Articles | Volume 26, issue 8
https://doi.org/10.5194/hess-26-2019-2022
https://doi.org/10.5194/hess-26-2019-2022
Research article
 | 
25 Apr 2022
Research article |  | 25 Apr 2022

Use of streamflow indices to identify the catchment drivers of hydrographs

Jeenu Mathai and Pradeep P. Mujumdar

Related authors

CAMELS-INDIA: hydrometeorological time series and catchment attributes for 472 catchments in Peninsular India
Nikunj K. Mangukiya, Kanneganti Bhargav Kumar, Pankaj Dey, Shailza Sharma, Vijaykumar Bejagam, Pradeep P. Mujumdar, and Ashutosh Sharma
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-379,https://doi.org/10.5194/essd-2024-379, 2024
Preprint under review for ESSD
Short summary
On the regional-scale variability in flow duration curves in Peninsular India
Pankaj Dey, Jeenu Mathai, Murugesu Sivapalan, and Pradeep P. Mujumdar
Hydrol. Earth Syst. Sci., 28, 1493–1514, https://doi.org/10.5194/hess-28-1493-2024,https://doi.org/10.5194/hess-28-1493-2024, 2024
Short summary
On the regional-scale streamflow variability using flow duration curve
Pankaj Dey, Jeenu Mathai, Murugesu Sivapalan, and Pradeep Mujumdar
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-286,https://doi.org/10.5194/hess-2022-286, 2023
Preprint withdrawn
Short summary
Influence of climate change, land use land cover, population and industries on the pollution of Ganga River
Sneha Santy, Pradeep Mujumdar, and Govindasamy Bala
EGUsphere, https://doi.org/10.5194/egusphere-2022-796,https://doi.org/10.5194/egusphere-2022-796, 2022
Preprint archived
Short summary
Hydrology and water resources management in ancient India
Pushpendra Kumar Singh, Pankaj Dey, Sharad Kumar Jain, and Pradeep P. Mujumdar
Hydrol. Earth Syst. Sci., 24, 4691–4707, https://doi.org/10.5194/hess-24-4691-2020,https://doi.org/10.5194/hess-24-4691-2020, 2020
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Theory development
Characterizing nonlinear, nonstationary, and heterogeneous hydrologic behavior using ensemble rainfall–runoff analysis (ERRA): proof of concept
James W. Kirchner
Hydrol. Earth Syst. Sci., 28, 4427–4454, https://doi.org/10.5194/hess-28-4427-2024,https://doi.org/10.5194/hess-28-4427-2024, 2024
Short summary
Ratio limits of water storage and outflow in a rainfall–runoff process
Yulong Zhu, Yang Zhou, Xiaorong Xu, Changqing Meng, and Yuankun Wang
Hydrol. Earth Syst. Sci., 28, 4251–4261, https://doi.org/10.5194/hess-28-4251-2024,https://doi.org/10.5194/hess-28-4251-2024, 2024
Short summary
Technical Note: The divide and measure nonconformity – how metrics can mislead when we evaluate on different data partitions
Daniel Klotz, Martin Gauch, Frederik Kratzert, Grey Nearing, and Jakob Zscheischler
Hydrol. Earth Syst. Sci., 28, 3665–3673, https://doi.org/10.5194/hess-28-3665-2024,https://doi.org/10.5194/hess-28-3665-2024, 2024
Short summary
Bimodal hydrographs in a semi-humid forested watershed: characteristics and occurrence conditions
Zhen Cui, Fuqiang Tian, Zilong Zhao, Zitong Xu, Yongjie Duan, Jie Wen, and Mohd Yawar Ali Khan
Hydrol. Earth Syst. Sci., 28, 3613–3632, https://doi.org/10.5194/hess-28-3613-2024,https://doi.org/10.5194/hess-28-3613-2024, 2024
Short summary
Flood drivers and trends: a case study of the Geul River catchment (the Netherlands) over the past half century
Athanasios Tsiokanos, Martine Rutten, Ruud J. van der Ent, and Remko Uijlenhoet
Hydrol. Earth Syst. Sci., 28, 3327–3345, https://doi.org/10.5194/hess-28-3327-2024,https://doi.org/10.5194/hess-28-3327-2024, 2024
Short summary

Cited articles

Addor, N., Newman, A. J., Mizukami, N., and Clark, M. P.: The CAMELS data set: catchment attributes and meteorology for large-sample studies, Hydrol. Earth Syst. Sci., 21, 5293–5313, https://doi.org/10.5194/hess-21-5293-2017, 2017. 
Addor, N., Nearing, G., Prieto, C., Newman, A. J., Le Vine, N., and Clark, M. P.: A Ranking of Hydrological Signatures Based on Their Predictability in Space, Water Resour. Res., 54, 8792–8812, https://doi.org/10.1029/2018WR022606, 2018. 
Addor, N., Do, H. X., Alvarez-Garreton, C., Coxon, G., Fowler, K., and Mendoza, P. A.: Large-sample hydrology: recent progress, guidelines for new datasets and grand challenges, Hydrolog. Sci. J., 65, 712–725, https://doi.org/10.1080/02626667.2019.1683182, 2020. 
Aksoy, H.: Markov chain-based modeling techniques for stochastic generation of daily intermittent streamflows, Adv. Water Resour., 26, 663–671, https://doi.org/10.1016/S0309-1708(03)00031-9, 2003. 
Aksoy, H. and Bayazit, M.: A Daily Intermittent Streamflow Simulator, Turkish J. Eng. Environ. Sci., 24, 265–276, 2000. 
Download
Short summary
With availability of large samples of data in catchments, it is necessary to develop indices that describe the streamflow processes. This paper describes new indices applicable for the rising and falling limbs of streamflow hydrographs. The indices provide insights into the drivers of the hydrographs. The novelty of the work is on differentiating hydrographs by their time irreversibility property and offering an alternative way to recognize primary drivers of streamflow hydrographs.