Articles | Volume 26, issue 2
https://doi.org/10.5194/hess-26-265-2022
https://doi.org/10.5194/hess-26-265-2022
Research article
 | 
18 Jan 2022
Research article |  | 18 Jan 2022

Ensemble streamflow forecasting over a cascade reservoir catchment with integrated hydrometeorological modeling and machine learning

Junjiang Liu, Xing Yuan, Junhan Zeng, Yang Jiao, Yong Li, Lihua Zhong, and Ling Yao

Related authors

Technical note: A stochastic framework for identification and evaluation of flash drought
Yuxin Li, Sisi Chen, Jun Yin, and Xing Yuan
Hydrol. Earth Syst. Sci., 27, 1077–1087, https://doi.org/10.5194/hess-27-1077-2023,https://doi.org/10.5194/hess-27-1077-2023, 2023
Short summary
Rapid reduction in ecosystem productivity caused by flash droughts based on decade-long FLUXNET observations
Miao Zhang and Xing Yuan
Hydrol. Earth Syst. Sci., 24, 5579–5593, https://doi.org/10.5194/hess-24-5579-2020,https://doi.org/10.5194/hess-24-5579-2020, 2020
Short summary
Accelerated hydrological cycle over the Sanjiangyuan region induces more streamflow extremes at different global warming levels
Peng Ji, Xing Yuan, Feng Ma, and Ming Pan
Hydrol. Earth Syst. Sci., 24, 5439–5451, https://doi.org/10.5194/hess-24-5439-2020,https://doi.org/10.5194/hess-24-5439-2020, 2020
Short summary
More severe hydrological drought events emerge at different warming levels over the Wudinghe watershed in northern China
Yang Jiao and Xing Yuan
Hydrol. Earth Syst. Sci., 23, 621–635, https://doi.org/10.5194/hess-23-621-2019,https://doi.org/10.5194/hess-23-621-2019, 2019
Short summary
Extending seasonal predictability of Yangtze River summer floods
Shanshan Wang and Xing Yuan
Hydrol. Earth Syst. Sci., 22, 4201–4211, https://doi.org/10.5194/hess-22-4201-2018,https://doi.org/10.5194/hess-22-4201-2018, 2018
Short summary

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Modelling approaches
On the combined use of rain gauges and GPM IMERG satellite rainfall products for hydrological modelling: impact assessment of the cellular-automata-based methodology in the Tanaro River basin in Italy
Annalina Lombardi, Barbara Tomassetti, Valentina Colaiuda, Ludovico Di Antonio, Paolo Tuccella, Mario Montopoli, Giovanni Ravazzani, Frank Silvio Marzano, Raffaele Lidori, and Giulia Panegrossi
Hydrol. Earth Syst. Sci., 28, 3777–3797, https://doi.org/10.5194/hess-28-3777-2024,https://doi.org/10.5194/hess-28-3777-2024, 2024
Short summary
An increase in the spatial extent of European floods over the last 70 years
Beijing Fang, Emanuele Bevacqua, Oldrich Rakovec, and Jakob Zscheischler
Hydrol. Earth Syst. Sci., 28, 3755–3775, https://doi.org/10.5194/hess-28-3755-2024,https://doi.org/10.5194/hess-28-3755-2024, 2024
Short summary
140-year daily ensemble streamflow reconstructions over 661 catchments in France
Alexandre Devers, Jean-Philippe Vidal, Claire Lauvernet, Olivier Vannier, and Laurie Caillouet
Hydrol. Earth Syst. Sci., 28, 3457–3474, https://doi.org/10.5194/hess-28-3457-2024,https://doi.org/10.5194/hess-28-3457-2024, 2024
Short summary
The agricultural expansion in South America's Dry Chaco: regional hydroclimate effects
María Agostina Bracalenti, Omar V. Müller, Miguel A. Lovino, and Ernesto Hugo Berbery
Hydrol. Earth Syst. Sci., 28, 3281–3303, https://doi.org/10.5194/hess-28-3281-2024,https://doi.org/10.5194/hess-28-3281-2024, 2024
Short summary
Machine-learning-constrained projection of bivariate hydrological drought magnitudes and socioeconomic risks over China
Rutong Liu, Jiabo Yin, Louise Slater, Shengyu Kang, Yuanhang Yang, Pan Liu, Jiali Guo, Xihui Gu, Xiang Zhang, and Aliaksandr Volchak
Hydrol. Earth Syst. Sci., 28, 3305–3326, https://doi.org/10.5194/hess-28-3305-2024,https://doi.org/10.5194/hess-28-3305-2024, 2024
Short summary

Cited articles

Abrahart, R. J., Anctil, F., Coulibaly, P., Dawson, C. W., Mount, N. J., See, L. M., Shamseldin, A. Y., Solomatine, D. P., Toth, E., and Wilby., R. L.,​​​​​​​: Two decades of anarchy? Emerging themes and outstanding challenges for neural network river forecasting​​​​​​​, Prog. Phys. Geogr., 36, 480–513, https://doi.org/10.1177/0309133312444943, 2012. 
Adnan, R. M., Liang, Z., Trajkovic, S., Zounemat-Kermani, M., Li, B., and Kisi, O.: Daily streamflow prediction using optimally pruned extreme learning machine, J. Hydrol., 577, 123981, https://doi.org/10.1016/j.jhydrol.2019.123981, 2019. 
Alfieri, L., Burek, P., Dutra, E., Krzeminski, B., Muraro, D., Thielen, J., and Pappenberger, F.: GloFAS – global ensemble streamflow forecasting and flood early warning, Hydrol. Earth Syst. Sci., 17, 1161–1175, https://doi.org/10.5194/hess-17-1161-2013, 2013. 
Balint, G., Csik, A., Bartha, P., Gauzer, B., and Bonta, I.: Application of meterological ensembles for Danube flood forecasting and warning, in: Transboundary Floods: Reducing Risks through Flood Management, edited by: Marsalek, J., Stancalie, G., and Balint, G., NATO Science Series, Springer, Dordecht, the Netherlands, 57–68, https://doi.org/10.1007/1-4020-4902-1_6, 2006. 
Download
Short summary
Hourly streamflow ensemble forecasts with the CSSPv2 land surface model and ECMWF meteorological forecasts reduce both the probabilistic and deterministic forecast error compared with the ensemble streamflow prediction approach during the first week. The deterministic forecast error can be further reduced in the first 72 h when combined with the long short-term memory (LSTM) deep learning method. The forecast skill for LSTM using only historical observations drops sharply after the first 24 h.