Articles | Volume 26, issue 2
https://doi.org/10.5194/hess-26-265-2022
© Author(s) 2022. This work is distributed under the Creative Commons Attribution 4.0 License.
Ensemble streamflow forecasting over a cascade reservoir catchment with integrated hydrometeorological modeling and machine learning
Related authors
Cited articles
Abrahart, R. J., Anctil, F., Coulibaly, P., Dawson, C. W., Mount, N. J., See, L. M., Shamseldin, A. Y., Solomatine, D. P., Toth, E., and Wilby., R. L.,: Two decades of anarchy? Emerging themes and outstanding
challenges for neural network river forecasting, Prog. Phys. Geogr., 36,
480–513, https://doi.org/10.1177/0309133312444943, 2012.
Adnan, R. M., Liang, Z., Trajkovic, S., Zounemat-Kermani, M., Li, B., and Kisi, O.: Daily streamflow prediction using optimally pruned extreme learning machine, J. Hydrol., 577, 123981, https://doi.org/10.1016/j.jhydrol.2019.123981, 2019.
Alfieri, L., Burek, P., Dutra, E., Krzeminski, B., Muraro, D., Thielen, J., and Pappenberger, F.: GloFAS – global ensemble streamflow forecasting and flood early warning, Hydrol. Earth Syst. Sci., 17, 1161–1175, https://doi.org/10.5194/hess-17-1161-2013, 2013.
Balint, G., Csik, A., Bartha, P., Gauzer, B., and Bonta, I.: Application of
meterological ensembles for Danube flood forecasting and warning, in:
Transboundary Floods:
Reducing Risks through Flood Management, edited by: Marsalek, J., Stancalie, G., and Balint, G., NATO Science Series, Springer,
Dordecht, the Netherlands, 57–68, https://doi.org/10.1007/1-4020-4902-1_6, 2006.
Bougeault, P., Toth, Z., Bishop, C., Brown, B., Burridge, D., Chen, D. H., Ebert, B., Fuentes, M., Hamill, T. M., Mylne, K., Nicolau, J., Paccagnella, T., Park, Y., Parsons, D., Raoult, B., Schuster, D., Dias, P. S., Swinbank, R., Takeuchi, Y., Tennant, W., Wilson, L., and WorLey, S.: The THORPEX interactive grand global ensemble, B. Am. Meteorol. Soc., 91, 1059–1072, https://doi.org/10.1175/2010BAMS2853.1, 2010.