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S1 Solution method for liquid soil moisture

According to the Richards equation, the ISBA governing equation for water transfers within the soil is written as follows:

∂wi

∂t
=

1

∆zi
[Fi−i −Fi +

Si

ρω
] with Fi = k̃i(

ψi −ψi+1

∆z̃i
+1) (S1.1)

where ωi (m3. m−3) is the volumetric water content of the layer i, ψi (m) the water pressure head, Fi(m.s
−1) the water

flux term, ∆zi (m) the layer thickness, ∆z̃i (m) the thickness between two consecutive layer midpoints or nodes, and Si5

(kg.m−2.s−1) the soil-water source/sink term. k̃i(m.s−1) is the interfacial hydraulic conductivity computed as the geometric

means over two consecutive nodes of the soil hydraulic conductivity (Decharme et al., 2011) :

k̃i =
√
ki(ψi)× ki+1(ψi+1) (S1.2)

S1.1 Numerical method

The Eq.(S1.1) is solved with a Cranck-Nicholson implicit time scheme defined as follow :10

∆ωi

∆t
=

1

∆zi
[φ(F t+1

i−1 −F t+1
i )+ (1−φ)(F t

i−1 −F t
i )+

Si

ρω
] (S1.3)

where ∆ωi = ωt+1
i −ωt

i is the change in water content over the model time step ∆t (s) and φ= 0.5 which results in the

Cranck-Nicholson time scheme used in ISBA. Note that φ can be set to 1 to use a backward difference scheme or to 0 to use an

explicit time scheme. Next, we use a linearization method in which the flux terms at time t+1 in Eq.(S1.3) are approximated

via a one-order Taylor series expansion of the form :15

F t+1
i = F t

i +
∂Fi

∂ωi
∆ωi +

∂Fi

∂ωi+1
∆ωi+1 (S1.4)

where the flux Fi is a function of the water content in layers i and i+1 as shown later. The substitution of Eq.(S1.4) into

Eq.(S1.3) results in a system of linear equations in ∆ω that can be expressed as follow :

ai∆ωi−1 + bi∆ωi + ci∆ωi+1 = fi (S1.5)
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where fi is the forcing function including all explicit terms. This system can be solved using a tridiagonal matrix written as :20

∆ω̂ = A−1f̂ with A =


b1 c1 0

ai bi ci

0 aN bN

 (S1.6)

where ∆ω̂ and f̂ are vectors of length N (the number of soil layer), and A the N×N coefficient matrix. The non-zero elements,

represented by a, b and c, are then defined as follow :
ai =−φ∂Fi−1

∂ωi−1

bi =
∆zi
∆t −φ(∂Fi−1

∂ωi
− ∂Fi

∂ωi
)

ci = φ ∂Fi

∂ωi+1

(S1.7)

The forcing function is written as :25

fi = F t
i−1 −F t

i +
Si

ρω
(S1.8)

S1.2 Flux derivatives

The flux derivatives in Eq.(S1.4) are calculated as follow using the flux term of Eq.(S1.1) :

∂Fi

∂ωi
=
∂k̃i
∂ωi

ψi −ψi+1

∆z̃i
+

k̃i
∆z̃i

∂ψi

∂ωi
+
∂k̃i
∂ωi

(S1.9)

30

∂Fi

∂ωi+1
=

∂k̃i
∂ωi+1

ψi−ψi+1

∆z̃i
− k̃i

∆z̃i

∂ψi+1

∂ωi+1
+

∂k̃i
∂ωi+1

(S1.10)

The matrix potential derivatives for each model approaches (or closed-form equations) are given by :

– for BC66 the derivative is relatively simple :

∂ψi

∂ωi
=−biψi

ωi
(S1.11)35

– for V G80 using Mualem (1976) condition the derivative is more complex and require an integration by parts :

∂ψi

∂ωi
=

ψi

ωi(1−ni)

S
−1/mi

i

S
−1/mi

i − 1
with Si =

ωi

ωsati

(S1.12)

– for BCVG, i.e. V G80 using Burdine (1963) condition, an integration by parts is also required :

∂ψi

∂ωi
=

ψi

ωi(2−nbi)

S
−1/mbi

i

S
−1/mbi

i − 1
(S1.13)
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The derivatives of the interfacial hydraulic conductivity (S1.2) for each model approaches are given by :40

– for BC66 :

∂k̃i
∂ωi

=
(2bi +3)k̃i

2ωi
(S1.14)

– for BCV G :

∂k̃i
∂ωi

=
(2λbi +3)k̃i

2ωi
(S1.15)

– for V G80 :45

∂k̃i
∂ωi

=
k̃i
2ωi

(li +2Xi) with Xi =
S
1/mi

i [1−S
1/mi

i ]−1/ni

1− [1−S
1/mi

i ]mi

(S1.16)

– for V Gc, the derivative is the same than Eq.(S1.16) ∀ψ ≤ ψc, but :

∂k̃i
∂ωi

=
k̃i
2ωi

(li +
2Si

(αi −ψci)Γi
) ∀ψ > ψc (S1.17)

S1.3 Upper boundary condition

The upper boundary condition in ISBA represents the water that infiltrates the soil surface. According to Eq.(S1.1), the gov-50

erning equation for the first soil layer is written as follow :

∂w1

∂t
=

1

∆z1
[F0 −F1 +

S1

ρω
] with F1 = k̃1(

ψ1 −ψ2

∆z̃1
+1) (S1.18)

F0 (m.s
−1) is the soil infiltration taken equal to the flux of water reaching the soil surface. F0 is treated as an explicit term and

the expression of the Cranck-Nicholson for Eq(S1.18) is given by :

∆ω1

∆t
=

1

∆z1
[F0 − (φF t+1

1 +(1−φ)F t
1)+

S1

ρω
] (S1.19)55

The non-zero elements of the tridiagonal matrix and the forcing function are then defined as follow :

a1 = 0

b1 =
∆z1
∆t +φ∂F1

∂ω1

c1 = φ∂F1

∂ω2

f1 = F0 −F t
1 +

Si

ρω

(S1.20)

S1.4 Lower boundary condition

According to Eq.(S1.1), the governing equation for the last soil layer, N, is written as follow :

∂wN

∂t
=

1

∆zN
[FN−1 −FN +

SN

ρω
] (S1.21)60
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where FN−1 is defined according to Eq.(S1.1) while FN depends on the choise of the lower boundary condition.

Seepage face case - As long as the last layer remain unsaturated, a prescribed flux boundary with FN = 0 is imposed at the

lower boundary. When the last layer is saturated, a prescribed pressure head boundary with ψ = ψsat for BC66 or ψ = 0 for

other models is assumed at the lower boundary.

Free drainage case - It is the usual lower boundary condition in ISBA assuming that the water table lies far below the last65

soil layer. So, the pressure head gradient is equal to zero and the flux of the last layer is equal to the hydraulic conductivity,

FN = kN (ψN ). For this lower boundary condition, only the flux derivative change and are expressed as follow :
∂FN

∂ωi
= ∂kN

∂ωN

∂FN

∂ωN+1
= 0

(S1.22)

For all model versions, the flux derivative in the last layer of ISBA is given by :

– for BC66 :70

∂FN

∂ωN
=

(2bN +3)kN
ωN

(S1.23)

– for BCV G :

∂FN

∂ωN
=

(2λbN +3)kN
ωN

(S1.24)

– for V G80 :

∂FN

∂ωN
=
kN
ωN

(lN +2XN ) with XN =
S
1/mN )
N [1−S

1/mN

N ]−1/nN

1− [1−S
1/mN

N ]mN

(S1.25)75

– for V Gc the derivative is the same than Eq.(S1.25) ∀ψ ≤ ψc, but :

∂kN
∂ωN

=
kN
ωN

(lN +
2SN

(αN −ψcN )ΓN
) ∀ψ > ψc (S1.26)
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S2 Summary of lysimeter characteristics

Table S1. Description of the available observations at the both experimental stations and for each lysimeter: observation period, mean annual

precipitation (precip) and drainage water (drain). For each type of data, the available depths are indicated. Quality of measurements is given

as percentage of missing data: meteo gap for the meteorological forcing, defect for the lysimeters measurements.

Experimental station GISFI OPE

Lysimeters G1 G2 G3 G4 O1 O2 O3

Period 2011 − 2016 2009 − 2016 2011 − 2016 2014 − 2019

Mean annual
precip (mm.year−1) 727 876

drain (mm.year−1) 317 337 115 170 312 304 363

Depths (cm)

total water mass full column full column

volumetric water content 100 − 150 50 − 100 − 150 50 20 − 50 − 100 − 150

matric potential 100 − 150 50 − 100 − 150 50 20 − 50 − 100

drainage 200 200

temperature 50 − 100 − 150 20 − 50 − 100 − 150

Data quality
meteo gap (%) 12 10

defect (%) 16 8 23 0 0
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Table S2. Table of parameters estimates for each lysimeter and each depth.

Lysimeters Depth ωsat ψsat b α n nb ksat l

Units m m3/m3 m − m−1 − − 10−6m.s−1 −

1,0 0,415 0,10 40,0 10,00 1,025 2,025 1,0 -2,0
G1

1,5 0,434 0,15 17,0 6,67 1,060 2,063 1,0 -2,0

0,5 0,420 0,12 11,0 6,67 1,090 2,090 2,0 -2,0

1,0 0,420 0,10 11,0 10,00 1,090 2,095 2,0 -2,0G2

1,5 0,360 0,07 30,0 14,28 1,035 2,033 2,0 -2,0

0,5 0,373 0,10 9,5 7,69 1,100 2,200 1,0 -5,0

1,0 0,370 0,15 11,0 6,67 1,090 2,090 1,0 -5,0G3

1,5 0,366 0,20 15,0 5,00 1,068 2,071 1,0 -5,0

G4 0,5 0,380 0,30 45,0 3,33 1,022 2,022 2,585 0,5

0,2 0,512 0,25 8,33 4,00 1,120 2,120 0,7 0,5

0,5 0,515 0,25 20,0 4,00 1,050 2,037 0,7 0,5

1,0 0,435 0,025 30,0 40,00 1,033 2,038 0,7 0,5
O1

1,5 0,470 0,05 47,36 20,00 1,023 2,023 0,7 0,5

0,2 0,280 0,30 15,0 3,333 1,149 2,147 0,8 0,5

0,5 0,362 0,30 15,0 3,333 1,067 2,067 0,8 0,5

1,0 0,495 0,03 22,12 20,00 1,050 2,058 0,8 0,5
O2

1,5 0,385 0,05 50,0 15,44 1,020 2,020 0,8 0,5

0,2 0,470 0,30 9,0 3,333 1,111 2,113 0,8 0,5

0,5 0,500 0,28 15,0 3,571 1,067 2,065 0,8 0,5

1,0 0,430 0,01 25,0 57,00 1,040 2,040 0,8 0,5
O3

1,5 0,470 0,01 55,0 57,00 1,020 2,020 0,8 0,5
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S3 Soil water retention curves for each lysimeter at several depths

Figure S1. Soil water retention curves : volumetric water content (ω) and logarithm of the absolute value of the soil matric potential (ψ) for

lysimeters O2 and O3. Observations at 0.2, 0.5, 1.0 and 1.5 m depth are in dot (orange, aquamarine, grey and purple respectively), estimations

are in red and blue for BC66 and VG80, respectively. The dashed lines are the estimated values via observations for the water content at

saturation and matric potential.
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Figure S2. Same as S2 but for lysimeters G1, G2, G3 and G4.
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S4 Hydraulic conductivity curves estimates near the base of each lysimeter80

Figure S3. Near saturation estimates of the relative soil hydraulic conductivity, k/ksat, as a function of the soil water content actual satu-

ration, ω/ωsat, near the base of all lysimeters. BC66, VG80, BCVG, VGc are given in red, blue, green and orange, respectively. The dots

represent the observed hourly drainage water at 2 m depth (reduced to ksat) versus the actual saturation at 1.5 m depth (or 0.5m for G4).
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S5 Simulated Leaf Area Index

Figure S4. Hourly times series of LAI (m2.m−2) simulated for each lysimeter for BC66.
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S6 Vgc model sensitivity to Homogeneous soil profile and usual PFT

Figure S5. Same as Figure 13 but for the VGc model approach
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S7 Lower Boundary Condition assessment

Figure S6. For free drainage : Taylor diagram on the masses, on the water contents at 50cm depth, on the drainages, and on the intense

drainages, for the 4 experiments in free drainage on the lysimeters of GISFI and OPE: red for BC66, green for BCVGb, blue for VG80, and

orange for VGc.
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Figure S7. Comparison of the water budget partitioning of all model approaches (BC66, VG80, BCVG, and VGc) with a seepage face LBC

(Qseepage) as in Figure 9 and with a free drainage LBC (Qfree).
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