genuchten and Brooks-Corey Functions on soil hydraulic properties and water-balance predictions, Water Resour. Res., 35, 2571–2578, https://doi.org/10.1029/1999WR900096, 1999. a
Mahfouf, J. F. and Noilhan, J.: Comparative Study of Various Formulations of
Evaporations from Bare Soil Using In Situ Data, J. Appl. Meteorol. Clim., 30, 1354–1365, https://doi.org/10.1175/1520-0450(1991)030<1354:CSOVFO>2.0.CO;2, 1991. a
Maxwell, R. M. and Condon, L. E.: Connections between groundwater flow and
transpiration partitioning, Science, 353, 377–380, https://doi.org/10.1126/science.aaf7891, 2016. a
Meyboom, P.: Estimating ground-water recharge from stream hydrographs, J. Geophys. Res., 66, 1203–1214, https://doi.org/10.1029/JZ066i004p01203, 1961. a
Mirus, B. B.: Evaluating the importance of characterizing soil structure and
horizons in parameterizing a hydrologic process model, Hydrol. Process., 29, 4611–4623, https://doi.org/10.1002/hyp.10592, 2015. a
Moeck, C., Grech-Cumbo, N., Podgorski, J., Bretzler, A., Gurdak, J. J., Berg,
M., and Schirmer, M.: A global-scale dataset of direct natural groundwater
recharge rates: A review of variables, processes and relationships, Sci.
Total Environ., 717, 137042, https://doi.org/10.1016/j.scitotenv.2020.137042, 2020. a, b
Mohanty, B. P. and Zhu, J.: Effective Hydraulic Parameters in Horizontally and Vertically Heterogeneous Soils for Steady-State Land–Atmosphere
Interaction, J. Hydrometeorol., 8, 715–729, https://doi.org/10.1175/JHM606.1, 2007. a
Monserie, M.-F., Watteau, F., Villemin, G., Ouvrard, S., and Morel, J.-L.:
Technosol genesis: identification of organo-mineral associations in a young
Technosol derived from coking plant waste materials, J. Soil. Sediment., 9, 537–546, https://doi.org/10.1007/s11368-009-0084-y, 2009. a
Morel, X., Decharme, B., Delire, C., Krinner, G., Lund, M., Hansen, B. U., and Mastepanov, M.: A New Process-Based Soil Methane Scheme: Evaluation Over
Arctic Field Sites With the ISBA Land Surface Model, J. Adv. Model. Earth Syst., 11, 293–326, https://doi.org/10.1029/2018MS001329, 2019. a
Morel-Seytoux, H. J., Meyer, P. D., Nachabe, M., Tourna, J., van Genuchten,
M. T., and Lenhard, R. J.: Parameter Equivalence for the Brooks-Corey
and Van Genuchten Soil Characteristics: Preserving the Effective
Capillary Drive, Water Resour. Res., 32, 1251–1258,
https://doi.org/10.1029/96WR00069, 1996. a
Mualem, Y.: A new model for predicting the hydraulic conductivity of
unsaturated porous media, Water Resour. Res., 12, 513–522,
https://doi.org/10.1029/WR012i003p00513, 1976. a, b, c
Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C.,
Arduini, G., Balsamo, G., Boussetta, S., Choulga, M., Harrigan, S., Hersbach,
H., Martens, B., Miralles, D. G., Piles, M., Rodríguez-Fernández, N. J., Zsoter, E., Buontempo, C., and Thépaut, J.-N.: ERA5-Land: a state-of-the-art global reanalysis dataset for land applications, Earth
Syst. Sci. Data, 13, 4349–4383, https://doi.org/10.5194/essd-13-4349-2021, 2021. a
Nimmo, J. R.: Theory for Source-Responsive and Free-Surface Film Modeling of
Unsaturated Flow, Vadose Zone J., 9, 295–306, https://doi.org/10.2136/vzj2009.0085, 2010. a
Noilhan, J. and Mahfouf, J. F.: The ISBA land surface parameterisation scheme, Global Planet. Change, 13, 145–159, 1996. a
Noilhan, J. and Planton, S.: A Simple Parameterization of Land Surface
Processes for Meteorological Models, Mon. Weather Rev., 117, 536–549,
https://doi.org/10.1175/1520-0493(1989)117<0536:ASPOLS>2.0.CO;2, 1989. a, b, c
Ouvrard, S., Barnier, C., Bauda, P., Beguiristain, T., Biache, C., Bonnard, M., Caupert, C., Cébron, A., Cortet, J., Cotelle, S., Dazy, M., Faure, P.,
Masfaraud, J. F., Nahmani, J., Palais, F., Poupin, P., Raoult, N., Vasseur, P., Morel, J. L., and Leyval, C.: In Situ Assessment of Phytotechnologies for Multicontaminated Soil Management, Int. J. Phytoremed., 13, 245–263, https://doi.org/10.1080/15226514.2011.568546, 2011. a, b
Philip, S., Kew, S. F., van Oldenborgh, G. J., Aalbers, E., Vautard, R., Otto, F., Haustein, K., Habets, F., and Singh, R.: Validation of a rapid
attribution of the May/June 2016 flood-inducing precipitation in France to
climate change, J. Hydrometeorol., 19, 1881–1898, https://doi.org/10.1175/JHM-D-18-0074.1, 2018. a
Poggio, L., de Sousa, L. M., Batjes, N. H., Heuvelink, G. B. M., Kempen, B.,
Ribeiro, E., and Rossiter, D.: SoilGrids 2.0: producing soil information for
the globe with quantified spatial uncertainty, SOIL, 7, 217–240,
https://doi.org/10.5194/soil-7-217-2021, 2021. a
Prata, A. J.: A new long-wave formula for estimating downward clear-sky
radiation at the surface, Q. J. Roy. Meteorol. Soc., 122, 1127–1151, https://doi.org/10.1002/qj.49712253306, 1996. a
Putz, T., Kiese, R., Wollschlager, U., Groh, J., Rupp, H., Zacharias, S.,
Priesack, E., Gerke, H. H., Gasche, R., Bens, O., Borg, E., Baessler, C.,
Kaiser, K., Herbrich, M., Munch, J. C., Sommer, M., Vogel, H. J.,
Vanderborght, J., and Vereecken, H.: TERENO-SOILCan: a lysimeter-network in
Germany observing soil processes and plant diversity influenced by climate
change, Environ. Earth Sci., 75, 1–14, https://doi.org/10.1007/s12665-016-6031-5, 2016. a
Rees, F., Sterckeman, T., and Morel, J. L.: Biochar-assisted phytoextraction of Cd and Zn by Noccaea caerulescens on a contaminated soil: A four-year
lysimeter study, Sci. Total Environ., 707, 135654,
https://doi.org/10.1016/j.scitotenv.2019.135654, 2020. a
Richards, L. A.: Capillary conduction of liquids through porous mediums,
Physics, 1, 318–333, https://doi.org/10.1063/1.1745010, 1931. a, b, c, d
Rummler, T., Wagner, A., Arnault, J., and Kunstmann, H.: Lateral terrestrial
water fluxes in the LSM of WRF-Hydro: Benefits of a 2D groundwater
representation, Hydrol. Process., 36, e14510, https://doi.org/10.1002/hyp.14510, 2022. a
Schaap, M. G. and Van Genuchten, M. T.: A modified Mualem–van Genuchten
formulation for improved description of the hydraulic conductivity near
saturation, Vadose Zone J., 5, 27–34, 2006. a
Schaap, M. G., Leij, F. J., and van Genuchten, M. T.: ROSETTA: a computer
program for estimating soil hydraulic parameters with hierarchical
pedotransfer functions, J. Hydrol., 251, 163–176,
https://doi.org/10.1016/S0022-1694(01)00466-8, 2001. a, b
Schellekens, J., Dutra, E., Martínez-de la Torre, A., Balsamo, G., van
Dijk, A., Sperna Weiland, F., Minvielle, M., Calvet, J.-C., Decharme, B.,
Eisner, S., Fink, G., Flörke, M., Peßenteiner, S., van Beek, R.,
Polcher, J., Beck, H., Orth, R., Calton, B., Burke, S., Dorigo, W., and
Weedon, G. P.: A global water resources ensemble of hydrological models: the
eartH2Observe Tier-1 dataset, Earth Syst. Sci. Data, 9, 389–413,
https://doi.org/10.5194/essd-9-389-2017, 2017. a
Schneider, J., Groh, J., Pütz, T., Helmig, R., Rothfuss, Y., Vereecken, H.,
and Vanderborght, J.: Prediction of soil evaporation measured with weighable
lysimeters using the FAO Penman–Monteith method in combination with Richards' equation, Vadose Zone J., 20, e20102, https://doi.org/10.1002/vzj2.20102, 2021. a
Schrader, F., Durner, W., Fank, J., Gebler, S., Pütz, T., Hannes, M., and Wollschläger, U.: Estimating Precipitation and Actual Evapotranspiration from Precision Lysimeter Measurements, Proced. Environ. Sci., 19, 543–552, https://doi.org/10.1016/j.proenv.2013.06.061, 2013. a
Schwärzel, K., Šimůnek, J., Stoffregen, H., Wessolek, G., and van Genuchten, M. T.: Estimation of the Unsaturated Hydraulic Conductivity of Peat Soils Laboratory versus Field Data, Vadose Zone J., 5, 628–640,
https://doi.org/10.2136/vzj2005.0061, 2006. a
Séré, G., Ouvrard, S., Magnenet, V., Pey, B., Morel, J. L., and Schwartz, C.: Predictability of the Evolution of the Soil Structure using Water Flow Modeling for a Constructed Technosol, Vadose Zone J., 11, , https://doi.org/10.2136/vzj2011.0069, 2012. a, b
Sommer, R. and Stöckle, C.: Correspondence between the Campbell and van Genuchten Soil-Water-Retention Models, J. Irrig. Drain. Eng., 136, 559–562, https://doi.org/10.1061/(ASCE)IR.1943-4774.0000204, 2010. a
Sterckeman, T., Douay, F., Proix, N., and Fourrier, H.: Vertical distribution
of Cd, Pb and Zn in soils near smelters in the North of France,
Environ. Pollut., 107, 377–389, https://doi.org/10.1016/S0269-7491(99)00165-7, 2000. a
Stieglitz, M., Rind, D., Famiglietti, J., and Rosenzweig, C.: An Efficient
Approach to Modeling the Topographic Control of Surface Hydrology for
Regional and Global Climate Modeling, J. Climate, 10, 118–137,
https://doi.org/10.1175/1520-0442(1997)010<0118:AEATMT>2.0.CO;2, 1997. a
Tavakoly, A. A., Habets, F., Saleh, F., Yang, Z.-L., Bourgeois, C., and
Maidment, D. R.: An integrated framework to model nitrate contaminants with
interactions of agriculture, groundwater, and surface water at regional
scales: The STICS–EauDyssée coupled models applied over the Seine River
Basin, J. Hydrol., 568, 943–958, 2019. a, b
Taylor, K. E.: Summarizing multiple aspects of model performance in a single
diagram, J. Geophys. Res.-Atmos., 106, 7183–7192, https://doi.org/10.1029/2000JD900719, 2001. a, b
Tifafi, M., Bouzouidja, R., Leguédois, S., Ouvrard, S., and Séré, G.: How
lysimetric monitoring of Technosols can contribute to understand the temporal
dynamics of the soil porosity, Geoderma, 296, 60–68,
https://doi.org/10.1016/j.geoderma.2017.02.027, 2017. a
Vereecken, H., Maes, J., Feyen, J., and Darius, P.: Estimating the Soil
Moisture Retention Characteristic From Texture, Bulk Density, and Carbon
Content, Soil Sci., 148, 389–403, https://doi.org/10.1097/00010694-198912000-00001, 1989. a, b, c, d
Vereecken, H., Weihermüller, L., Assouline, S., Simunek, Jiri, J., Verhoef,
A., Herbst, M., Archer, N., Mohanty, B., Montzka, C., Vanderborght, J.,
Balsamo, G., Bechtold, M., Boone, A., Chadburn, S., Cuntz, M., Decharme, B.,
Ducharne, A., Ek, M., Garrigues, S., and Xue, Y.: Infiltration from the Pedon
to Global Grid Scales: An Overview and Outlook for Land Surface Modeling,
Vadose Zone J., 18, 1–53, https://doi.org/10.2136/vzj2018.10.0191, 2019. a, b, c
Vergnes, J.-P. and Decharme, B.: A simple groundwater scheme in the TRIP river routing model: global off-line evaluation against GRACE terrestrial water storage estimates and observed river discharges, Hydrol. Earth Syst.
Sci., 16, 3889–3908, https://doi.org/10.5194/hess-16-3889-2012, 2012. a
Vergnes, J.-P., Decharme, B., and Habets, F.: Introduction of groundwater
capillary rises using subgrid spatial variability of topography into the ISBA
land surface model, J. Geophys. Res.-Atmos., 119, 11065–11086, 2014. a
Vergnes, J.-P., Roux, N., Habets, F., Ackerer, P., Amraoui, N., Besson, F., Caballero, Y., Courtois, Q., de Dreuzy, J.-R., Etchevers, P., Gallois, N., Leroux, D. J., Longuevergne, L., Le Moigne, P., Morel, T., Munier, S., Regimbeau, F., Thiéry, D., and Viennot, P.: The AquiFR hydrometeorological modelling platform as a tool for improving groundwater resource monitoring over France: evaluation over a 60-year period, Hydrol. Earth Syst. Sci., 24, 633–654, https://doi.org/10.5194/hess-24-633-2020, 2020.
a, b
Vincendon, B., Édouard, S., Dewaele, H., Ducrocq, V., Lespinas, F., Delrieu,
G., and Anquetin, S.: Modeling flash floods in southern France for road
management purposes, J. Hydrol., 541, 190–205,
https://doi.org/10.1016/j.jhydrol.2016.05.054, 2016. a
Vogel, H.-J.: Scale Issues in Soil Hydrology, Vadose Zone J., 18, 190001, https://doi.org/10.2136/vzj2019.01.0001, 2019. a
Wafa, M., Boote, K., Cavero, J., and Dechmi, F.: Adapting the CROPGRO model to simulate alfalfa growth and yield, Agron. J., 110, 1777–1790, https://doi.org/10.2134/agronj2017.12.0680, 2018. a
Weihermüller, L., Siemens, J., Deurer, M., Knoblauch, S., Rupp, H., Göttlein, A., and Pütz, T.: In Situ Soil Water Extraction: A Review, J. Environ. Qual., 36, 1735–1748, https://doi.org/10.2134/jeq2007.0218, 2007. a, b
Weynants, M., Vereecken, H., and Javaux, M.: Revisiting Vereecken Pedotransfer Functions: Introducing a Closed-Form Hydraulic Model, Vadose Zone J., 8, 86–95, https://doi.org/10.2136/vzj2008.0062, 2009. a, b, c, d
Wolf, D. D., Kimbrough, E. L., and Blaser, R. E.: Photosynthetic Efficiency
of Alfalfa with Increasing Potassium Nutrition1, Crop
Sci., 16, 292–294, https://doi.org/10.2135/cropsci1976.0011183X001600020035x, 1976. a
Wösten, J., Pachepsky, Y., and Rawls, W.: Pedotransfer functions: bridging the gap between available basic soil data and missing soil hydraulic
characteristics, J. Hydrol., 251, 123–150, https://doi.org/10.1016/S0022-1694(01)00464-4, 2001. a, b
Zacharias, S., Bogena, H., Samaniego, L., Mauder, M., Fuß, R., Pütz, T., Frenzel, M., Schwank, M., Baessler, C., Butterbach-Bahl, K., Bens, O., Borg, E., Brauer, A., Dietrich, P., Hajnsek, I., Helle, G., Kiese, R., Kunstmann, H., Klotz, S., Munch, J.C., Papen, H., Priesack, E., Schmid, H. P., Steinbrecher, R., Rosenbaum, U., Teutsch, G., and Vereecken, H.: A
network of terrestrial environmental observatories in Germany, Vadose Zone J., 10, 955–973, https://doi.org/10.2136/vzj2010.0139, 2011. a
Short summary
Seven instrumented lysimeters are used to assess the simulation of the soil water dynamic in one land surface model. Four water potential and hydraulic conductivity closed-form equations, including one mixed form, are evaluated. One form is more relevant for simulating drainage, especially during intense drainage events. The soil profile heterogeneity of one parameter of the closed-form equations is shown to be important.
Seven instrumented lysimeters are used to assess the simulation of the soil water dynamic in one...