
Hydrol. Earth Syst. Sci., 26, 265–278, 2022
https://doi.org/10.5194/hess-26-265-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

Ensemble streamflow forecasting over a cascade reservoir
catchment with integrated hydrometeorological modeling
and machine learning
Junjiang Liu1, Xing Yuan1,2, Junhan Zeng1, Yang Jiao1, Yong Li3, Lihua Zhong3, and Ling Yao4

1School of Hydrology and Water Resources, Nanjing University of Information Science and Technology,
Nanjing 210044, China
2Key Laboratory of Regional Climate-Environment for Temperate East Asia, Institute of Atmospheric Physics,
Chinese Academy of Sciences, Beijing 100029, China
3Guangxi Meteorological Disaster Prevention Center, Nanning 530022, China
4Guangxi Guiguan Electric Power Co., Ltd., Nanning 530029, China

Correspondence: Xing Yuan (xyuan@nuist.edu.cn)

Received: 23 July 2021 – Discussion started: 30 July 2021
Revised: 21 November 2021 – Accepted: 6 December 2021 – Published: 18 January 2022

Abstract. A popular way to forecast streamflow is to
use bias-corrected meteorological forecasts to drive a cal-
ibrated hydrological model, but these hydrometeorological
approaches suffer from deficiencies over small catchments
due to uncertainty in meteorological forecasts and errors
from hydrological models, especially over catchments that
are regulated by dams and reservoirs. For a cascade reser-
voir catchment, the discharge from the upstream reservoir
contributes to an important part of the streamflow over the
downstream areas, which makes it tremendously hard to ex-
plore the added value of meteorological forecasts. Here, we
integrate meteorological forecasts, land surface hydrological
model simulations and machine learning to forecast hourly
streamflow over the Yantan catchment, where the stream-
flow is influenced by both the upstream reservoir water re-
lease and the rainfall–runoff processes within the catchment.
Evaluation of the hourly streamflow hindcasts during the
rainy seasons of 2013–2017 shows that the hydrometeo-
rological ensemble forecast approach reduces probabilistic
and deterministic forecast errors by 6 % compared with the
traditional ensemble streamflow prediction (ESP) approach
during the first 7 d. The deterministic forecast error can be
further reduced by 6 % in the first 72 h when combining
the hydrometeorological forecasts with the long short-term
memory (LSTM) deep learning method. However, the fore-
cast skill for LSTM using only historical observations drops

sharply after the first 24 h. This study implies the potential of
improving flood forecasts over a cascade reservoir catchment
by integrating meteorological forecasts, hydrological model-
ing and machine learning.

1 Introduction

Floods are the most destructive events among natural dis-
asters, causing huge amounts of damage to human society.
Reservoirs are constructed to regulate river flows and have
significantly reduced flood risks and damage (Ji et al., 2020).
However, the number and intensity of extreme precipitation
events are increasing in many areas as global warming con-
tinues, thereby amplifying the potential for flood hazards
(Hao et al., 2013; Shao et al., 2016; Wei et al., 2018; Yuan
et al., 2018a; Wang et al., 2019). Thus, accurate streamflow
forecasts are needed to provide guidelines for reservoir oper-
ations (Robertson and Wang, 2013).

A common approach to streamflow forecasting is to use
hydrological models; the first attempt at this kind stream-
flow forecasting can be traced back to the 1850s and involved
simple regression-type approaches to predict discharge from
observed precipitation (Mulvaney, 1851). Since then, model
concepts have been further augmented by designing new
data networks, addressing the heterogeneity of hydrologi-
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cal processes, capturing the nonlinear characteristics of hy-
drologic system and parameterizing models (Hornberger and
Boyer, 1995; Kirchner, 2006). With advancements in com-
puter technology and high-resolution observation, a well-
parameterized hydrological model can now simulate stream-
flow with high accuracy (Kollet et al., 2010; Ye et al., 2014;
Graaf et al., 2015; Yuan et al., 2018b).

Streamflow simulations from hydrological models heavily
rely on meteorological forcing inputs, especially precipita-
tion, which can be measured at in situ gauges or retrieved
from satellites and radars. However, for medium-range (2–
15 d ahead) streamflow forecasts, precipitation forecasts are
needed (Hopson and Webster, 2010). To improve the fore-
casts, ensemble techniques that can give a deterministic esti-
mate as well as the estimate’s uncertainty have become pop-
ular. Ensemble weather forecasting can be traced back to
1963 (Lorenz, 1963). Later, Leith (1974) transferred a de-
terministic forecast into an ensemble using the Monte Carlo
method in order to describe the atmospheric uncertainty. In
the 1990s, ensemble forecasting was developed into an inte-
gral part of numerical weather prediction that showed higher
skill than the deterministic forecast, even with higher model
resolution (Toth et al., 2001). Due to the rapid development
of this technique, ensemble weather forecasting and climate
predictions are applied to hydrological forecasting studies
by combining them with hydrological models (Jasper et al.,
2002; Balint et al., 2006; Jaun et al., 2008; Xu et al., 2015;
Yuan et al., 2016; Zhu et al., 2019). Provided with an ensem-
ble of streamflow forecasts and their forecast variability, a
reservoir can maintain a reliable utility from natural stream-
flow better than that provided with a deterministic streamflow
forecast only (Zhao et al., 2011). However, the streamflow
prediction skill depends on whether the precipitation fore-
casts introduced into the hydrological model are skillful (Al-
fieri et al., 2013). When assessing the skill of this hydromete-
orological forecasting approach, a benchmark is needed. Us-
ing ensembles of historical climatology data (Day, 1985) as
meteorological forecast inputs, which is known as ensemble
streamflow prediction (ESP), is often selected as the bench-
mark approach. Evaluations of hydrological forecasts have
indicated that forecast skill has a close relationship with the
catchment size, geographical location and resolution (Alfieri
et al., 2013; Pappenberger et al., 2015); thus, there is a ne-
cessity to compare these forecasts with the ESP in order to
establish the skill of the hydrometeorological forecasting ap-
proach.

Although physically based hydrological models are widely
used, it is still hard to apply a hyper-resolution distributed
model to streamflow forecasting due to its demand for ob-
servation data, its complex model structures, and the compu-
tational resource requirements for calibration and application
(Wood et al., 2011; Kratzert et al., 2018; Yaseen et al., 2018).
In cascade reservoir systems, there are two sources of stream-
flow: the rainfall within the interval basin and the upstream
reservoir discharge. While the rainfall–runoff relationship is

well studied, it is challenging to reproduce the reservoir op-
erating rules in a physical model (Gao et al., 2010; Zhang et
al., 2016; Dang et al., 2020).

Machine learning methods can recognize patterns hid-
den in input data and can simulate or predict streamflow
without explicit descriptions of the underlying physical pro-
cesses (Kisi, 2007; Adnan et al., 2019). Neural networks are
suitable for streamflow forecasting among machine learn-
ing models, and some of them can even outperform phys-
ically based hydrological models. For example, Humphrey
et al. (2016) showed that their combined Bayesian artificial
neural network (ANN) with the modèle du Génie Rural à
4 paramètres Journalier (GR4J) approach outperforms the
GR4J model with respect to monthly streamflow forecasting.
Kratzert et al. (2019) showed that an approach based on the
long short-term memory (LSTM) technique outperforms a
well-calibrated Sacramento Soil Moisture Accounting Model
(SAC-SMA). Yang et al. (2020) used a geomorphology-
based hydrological model (GBHM) combined with a tradi-
tional ANN model to simulate daily streamflow, which can
provide enough physical evidence and can run with less ob-
servation data. Although neural network models are criti-
cized with little physical evidence (Abrahart et al., 2012),
their potential in hydrological forecasting is yet to be ex-
plored.

In this study, we combine machine learning with a hy-
drometeorological approach for hourly streamflow forecast-
ing over a cascade reservoir catchment located in south-
western China. We use the meteorological hindcast data
from the European Centre for Medium-Range Weather Fore-
casts (ECMWF) model that participated in the THORPEX
(THe Observing-system Research and Predictability EXper-
iment) Interactive Grand Global Ensemble (TIGGE) project
to drive a newly developed high-resolution land surface
model, named “CSSPv2” (Conjunctive Surface-Subsurface
Process, version 2; Yuan et al., 2018b), to provide runoff
and streamflow forecasts, and we corrected the forecasts us-
ing the LSTM model. We aim to improve flood forecasting
over the cascade reservoir catchment by integrating meteoro-
logical forecasts, hydrological modeling and machine learn-
ing. So we strive to (1) calibrate the hydrological model,
(2) bias correct the meteorological forecasts, (3) evaluate the
streamflow forecast skill and (4) test the combined physical–
statistical approach.

2 Study area, data, model and method

2.1 Study area

The Yantan Hydropower Station is in the middle reaches
of the Hongshui River in Dahua Yao Autonomous County,
Guangxi Province. This station is the fifth level in the 10-
level development of the Hongshuihe hydropower base in
the Nanpanjiang River, connected with the upstream Longtan
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Figure 1. Locations of discharge gauges and rain gauges over the
Yantan Basin.

Table 1. Information on hydrological gauges.

Gauge Longitude Latitude Drainage area
(◦ E) (◦ N) (km2)

Longtan 107.09 25.00 –
Yantan 107.50 24.11 5950 (orange area in Fig. 1)
Luofu 107.36 24.90 800 (green area in Fig. 1)
Jiazhuan 107.12 24.21 2150 (purple area in Fig. 1)

Hydropower Station and the downstream Dahua Hydropower
Station. The drainage area between the Longtan Hydropower
Station and Yantan Hydropower Station is 8900 km2. The
annual mean streamflow at the Yantan hydrological gauge
is 55.5×109 m3. The river passes through a karst mountain
area, with a narrow valley, steep slope and scattered culti-
vated land, and the average slope is 0.036 %. Figure 1 shows
the locations of four hydrological gauges, with detailed in-
formation listed in Table 1.

2.2 Data and method

2.2.1 Hydrometeorological observations

There are 97 meteorological observation stations within the
catchment (Fig. 1). Here, observed hourly 2 m temperature,
10 m wind speed, relative humidity, accumulated precipita-
tion and surface pressure data were interpolated onto a 5 km
gridded observation dataset using the inverse distance weight
method. The hourly surface downward solar radiation data
from the China Meteorological Administration Land Data
Assimilation System (CLDAS) were also interpolated onto
a 5 km dataset using the bilinear interpolation method. The
hourly surface downward thermal radiation was estimated by
specific humidity, pressure and temperature. This dataset was
used to drive the CSSPv2 land surface hydrological model.

The monthly runoff for each 5 km grid was estimated by
disaggregating control streamflow station observations with
the ratio of observed grid monthly precipitation and catch-
ment mean precipitation. The gridded runoff was used to cal-
ibrate the CSSPv2 model at each grid (Yuan et al., 2016). The
calibrated runoff parameters can be used to better represent
the heterogeneity of the rainfall–runoff processes and make
precise runoff simulations.

2.2.2 Ensemble meteorological hindcast data and ESP
hindcasts

The TIGGE dataset consists of ensemble forecast data from
10 global numerical weather prediction centers starting from
October 2006; the dataset has been made available for sci-
entific research via data archive portals at ECMWF and the
China Meteorological Administration (CMA). TIGGE has
become the focal point for a range of research projects,
including research on ensemble forecasting, predictability
and the development of products to improve the prediction
of severe weather (Bougeault et al., 2010). In this paper,
TIGGE data from April to September during 2013–2017
from ECMWF were used as meteorological hindcast data.
The 3-hourly meteorological hindcasts for a 7 d lead time
from 51 ensemble members (including a control forecast)
were interpolated to a 5 km resolution via bilinear interpo-
lation. The forecast precipitation and temperature were cor-
rected to match the observational means in order to remove
the biases.

The ESP was accomplished by applying historical meteo-
rological forcings (Day, 1985). In this paper, the meteorolog-
ical forcings from the same date as the forecast start date to
the next 9 d of each year (excluding the target year) were se-
lected as the ESP forcings. Take 1 April 2013 as an example,
the 7 d observation periods starting from 1 to 10 April (i.e.,
1–7 April, 2–8 April, . . . , 10–16 April) in the years 2014,
2015, 2016 and 2017 were selected as the forecast ensem-
ble forcings of the issue date (1 April), resulting in a total of
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40 ensemble members. The detailed information on the raw
datasets is given in Table 2.

2.2.3 CSSPv2 streamflow hindcasts

The physical hydrological model used in this paper is the
Conjunctive Surface-Subsurface Process model, version 2
(CSSPv2; Yuan et al., 2018b). The CSSPv2 model is a dis-
tributed, grid-based land surface hydrological model that was
developed from the Common Land Model (Dai et al., 2003,
2004), but it has better representations of lateral surface and
subsurface hydrological processes and their interactions. The
routing model used here employs the kinetic wave equation
as a covariance function, which is solved via a Newton algo-
rithm. A main reason for adopting this covariance function is
that it suits basins with mountainous terrain. The CSSPv2
model was successfully used to perform a high-resolution
(3 km) land surface simulation over the Sanjiangyuan region,
which is the headwater of major Chinese rivers (Ji and Yuan,
2018). In this paper, we calibrated the CSSPv2 model against
monthly estimated runoff to simulate the natural hydrolog-
ical processes using the shuffled complex evolution (SCE-
UA) approach (Duan et al., 1994). The calibrated param-
eters include the maximum velocity of baseflow, the vari-
able infiltration curve parameter, the fraction of maximum
soil moisture where nonlinear baseflow occurs and the frac-
tion of maximum velocity of baseflow where nonlinear base-
flow begins. The hourly observed streamflow at the Yan-
tan hydrological gauge was used to manually calibrate the
CSSPv2 routing model, including the slope, river density,
roughness, width and depth. The observed streamflow values
at the Longtan hydrological gauge were added into the corre-
sponding grid to provide upstream streamflow information.
We used a high-resolution elevation database (hereafter re-
ferred to as DEM90) for sub-grid parameterization and then
calculated the initial values of these river channel parame-
ters. We first extracted the slope angle and the natural river
flow path from DEM90 and then identified the accurate river
network using a drainage area threshold of 0.18 km2. River
density and bed slope values for each 5 km grid were calcu-
lated as follows:

rivden=
∑

l/A, (1)

bedslp=mean(tan(β)), (2)

where rivden is the river density (km/km2), bedslp is the river
channel bed slope (unitless), A is the area of a 5 km grid
(km2),

∑
l is the total river channel length (m) within the

grid and β is the slope angle (radian) for each river segment
located in the grid.

Other river channel parameters were estimated using em-
pirical formulas (Getirana et al., 2012; Luo et al., 2017) as
follows:

W = 1.956×A0.413
acc , (3)

H = 0.245×A0.342
acc , (4)

n= 0.03+ (0.05− 0.03)
Hmax−H

Hmax−Hmin
, (5)

where W , H and n are river width (m), depth (m) and
roughness (unitless) for each 5 km grid; Aacc is the upstream
drainage area (km2); and Hmax and Hmin refer to the max-
imum and minimum values of river depth calculated by
Eq. (4).

Using a trial-and-error procedure, we calibrated these river
channel parameters to match the simulated streamflow with
observed hourly records at the Yantan hydrological gauge.
The simulation results were evaluated by calculating the
Nash–Sutcliffe efficiency (NSE) with corresponding obser-
vation data. The descriptions of the calibrated parameters and
their ranges are given in Table 3.

After calibration, we drove the CSSPv2 model using 5 km
regridded and bias-corrected TIGGE-ECMWF forecast forc-
ing during 2013–2017 to provide a set of 7 d hindcasts.
Streamflow hindcasts from both the ESP and the hydrom-
eteorlogical approach (TIGGE-ECMWF/CSSPv2, where
CSSPv2 was driven by TIGGE-ECMWF) were corrected by
matching monthly mean streamflow observations to remove
the biases, and the hindcast experiments were termed “ESP-
Hydro” and “Meteo-Hydro” (Table 4). Figure 2 shows the
procession of the CSSPv2 hindcasts: the calibrated CSSPv2
model was first driven with the observation dataset to gen-
erate initial hydrological conditions (e.g., soil moisture and
surface water) for each forecast issue date, and the CSSPv2
model was then driven with forecast data (TIGGE-ECMWF
or ESP) at every forecast issue date with the generated initial
conditions to perform a 7 d hindcast.

2.2.4 LSTM streamflow forecast

Long short-term memory (LSTM) is a type of recurrent neu-
ral network model that learns from sequential data. The input
of the LSTM model includes the forecast interval stream-
flow at the specified forecast step obtained from TIGGE-
ECMWF/CSSPv2, historical upstream streamflow observa-
tions and historical streamflow observations at the Yantan hy-
drological gauge. The network was trained on sequences of
April to September data from 2013 to 2017, with six histori-
cal streamflow observations and one forecast interval stream-
flow to predict the total streamflow at each forecast time step
(Fig. 2). The LSTM was calibrated using a cross validation
method by leaving the target year out.

Before calibration, all input and output variables were nor-
malized as follows:

q0 =
(q − qmin)

(qmax− qmin)
, (6)
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Table 2. Information on hydrological datasets. (Please note that dates are given in the following format in this table: yyyy/mm/dd.)

Dataset Time range Time step

Rain gauge observation forcing 2013/1/1–2017/12/31 Hourly
Longtan & Yantan discharge gauge streamflow data 2013/1/1–2017/12/31 Hourly
Jiazhuan & Luofu discharge gauge streamflow data 2013/4/1–2017/9/30 Daily
TIGGE-ECMWF forecast forcing 2013/4/1–2017/9/30 Hourly

Table 3. Descriptions of calibrated parameters.

Parameters Range

Maximum velocity of baseflow (mm/d) 0.00000116–0.000579

Fraction of maximum velocity of baseflow where nonlinear
baseflow begins

0.001–0.99

Fraction of maximum soil moisture where nonlinear
baseflow occurs

0.2–0.99

Variable infiltration curve parameter 0.001–1

River width (m) 0–101.16

River depth (m) 0–6.46

River density (km/km2) 0.049–1.03

River roughness 0.033–0.05

River slope 0.015–0.47

where q0, q, qmax and qmin are the normalized variable, the
input variable, and the maximum and minimum of the se-
quence of the variable, respectively. The hindcast experiment
was termed “Meteo-Hydro-LSTM” (Table 2). In addition,
we also tried an LSTM streamflow forecasting approach that
only used 6 h historical streamflow data as inputs; this exper-
iment was termed “LSTM” (Table 2). The process of LSTM
is similar to Meteo-Hydro-LSTM but without the forecast in-
terval streamflow, which is also shown in Fig. 2.

2.3 Evaluation method

The root-mean-squared error (RMSE) was used to evaluate
the deterministic forecast, i.e., the ensemble means of 51
(ECMWF) or 40 (ESP) forecast members. To evaluate prob-
abilistic forecasts, the continuous ranked probability score
(CRPS) was calculated as follows:

CRPS=
∫
∞

−∞

[F (y)−Fo(y)]
2, (7)

where

Fo(y)=

{
0, y < observed value
1, y ≥ observed value (8)

is a cumulative probability step function that jumps from zero
to one at the point where the forecast variable y equals the

observation, and F(y) is a cumulative probability distribu-
tion curve formed by the forecast ensembles. The CRPS has
a negative orientation (smaller values are better), and it re-
wards the concentration of probability around the step func-
tion located at the observed value (Wilks et al., 2005). The
skill score for deterministic forecast was calculated as

SSRMSE =
RMSE−RMSEref

0−RMSEref
= 1−

RMSE
RMSEref

. (9)

The skill score for a probabilistic forecast (CRPSS) could be
calculated similarly to the SSRMSE.

3 Results

3.1 Evaluation of CSSP calibration

The employed CSSPv2 model is a fully distributed hydrolog-
ical model, and the streamflow is calculated through a pro-
cess of converting gridded rainfall into runoff and a process
of runoff routing. Figure 3 shows the runoff calibration re-
sults by calculating the NSE of monthly runoff simulations
compared with observed gridded monthly runoff. After cal-
ibrating the CSSPv2 runoff model, the NSE of all grids are
above zero, which indicates that the runoff simulation results
in all grids are more reliable than the climatology method.
In addition, grids distributed in the downstream region have
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Table 4. Experimental design in this study.

Experiments Description

ESP-Hydro Using the CSSPv2 land surface hydrological model driven by randomly
sampled historical meteorological forcings

Meteo-Hydro Using the CSSPv2 model driven by bias-corrected TIGGE-ECMWF
hindcast meteorological forcings

Meteo-Hydro-LSTM Using the LSTM model to correct streamflow from the Meteo-Hydro
hindcast

LSTM Using the LSTM model to forecast streamflow based on observations
only

Figure 2. A diagram for the integrated hydrometeorological and machine learning streamflow prediction.

better NSE than the upstream grids. The NSE values of the
grids in the southern part are greater than 0.5, which ac-
counts for two-thirds of the interval basin area. Higher NSE
values in the upstream part of Jiazhuan station (Fig. 1) are
due to the more humid climate (not shown), as hydrological
models usually have better performance over wetter areas.
For the downstream areas with less precipitation, the higher
NSE values are related to the higher percentage of sand in
the soil (not shown). Under the same meteorological condi-
tions, there is higher hydraulic conductivity with higher sand
content (Wang et al., 2016), and it yields less runoff under
infiltration excess, which is more suitable for the saturation-
excess-based runoff generation for the CSSPv2 model (Yuan
et al., 2018b).

Figures 4 and 5 show the results after the calibration of
the routing model, where CSSPv2 is driven by observed me-
teorological forcings to provide streamflow simulations and
compared against observed streamflow at the Yantan hydro-
logical gauge. Figure 4 shows the daily and monthly stream-
flow simulation results. The monthly result (Fig. 4f) shows
that the simulated streamflow closely follows the observed
streamflow, and the NSE is 0.96. The daily streamflow simu-
lations during flood seasons (Fig. 4a–e) also show good per-
formance, and the NSE is 0.92. During June and July in 2014,
2015 and 2017, the CSSPv2 model underestimated the daily
streamflow with a maximum of 1104 m3/s and an average
of 334 m3/s (Fig. 4b, c, e). In 2013 and 2016, the difference
between the observed and simulated streamflow is relatively
small, and the average difference is 96 m3/s (Fig. 4a, d).
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Figure 3. Nash–Sutcliffe efficiency coefficients for the calibrated
grid runoff simulation from CSSPv2.

Figure 5 shows the hourly streamflow simulation results
for a few flood events. Figure 5a shows that the CSSPv2
model can accurately simulate the streamflow response to a
rainfall event after a dry period. Figure 5b–d show that the
CSSPv2 model overpredicted water loss during the recession
period for instantaneous heavy rainfall events. Figure 5e–
f show that the simulated streamflow has a larger fluctua-
tion than the observations for continuous rainfall events. The
simulated streamflow is also smoother than the observations.
Nevertheless, the NSE for the hourly streamflow simulation
is 0.61, which suggests that CSSPv2 has acceptable perfor-
mance on an hourly timescale.

3.2 Bias correction of the TIGGE-ECMWF
meteorological forecasts

The resolution of TIGGE-ECMWF grid data is 0.25◦, so the
data were interpolated onto a 5 km grid to drive the CSSPv2
model. We calculated the annual average precipitation and
temperature for both the observations and TIGGE-ECMWF
and then performed a bias correction by adding back the
difference (for precipitation) or multiplying back the ratio
(for temperature) to match the observations’ averages. Fig-
ure 6 shows the correlation coefficient and RMSE of TIGGE-
ECMWF precipitation and temperature forecasts compared
against the observations, either before or after bias correc-
tion. The 51-ensemble mean shows better performance for

precipitation and temperature (the red dashed lines) than the
best ensemble members (the green dashed lines), with an
average RMSE reduction of 3.66 mm/d and an average cor-
relation increase of 0.04 for precipitation as well as an av-
erage RMSE reduction of 0.1 K and an average correlation
increase of 0.03 for temperature. After bias correction, the
51-ensemble means still perform better than best ensemble
members. Compared with the ensemble mean results be-
fore bias correction, the RMSE decreased by 0.23 mm/d for
the bias-corrected precipitation and decreased by 1 K for the
bias-corrected surface air temperature. For the bias-corrected
ensemble mean results, the average RMSE and correlation
are 14.6 mm/d and 0.44 for precipitation, and they are 1.25 K
and 0.87 for surface air temperature.

3.3 Comparison between the ESP-Hydro and
Meteo-Hydro streamflow forecasts

Figure 7 presents the variations in RMSE and CRPS for
the ESP-Hydro and Meteo-Hydro hourly streamflow fore-
casts at the Yantan hydrological gauge. For the probabilistic
forecast, Fig. 7a shows that the CRPS for the Meteo-Hydro
streamflow forecast ranges from 165 to 225 m3/s, while the
CRPS for the ESP-Hydro streamflow forecast ranges from
170 to 230 m3/s. The Meteo-Hydro approach performs bet-
ter than ESP-Hydro, with a lower CRPS at all lead times
and an average 6 % improvement in the CRPSS (Fig. 7c).
For the deterministic forecast, Fig. 7b shows that the RMSE
for the Meteo-Hydro streamflow forecast ranges from 250
to 350 m3/s, while the RMSE for the ESP-Hydro streamflow
forecast ranges from 250 to 390 m3/s. The Meteo-Hydro ap-
proach also performs better than ESP-Hydro with a lower
RMSE at all lead times, especially after 3 d, with the average
reduction in the RMSE reaching 6 % (Fig. 7d).

Figure 7 also shows that the forecast skill of both met-
rics have a similar diurnal cycle, where the RMSE and CRPS
reach their peaks at around 00:00 UTC and drop to their lows
at 06:00 UTC. Figure 8 shows the diurnal cycle of the vari-
ables employed in the model, namely observed catchment
mean rainfall and observed streamflow at the Yantan and
Longtan hydrological gauges, to explain the diurnal cycle
of the ESP-Hydro and Meteo-Hydro forecasting skill. These
three input variables show different diurnal patterns: the ob-
served rainfall starts to rise at 00:00 UTC and reaches its
maximum at 06:00 UTC; the observed streamflow at the Yan-
tan hydrological gauge drops to its minimum at 12:00 UTC
and rises to its maximum at 00:00 UTC; and the streamflow
from upstream of the Longtan hydrological gauge starts to
drop at 00:00 UTC and reaches its minimum at 06:00 UTC.
After comparing these diurnal cycles with the cycle of fore-
cast skill, it is found that the forecast skill decreases when
the upstream Longtan outflow starts to decrease and the pre-
cipitation starts to increase. When the upstream Longtan out-
flow increases and the precipitation starts to decrease (after
06:00 UTC), the forecast skill rises.
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Figure 4. Evaluation of streamflow simulations at the Yantan hydrological gauge. The black and red lines are the observed and simulated
streamflow. Panels (a)–(e) show daily streamflow, and panel (f) shows monthly streamflow. The gray bars represent daily (or monthly)
precipitation.

Figure 5. The same as Fig. 4 but for the evaluation of hourly streamflow simulations at the Yantan hydrological gauge. (Please note that
dates are given in the following format in this figure: yyyy/mm/dd.)
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Figure 6. Evaluation of precipitation and temperature hindcasts from TIGGE-ECMWF. The red and blue lines represent the best and worst
results among the 51 TIGGE-ECMWF ensemble members, respectively, and the green lines represent the results for the ensemble means of
51 members. Solid and dashed lines represent the results after and before bias corrections, respectively.

3.4 The Meteo-Hydro-LSTM streamflow forecast

Machine learning methods can recognize patterns hidden in
input data and can simulate or predict streamflow without ex-
plicit descriptions of the underlying physical processes. Fig-
ure 9 shows the RMSE of the Meteo-Hydro-LSTM stream-
flow forecast using the ensemble mean hydrological forecast
as described in the section above and using the past 6 h ob-
served streamflow of the Yantan hydrological gauge as input.
Compared with the Meteo-Hydro and ESP-Hydro approach,
applying the LSTM model can further decrease the RMSE
within the first 72 h. The RMSE of the Meteo-Hydro-LSTM
approach ranges from 205 to 363 m3/s during these 3 days,
suggesting an average 6 % improvement compared with the
Meteo-Hydro approach.

Figure 9 also shows the RMSE of the LSTM streamflow
forecast using only the past 6 h observed streamflow of the

Yantan hydrological gauge as input. Without using the phys-
ical model forecast, the RMSE is improved only when the
lead time is less than 1 d. Moreover, the performance of
LSTM is far worse than the Meteo-Hydro streamflow fore-
cast when the lead time is more than 2 d.

Figure 10 presents several examples of streamflow fore-
casts using the Meteo-Hydro-LSTM and Meteo-Hydro ap-
proaches to show the forecast improvements in detail. The
Meteo-Hydro-LSTM approach reduced the flood peak value
and the water loss during flood recession period compared
with the Meteo-Hydro streamflow forecast approach, which
improves the streamflow prediction for most cases (Fig. 10b–
f). However, when the upstream reservoir’s flood operation
is triggered by continuous heavy rain, Meteo-Hydro may un-
derpredict the streamflow. As the LSTM model further de-
creases the streamflow, the Meteo-Hydro-LSTM method can
end up worsening the streamflow forecast, which means that
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Figure 7. (a) The continuous ranked probability score (CRPS) and (b) root-mean-squared error (RMSE) for the daily streamflow ensemble
forecasts at the Yantan hydrological gauge. Panels (c) and (d) show the skill score in terms of the CRPS and RMSE for Meteo-Hydro, where
ESP-Hydro is used as the reference forecast.

Figure 8. Diurnal cycle of Longtan outflow (m3/s; dashed black line), Yantan inflow (m3/s; solid black line) and basin-averaged precipitation
(mm/h; blue line) as well as their ranges. The time shown in this figure is universal time.

the machine learning method may not always improve the
forecasts (Fig. 10a).

4 Conclusions

In this study, we developed and evaluated a streamflow fore-
casting framework by coupling meteorological forecasts with
a land surface hydrological model (CSSPv2) and a machine
learning method (LSTM) over a cascade reservoir catchment
using hindcast data from 2013 to 2017. The monthly ob-
served runoff was used to calibrate the runoff generation
module of the CSSPv2 model grid by grid, and the hourly ob-

served streamflow at the Yantan hydrological gauge was used
to calibrate the routing module of the CSSPv2 model. The
bias-corrected TIGGE-ECMWF ensemble forecasts were
then used to drive the CSSPv2 for streamflow forecasts,
and the LSTM model was used to correct the stream-
flow forecasts, resulting in an integrated meteorological–
hydrological–machine learning forecast framework.

With automatic offline calibration of the CSSPv2 model,
the NSE values are 0.96, 0.92 and 0.61 for streamflow sim-
ulations at the Yantan hydrological gauge at monthly, daily
and hourly timescales, respectively. The bias-corrected en-
semble mean TIGGE-ECMWF forcings, which perform the

Hydrol. Earth Syst. Sci., 26, 265–278, 2022 https://doi.org/10.5194/hess-26-265-2022



J. Liu et al.: Ensemble streamflow forecasting over a cascade reservoir catchment 275

Figure 9. The RMSE (m3/s) for the hourly streamflow hindcasts from four forecasting approaches. The green line represents the Meteo-
Hydro-LSTM forecast, the red line represents the Meteo-Hydro forecast, the blue line represent the ESP-Hydro forecast and the purple line
represents the LSTM forecast based on historical streamflow observations alone.

Figure 10. Evaluation of the forecast approaches for a few flooding events. The black lines are observed streamflow from the Yantan
hydrological gauge, the blue lines are the Meteo-Hydro ensemble mean streamflow forecast and the red lines are the Meteo-Hydro-LSTM
forecast streamflow using the Meteo-Hydro ensemble mean forecast with LSTM. The gray bars represent hourly precipitation averaged over
the basin. (Please note that dates are given in the following format in this figure: mm/dd.)

best among all ensemble members, show average respective
RMSE and correlation values of 14.6 mm/d and 0.44 for pre-
cipitation forecasts and 1.3 K and 0.87 for surface air temper-
ature forecasts. By comparing these results with the hourly
observed streamflow, it is found that the integrated hydrom-
eteorological forecast approach (Meteo-Hydro) increases the
probabilistic and deterministic forecast skill against the ini-
tial condition-based approach (ESP-Hydro) by 6 %.

Adding the LSTM model to the hydrometeorological fore-
cast (Meteo-Hydro-LSTM) can further reduce the forecast
error. Within the first 72 h, LSTM can improve the forecast
skill by a maximum of 25 % and an average of 6 %. However,
if we do not use the streamflow predicted by Meteo-Hydro,
the error from the LSTM increases rapidly after 24 h, and
the historical-data-based LSTM method performs worse than
the Meteo-Hydro method. Most cascade reservoirs cannot
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currently forecast streamflow beyond 6 h, and the integrated
Meteo-Hydro-LSTM approach has the potential to improve
the forecasts at long lead times. This study mainly focused on
exploring the added value of meteorology–hydrology cou-
pled forecast and LSTM forecasts in a non-closed catch-
ment; therefore, the forecast uncertainty from upstream out-
flow was ignored by using the observed outflow. In the fu-
ture, it is planned to include the upstream outflow forecast;
however, this will be very challenging, as it requires the de-
velopment of an upstream hydrometeorological forecast ca-
pability as well as reservoir regulation forecasts. Artificial
intelligence (AI) techniques are expected to complement the
physical model for reservoir regulation forecasts.

Data availability. The TIGGE-ECMWF hindcast data can be
downloaded from https://apps.ecmwf.int/datasets/data/tigge/
levtype=sfc/type=pf/ (Parsons et al., 2017). The in situ observations
and simulation data are available from the authors upon request.
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