Articles | Volume 27, issue 13
https://doi.org/10.5194/hess-27-2437-2023
https://doi.org/10.5194/hess-27-2437-2023
Research article
 | 
04 Jul 2023
Research article |  | 04 Jul 2023

Assessment of the interactions between soil–biosphere–atmosphere (ISBA) land surface model soil hydrology, using four closed-form soil water relationships and several lysimeters

Antoine Sobaga, Bertrand Decharme, Florence Habets, Christine Delire, Noële Enjelvin, Paul-Olivier Redon, Pierre Faure-Catteloin, and Patrick Le Moigne

Download

Interactive discussion

Status: closed

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse
  • RC1: 'Comment on egusphere-2023-248', Anonymous Referee #1, 24 Mar 2023
  • RC2: 'Comment on egusphere-2023-248', Anonymous Referee #2, 27 Mar 2023

Peer review completion

AR: Author's response | RR: Referee report | ED: Editor decision | EF: Editorial file upload
ED: Publish subject to minor revisions (further review by editor) (17 May 2023) by Philippe Ackerer
AR by antoine sobaga on behalf of the Authors (17 May 2023)  Author's response   Author's tracked changes   Manuscript 
ED: Publish as is (26 May 2023) by Philippe Ackerer
AR by antoine sobaga on behalf of the Authors (26 May 2023)
Download
Short summary
Seven instrumented lysimeters are used to assess the simulation of the soil water dynamic in one land surface model. Four water potential and hydraulic conductivity closed-form equations, including one mixed form, are evaluated. One form is more relevant for simulating drainage, especially during intense drainage events. The soil profile heterogeneity of one parameter of the closed-form equations is shown to be important.