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Abstract. Time irreversibility or temporal asymmetry refers
to the steeper ascending and gradual descending parts of a
streamflow hydrograph. The primary goal of this study is
to bring out the distinction between streamflow indices di-
rectly linked with rising limbs and falling limbs and to ex-
plore their utility in uncovering processes associated with
the steeper ascending and gradual descending limbs of the
hydrograph within the time-irreversibility paradigm. Differ-
ent streamflow indices are correlated with the rising and
falling limbs and the catchment attributes. The key attributes
governing rising and falling limbs are then identified. The
contribution of the work is on differentiating hydrographs
by their time irreversibility features and offering an alterna-
tive way to recognize primary drivers of streamflow hydro-
graphs. A series of spatial maps describing the streamflow in-
dices and their regional variability in the Contiguous United
States (CONUS) is introduced here. These indices comple-
ment the catchment attributes provided earlier (Addor et al.,
2017) for the CAMELS data set. The findings of the study
revealed that the elevation, fraction of precipitation falling
as snow and depth to bedrock mainly characterize the rising
limb density, whereas the aridity and frequency of precipita-
tion influence the rising limb scale parameter. Moreover, the
rising limb shape parameter is primarily influenced by the
forest fraction, the fraction of precipitation falling as snow,
mean slope, mean elevation, sand fraction, and precipitation
frequency. It is noted that falling limb density is mainly gov-
erned by climate indices, mean elevation, and the fraction of
precipitation falling as snow; however, the recession coeffi-
cients are controlled by mean elevation, mean slope, clay, the
fraction of precipitation falling as snow, forest fraction, and
sand fraction.

1 Introduction

Hydrologists use data to understand the hydrologic system
by identifying several unique catchment signatures and em-
ploy various flow descriptors independent of statistical as-
sumptions yet capable of capturing signals that reflect the
basin’s long-term unique behavior. Hydrological indices,
commonly referred to as hydrologic metrics, hydrologic sig-
natures, or diagnostic signatures, are quantitative flow met-
rics that characterize statistical or dynamic hydrological data
series (McMillan, 2021). Specifically, streamflow indices are
flow descriptors derived from discharge time series data, and
a considerable collection, of indices are available to aid in
the better characterization of hydrological features, ranging
from basic statistics like the mean to more sophisticated met-
rics (Addor et al., 2018; McMillan, 2021). In many cases,
daily streamflow records are not permitted for redistribution;
however, researchers have computed streamflow indices and
made them publicly accessible.

Hydrological indices are increasingly used in emerging
areas such as global scale hydrologic modeling and large-
sample hydrology to extract relevant information and com-
pare the different watershed processes (Addor et al., 2017,
2018; McMillan, 2021). These indices offer an indirect way
to explore hydrologic processes as well as provide insights
into hydrologic behavior in catchments where data other than
streamflow are restricted and are widely used in process ex-
ploration, model calibration, model selection, and catchment
classification (Addor et al., 2018; Clark et al., 2011; Kuentz
et al., 2017; McMillan et al., 2011; Sawicz et al., 2011).
McMillan (2021) presented a classification that differenti-
ates between statistics and dynamics-based signatures and
between signatures at different timescales.
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Figure 1. Schematic representation of the rising limb and the falling
limb (source: Environment Southland; https://www.es.govt.nz/
environment/water/groundwater/groundwater-monitoring, last ac-
cess: 2 April 2022).

The relevance of time irreversibility (or temporal asymme-
try) of streamflow variability on a daily scale has been em-
phasized in recent studies (Koutsoyiannis, 2020; Mathai and
Mujumdar, 2019; Serinaldi and Kilsby, 2016). The disparity
in physical mechanisms driving the hydrograph’s rising and
falling limbs (Fig. 1) contributes to time irreversibility. Kout-
soyiannis (2020) showed that irreversibility may be ignored
at scales relevant to hydrological applications in atmospheric
processes, but it is critical to include irreversibility in studies
related to streamflow. Streamflow recessions convey valuable
information about the basin storage properties and aquifer
characteristics (Aksoy and Bayazit, 2000). High variability
encountered in the recession behavior of individual segments
is always a challenge in modeling the recession limb (Tal-
laksen, 1995). Recessions do not follow a simple form due
to their nonlinear nature (Aksoy et al., 2001). Various seg-
ments of recession represent different stages in the flow pro-
cess and there is a need to differentiate the recession to var-
ious segments and to characterize the recession rates sepa-
rately. Such segmentation of recession curves enables us to
reveal the nonlinear behavior of streamflow dynamics. Time
irreversibility must therefore be acknowledged in streamflow
analysis, accounting for the distinction of the recession into
different segments, with a faster recession induced by high
discharges caused by surface runoff and a slower recession
caused by baseflow (Fig. 1), and the characterization of the
recession rates separately (Mathai and Mujumdar, 2019). In
this study, streamflow indices are chosen to better understand
different hydrological processes by recognizing the stream-
flow hydrograph’s temporal asymmetry. The novelty in the
work presented here is to differentiate hydrograph limbs by
their time irreversibility property and use their associated in-
dices to provide an approach to derive insights into the pri-
mary drivers of streamflow hydrographs.
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The analysis employs a collection of indices drawn from
hydrograph shape diagnoses, to extract information about the
properties of rising and falling limbs of the hydrograph. The
principle of time irreversibility is encapsulated by six stream-
flow indices that characterize the shape of a streamflow hy-
drograph.

The goals of this study are as follows: (i) to identify
the key drivers of streamflow hydrograph (rising and falling
limbs) in terms of catchment attributes (e.g., mean slope,
aridity, fraction of precipitation falling as snow) using time-
irreversibility-based indices; (ii) to present a spatial map-
based attribute class based on streamflow indices for a large-
sample hydrology dataset. The attribute class is a broad
classification of attributes based on a particular aspect or
feature. Topography, climate, and soil are examples of at-
tribute classes. In this study, we present a new attribute class
of streamflow indices related to rising and falling limbs,
referred to as TI-streamflow indices (Time-irreversibility
streamflow indices).

Hydrograph analysis is referred to as the investigation
of the numerous factors that influence hydrograph shape
(Rogers, 1972). The presence of hydrographs with a similar
shape in long-term observation series of runoff suggests that
the same conditions of runoff generation reoccur from time
to time in the catchment of a river due to climate cyclicity and
as a result of hydrological processes (Khrystyuk et al., 2017).
Because climatic factors are dynamic in space and time, they
seem to be the most significant factors influencing the hy-
drograph shape provided that changes in catchment condi-
tions, such as land use are small. Khrystyuk et al. (2017)
suggested that for the Desna river basin in Russia, tempera-
ture, snow water equivalent, and snowmelt conditions are the
most critical factors influencing the shape of hydrographs;
however, it is likely that these controls may not be equally
important controls on hydrographs across all regions glob-
ally. The shape, timing, and peak flow of a streamflow hydro-
graph are influenced spatially and temporally by rainfall and
watershed factors (Singh, 1997). One of the earlier studies by
Roberts and Klingeman (1970) investigated the influence of
meteorological and physiographic parameters on the runoff
hydrograph using a physical laboratory model. Storm-related
parameters (rainfall intensity, rainfall duration, storm move-
ment) and basin surface conditions are among the inputs that
could be experimentally modified in this model. The results
revealed that each of these variables mentioned above has
a substantial impact on the hydrograph shape where certain
factors had a more considerable effect on the rising limb of
the runoff hydrograph, whereas others were more important
in terms of the flood crest (Roberts and Klingeman, 1970).

As shown in numerous studies in the literature, our notion
of time-irreversibility and its indices could also be helpful
in understanding the catchment drivers of streamflow hydro-
graphs. This study presents an attribute class of hydrograph
shape descriptors with temporal asymmetry. The significance
of large-sample hydrology datasets in open hydrologic sci-
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ence and their potential to improve hydrologic study trans-
parency is also underlined in this study.

Large-sample hydrology (LSH) gathers information from
a large number of catchments to gain a more comprehensive
understanding of hydrologic processes and to go beyond in-
dividual case studies. The LSH helps identify catchment be-
havior and leads one to derive precise conclusions regard-
ing different hydrologic processes and models (Addor et al.,
2020). Studies involving large-sample catchments help in un-
derstanding the drivers of hydrological change (Bloschl et
al., 2019), in assessing hydrological similarity and classifi-
cation (Berghuijs et al., 2014; Sawicz et al., 2014), in pre-
dictions in ungauged basins (Ehret et al., 2014), and in ana-
lyzing model and data uncertainty (Coxon et al., 2014) and
foster hydrologic research by standardizing and automating
the creation of large-sample hydrologic datasets worldwide
(Addor et al., 2020). LSH assists in exploring interrelation-
ships between numerous catchment attributes related to land-
scape, climate, and hydrology (Addor et al., 2017; Alvarez-
Garreton et al., 2018; Gupta et al., 2014; Newman et al.,
2015; Sawicz et al., 2011) and generalizing rules that can
significantly improve the predictability of the water cycle
(Alvarez-Garreton et al., 2018).

The primary challenges in fostering LSH are data avail-
ability and accessibility, which seriously hinder its use in
data-scarce regions. Despite the fact that a few large-scale
hydrologic studies have been undertaken, the number of pub-
licly available large-scale datasets is still restricted (Addor et
al., 2017, 2020; Coxon et al., 2020). Moreover, licensing re-
strictions and strict access policies make the datasets rarely
available to the public (Coxon et al., 2020).

The model parameter estimation experiment (MOPEX)
project dataset (Duan et al., 2006), the Canadian model pa-
rameter experiment (CANOPEX) database (Arsenault et al.,
2016),the global streamflow indices and metadata archive
(Do et al., 2018; Gudmundsson et al., 2018), global runoff
reconstruction (Ghiggi et al., 2019), HydroATLAS (Linke
et al., 2019) and the catchment attributes and meteorology
for large-sample studies (CAMELS, Addor et al., 2017) are
notable contributions of open and accessible large-sample
catchment datasets (Coxon et al., 2020). The concept of time
irreversibility-based streamflow indices is then applied to
CAMELS catchments with the goal of encouraging large-
sample hydrologic studies. The primary contribution of this
study is to establish the distinction between signatures di-
rectly linked with rising limbs and falling limbs and their util-
ity in uncovering processes associated with the hydrograph’s
steeply ascending and gradually descending limbs.

2 Methods
To facilitate an understanding of various hydrologic pro-

cesses and streamflow hydrograph drivers, the study employs
streamflow indices considering the streamflow hydrograph’s
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temporal asymmetry. The descriptions of indices used in this
study are tabulated in Table 1. Streamflow indices linked
to each limb of the streamflow hydrograph within the time-
irreversibility paradigm are distinguished since hydrographs
have rising and falling limbs. The following indices are con-
sidered in the rising limb category: (1) rising limb density,
(2) rising limb shape parameter, and (3) rising limb scale
parameter. In contrast, (1) falling limb density (2) slope of
upper recession (upper recession coefficient) (3) slope of
lower recession (lower recession coefficient) are selected in
the falling limb category. The next step is to compute these
indices for a large number of catchments and correlate them
with attributes such as climate, topography, vegetation, ge-
ology, and soil. The streamflow indices can be correlated ex-
plicitly since sub-categories are involved in each of the catch-
ment attributes discussed above. Finally, the key attributes
governing rising and falling limbs can be summarized and
identified. The specifics of indices are explained further be-
low.

Rising limb density (RLD) is defined as the ratio of the
number of rising limbs and the cumulative time of rising
limbs (Shamir et al., 2005). The RLD is a hydrograph shape
descriptor without considering the flow magnitude (Fig. 2)
and the expression for RLD is given as:

N
RLD = —&. ()
Tr
The ratio of the number of falling limbs to the cumulative
time of falling limbs is termed the falling limb density (FLD)
(Fig. 2) (Shamir et al., 2005). The expression for FLD is

given as:

N
FLD = & )
T

We first identify the hydrologic state of the stream (ascen-
sion and recession) (Mathai and Mujumdar, 2019). To de-
termine the hydrologic state of a stream, increasing (wet) or
decreasing (dry), on a given day, a time series of diurnal in-
crements is extracted by differencing the original time series
with its 1-day lagged time series. The positive increments
are identified as diurnal increments for wet days (ascension
limb).

To characterize the shape of the rising limbs occurring
on wet days, the diurnal increments are fitted using an ap-
propriate probability density function (PDF). The Weibull
distribution satisfactorily reflects the diurnal increments of
streamflow that occur on wet days (Mathai and Mujumdar,
2019; Stagge and Moglen, 2013; Szilagyi et al., 2006), and
the scale “a” and shape “b” parameters of the Weibull distri-
bution are computed for each catchment by using observed
diurnal increments of streamflow (indicating § Q) of the as-
cension limb (Fig. 3a). The Weibull PDF is positive only for
positive values of x, and is zero otherwise. For strictly pos-
itive values of the scale parameter a and shape parameter b,
the density function is given by
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Table 1. Hydrologic descriptors with temporal asymmetry.

Attribute  Description Unit  Data source References

Rising limb

RLD Rising limb density d=1  NI15-USGS data* Shamir et al. (2005)

a Rising limb scale parameter — — (https://doi.org/10.5065/D6MW2F4D)  Mathai and Mujumdar (2019)
b Rising limb shape parameter — Mathai and Mujumdar (2019)
Falling limb

FLD Falling limb density d=!  NI15-USGS data* Shamir et al. (2005)

by Upper recession coefficient - (https://doi.org/10.5065/D6MW2F4D)  Mathai and Mujumdar (2019)
by Lower recession coefficient - Mathai and Mujumdar (2019)

* N15 covers 671 catchments in the contiguous USA (CONUS), which provides daily meteorological forcing and daily streamflow measurements from the United

States Geological Survey (USGS).

3

Rising limb density = ATL +AT3 £ 475

3

Falling limb density = A2 T A4 T AT6
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Figure 2. Schematic example of rising limb density (RLD) and
falling limb density (FLD) calculation (Shamir et al., 2005).
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x <0,

3

O

f(X;a,b)={

where a > 0, b > 0. The shape and scale parameters of the
Weibull distribution are estimated for each catchment from
the observed diurnal increments of the streamflow. The scale
parameter controls the magnitude of the rising limb, whilst
the shape parameter reflects the flashiness of the rising limb.
The scale parameter is related to the magnitude of storm
events, which mirrors the general shape of flow in the stream.
As a result, correlating these parameters with catchment at-
tributes reveals which catchment attributes drive the magni-
tude and flashiness of rising limbs.

In contrast, an exponential recession is used to capture the
shape of the falling limbs on dry days of the daily hydro-
graph, representing the falling limbs’ underlying dynamics
(Mathai and Mujumdar, 2019). As the upper recession refers
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to the fast flow following a storm event and the lower reces-
sion refers to the base flow recession, falling limb model-
ing is done in two stages (Fig. 3b) (Aksoy, 2003; Aksoy and
Bayazit, 2000). The steps to obtain recession coefficients b
and by are explained below (Mathai and Mujumdar, 2019).
To portray the shape of the recession limbs occurring on
dry days of the daily hydrograph, an exponential recession is
employed to capture the falling limbs’ underlying dynamics
(Mathai and Mujumdar, 2019). The expression for the expo-
nential recession is given as follows:

0 = Qoe™?, 4)

where b is the recession coefficient, ¢ is time, Q; is the flow
t days after the peak and Qy is the peak flow (Mathai and
Mujumdar, 2019). Mean flow value is chosen as an appro-
priate measure (Sargent, 1979) to divide the recession into
two stages. The limbs with a peak flow value greater than
the observed mean flow value are considered as upper reces-
sions and those with peak flow values smaller than the ob-
served mean as lower recessions; however, it may be noted
that using the mean monthly flow can lead to unusual situa-
tions if the peak flow for a given event is below the monthly
mean. In such cases, the entire recession would be classified
as a lower recession curve, and no upper part would exist. In
those situations, there are still different driving processes for
the first and second part of the recession, but these would all
be lumped into one category in this case. Since we are deal-
ing with the long-term time series, the recession slope will
be nearly constant for a catchment and does not vary much
with the recession separation technique used. In this study,
we calculate recession slope at an annual scale. The upper
recession is modeled as follows:

Qi = Qoe™"", (5)
where b; is the recession coefficient for the upper part of

the recession limb, ¢ is the number of days after the peak,
Q; is flow ¢ days after the peak, Qg is the preceding peak
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Figure 3. Schematic representation of flow series (a) ascension limb and (b) recession limb (Mathai and Mujumdar, 2019).

flow (Mathai and Mujumdar, 2019). The lower recession is
represented as:

0, = (»;e—bz(t—;*)’ )
where b, is the recession coefficient for the lower part of
the recession limb, ¢* is the time from the start of the lower
recession and Q0 is the initial flow in the lower part of the re-
cession (Mathai and Mujumdar, 2019). The recession expres-
sions for upper and lower recessions are fitted by regressing
In(Q;/ Qo) versus ¢ and In(Q; / Q) versus t —t* respectively.
These linear regressions are performed on each individual re-
cession sequence. The average of the upper and/or lower re-
cession parameters is taken as the upper or lower recession
parameter of that catchment (on daily time series data).

The study uses indices related to rising limb (viz., RLD,
rising limb scale parameter, rising limb shape parameter) and
recession limb (viz., FLD, upper recession coefficient, lower
recession coefficient) to summarize the characteristic shape
of steeply ascending and gradually descending limbs and its
application in understanding the role of various drivers of
catchment attributes in streamflow generation.

3 Dataset used

Section 3 provides the description of the dataset used and the
study area chosen. This study employs the CAMELS dataset,
which encompasses daily discharge data and catchment at-
tributes for 671 catchments (Fig. 4) across the continental
United States, representing a diverse set of catchments with
long streamflow time series covering a wide range of hydro-
climatic conditions (Addor et al., 2017). The time frame cho-
sen for the analysis is from 1 October 1989 to 30 Septem-
ber 2009 (Addor et al., 2017).

The topographic characteristics of the CAMELS dataset
are represented in Fig. S1 in the Supplement. Except for the
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Appalachian Mountains, the eastern part of the continental
United States is much flatter than the western portion, ac-
cording to mean elevation and mean slope maps (Fig. Sla
and b). Figure Slc depicts the spatial pattern of catchment
size, highlighting the presence of some catchments with an
area greater than 10000km?. The landscape of each catch-
ment is described using multiple attributes, which can be di-
vided into various classes as shown in Table S1 in the Sup-
plement (Addor et al., 2017).

4 Results and discussion

The regional variability of the streamflow indices is inves-
tigated by computing the rising limb density, falling limb
density, rising limb scale parameter, rising limb shape pa-
rameter, upper recession coefficient, and lower recession co-
efficient for 671 CAMELS catchments and given as spatial
maps. These spatial maps of streamflow indices complement
CAMELS’ six main classes of catchment attributes devel-
oped (Addor et al., 2017): topography, climate, streamflow,
land cover, soil, and geology. The motivation for presenting
streamflow indices in the form of spatial maps with respect
to geographical regions is to align with spatial maps intro-
duced by the CAMELS dataset. In addition, streamflow in-
dices are also presented in hydrologic clusters to incorporate
a more explicit spatial representation of catchment behavior
across the CONUS. The hydrologic clusters are used to link
the current study to the existing catchment classification lit-
erature undertaken in the CONUS region.

As catchment attributes cover a broad range of aspects of
catchment hydrology such as land cover, soil, climate, geol-
ogy, topography, and each of the attributes usually does not
exist independently in space but is closely interlinked, result-
ing in various strongly correlated attributes in a catchment
(Jehn et al., 2020; Stein et al., 2021), the association between
these attributes and streamflow indices is discussed further in

Hydrol. Earth Syst. Sci., 26, 2019-2033, 2022
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Figure 4. (a) Map of 671 CAMELS catchments in the continental US considered in this study. (b) Geographical regions of the US according
to NOAA National Centers for Environmental Information referred for the analysis (source: NOAA National Centers for Environmental
Information; https://www.ncdc.noaa.gov/temp-and-precip/drought/nadm/geography, last access: 2 April 2022).

the subsequent section. The scope of this work is limited as it
does not attempt to explain all interrelations between each at-
tribute; instead, the main objective of the study is to establish
the governing catchment attributes of streamflow indices.

Furthermore, previous studies revealed that climate at-
tributes significantly influence catchment streamflow dynam-
ics; hence, it is crucial to understand the role of different cli-
matic zones on these six streamflow indices (Addor et al.,
2018; Berghuijs et al., 2014; Jehn et al., 2020; Knoben et
al., 2018; Stein et al., 2021). Since the chosen 671 catch-
ments are distributed across the US in various climatic zones
(Jehn et al., 2020; Knoben et al., 2018; Stein et al., 2021), the
CAMELS dataset is ideal for addressing this question. With
this motivation, the effect of climate attributes on streamflow
indices associated with rising and falling limbs is also inves-
tigated in the last section.

4.1 Spatial variability in streamflow indices and
relation of the streamflow indices with catchment
attributes

Streamflow indices related to rising limbs and falling limbs
are computed for the selected catchments and displayed in
spatial maps as shown in Figs. 5 and 7, respectively. The spa-
tial analysis is based on the US geographical areas (for de-
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tails, refer to Fig. 4b) as defined by the NOAA National Cen-
ters for Environmental Information and is referred to in the
following spatial maps. Furthermore, the clusters provided
by Jehn et al. (2020) to represent the discrete hydrological
behaviors of the continental United States are adopted in this
study to understand the regional variability of catchment be-
havior. Figure S2 and Table S2 present the location map and
details of the 10 clusters. Figure S3 shows boxplots of the
catchment attributes of the clusters (after Jehn et al., 2020).
Even though a comprehensive dataset such as CAMELS
provides an excellent overview of various catchments in con-
trasting climatic and topographic regions, it does not by itself
provide insights to explain hydrologic behavior. We present
here streamflow indices in clusters representing distinct hy-
drologic behavior, enabling an understanding of the hydro-
logic processes. Jehn et al. (2020) summarizes the character-
istics of each catchment cluster in terms of climate, hydrol-
ogy and location. The clusters presented by Jehn et al. (2020)
are formed based on agglomerative hierarchic clustering with
ward linkage on the principal components of the hydrologic
signatures. The hydrolog signatures identified with the high-
est spatial predictability are used to cluster 643 catchments
from the CAMELS dataset (Jehn et al., 2020). This facilitates

https://doi.org/10.5194/hess-26-2019-2022
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Figure 5. Spatial maps of streamflow indices associated with a rising limb (a) rising limb density [d_l], (b) rising limb scale parameter,

(c) rising limb shape parameter over the CONUS.

straightforward interpretations of the observations to explain
the hydrologic behavior in each cluster.

In this paper, we first identify the regions in the US where
high and low values of streamflow indices occur. The dom-
inant catchment attributes of these regions are also identi-
fied using corresponding clusters. The streamflow indices
and the dominant catchment attribute are then related to in-
terpreting the findings obtained. In terms of geographical re-
gions, the rising limb density is highest over the Atlantic
Coast States, Ohio Valley, Lower Mississippi Valley, South-
ern Great Plains, Southwest and Pacific, and lowest along
the Upper Great Lakes Region, Upper Mississippi Valley,

https://doi.org/10.5194/hess-26-2019-2022

Great Basin, and Northern Rocky Mountains, Northern In-
terior Plains, and the East Gulf Coast (Fig. 5a). Furthermore,
in terms of hydrologic clusters, the Appalachian Mountains
(cluster 10), Southeastern and Central plains (cluster 1), and
all southernmost states of the US (cluster 9) witness high ris-
ing limb densities (Fig. 6a). Cluster 1 is characterized by high
forest fraction and low elevation (Figure S3), resulting in lit-
tle annual snowfall. Cluster 10 catchments are located in the
Appalachian Mountains (Fig. S2), with a higher mean ele-
vation than most other clusters, experiencing low aridity and
high forest cover (Fig. S3); however, cluster 9 encompasses
all of the southern US states, with negative precipitation sea-
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Figure 6. Boxplots of the hydrological descriptors linked with the
rising limb (a) rising limb density [d=1, ) rising limb scale pa-
rameter, (c¢) rising limb shape parameter of the clusters over the
CONUS.

sonality (winter) and higher forest cover and green vegeta-
tion (Fig. S3). Furthermore, all of the catchments in clus-
ter 9 are very near the sea (Fig. S2), with a low snow compo-
nent and high evapotranspiration (Fig. S3). We used Spear-
man rank correlation for the correlation analysis, shown in
Table 2. It can be seen that the rising limb density shows a
negative correlation (Table 2) with the area (r = —0.30), el-
evation (r = —0.20) fraction of precipitation falling as snow
(r = —0.33), and depth to bedrock (r = —0.32). Northwest-
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ern forested mountains (clusters 3 and 4), located in the
mountains of the western US, experience low values of rising
limb density. The catchments of cluster 3 have a high fraction
of precipitation falling as snow (Fig. S3). Cluster 4 is found
in the western US mountains (Fig. S2), where there is a lot
of snow, the same as cluster 3 (Fig. S3). Low values of rising
limb density are observed due to a negative correlation with
the fraction of precipitation falling as snow (r = —0.33) (Ta-
ble 2). The study indicates that rising limb density is mainly
governed by elevation and fraction of precipitation falling as
snow in the CONUS.

Considerably low values of rising limb scale parameters
are experienced over the Rocky Mountains, High Plains,
Great Plains, Upper Mississippi Valley, Great Basin, South-
west, and the Great Lakes Regions, whereas the Pacific
Northwest shows high values of rising limb scale parame-
ters (Fig. 5b). Clusters (5, 7) over the northwestern forested
mountains of CONUS (Fig. S2) experience very high val-
ues of rising limb scale parameters (Fig. 6b). These catch-
ments have the highest discharge, especially in the early sum-
mer, due to a combination of high precipitation and snowmelt
(Jehn et al., 2020). Furthermore, the region in the continen-
tal US which receives the highest precipitation is included in
cluster 5 (Jehn et al., 2020). Moreover, cluster 5 consists of
a large proportion of forest (Fig. S3). Again, cluster 7 with
high values of rising limb scale parameter (Fig. 6b) is charac-
terized by reasonably high fraction of precipitation falling as
snow (Fig. S3). High precipitation and snowmelt might result
in a large discharge. Higher discharges can create higher val-
ues of rising scale parameters as the rising limb scale param-
eter regulates the magnitude of the rising limb. Low values
of rising limb scale parameters are shown by clusters 2, 8, 9
(Fig. 6b). This is because of low water availability, low snow
fraction precipitation falling as snow, and high evaporation
experienced in these regions (Jehn et al., 2020). Low dis-
charge and thus lower rising limb scale parameters can be
caused by excessive evaporation, low water availability, and
a low snow fraction of precipitation falling as snow. It is ob-
served that the rising limb scale parameter (Table 2) shows a
negative correlation with climate (r = —0.53 for aridity) and
a positive association with the vegetation attributes (r = 0.46
for forest fraction, » = 0.41 for leaf area index (LAI) maxi-
mum, » = 0.44 for green vegetation fraction maximum). Fre-
quency of precipitation (r = —0.56 for high precipitation fre-
quency, r = —0.63 for low precipitation frequency) displays
a strong negative association with the rising limb scale pa-
rameter (Table 2).

Low rising limb shape parameter occurs along the Great
Plains, Mississippi Valley, Pacific Coast, and the west of
the Gulf Coast (Fig. 5c). In contrast, the shape parameter
over the Rocky Mountains, High Plains, Great Basin, Pa-
cific Northwest, and the Great Lakes Region witnesses the
highest values of rising limb shape parameters (Fig. 5c).
All the catchments located in the southern states of the US
(cluster 9), Great Plains and North American deserts (clus-
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Table 2. Correlation (r-values) between streamflow indices and the catchment attributes. Corresponding ( p-values) are shown in brackets.
Insignificant correlations (p > 0.05) are marked in italics.

r-value Rising Scale Shape  Falling Upper Lower
limb parameter parameter limb recession recession

density density  coefficient coefficient

Area —0.30 —0.17 -0.06 —0.13 -0.06 -0.06
(0.00) (0.00) 0.11) (0.00) (0.10) 0.11)

Mean elevation —0.20 —0.13 0.41 0.55 —0.40 —0.35
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Mean slope -0.06 0.35 0.36 0.18 —0.38 —0.37
0.13) (0.00) (0.00) (0.00) (0.00) (0.00)

Precipitation -0.04 —-0.36 —-0.14 0.01 0.17 0.22
seasonality (0.26) (0.00) (0.00) 0.75) (0.00) (0.00)
Fraction of precip. as  —0.33 -0.04 0.53 0.42 —0.46 -0.39
SNOwW (0.00) 0.27) (0.00) (0.00) (0.00) (0.00)
Aridity -0.10 —0.53 —0.16 0.39 0.04 0.03
(0.01) (0.00) (0.00) (0.00) (0.30) (0.45)

High precip. freq 0.08 —0.56 —-0.42 0.12 0.31 0.27
(0.04) (0.00) (0.00) (0.00) (0.00) (0.00)

High precip. dur. —0.15 0.00 -0.07 0.12 —0.11 —0.17
(0.00) (0.97) (0.09) (0.00) (0.01) (0.00)

Low precip. freq. 0.00 —0.63 —0.45 0.17 0.26 0.19
(0.91) (0.00) (0.00) (0.00) (0.00) (0.00)

Low precip. dur. -0.03 —-0.25 —0.29 0.11 0.07 0.01
(0.49) (0.00) (0.00) (0.00) (0.07) (0.84)

Depth to bedrock —-0.32 —0.21 —0.16 -0.19 0.19 0.21
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Sand fraction —0.28 —0.02 0.37 -0.02 —0.38 —0.23
(0.00) (0.62) (0.00) (0.63) (0.00) (0.00)

Clay fraction 0.26 —0.15 —0.47 0.00 0.52 0.32
(0.00) (0.00) (0.00) 0.93) (0.00) (0.00)

Forest fraction 0.10 0.46 0.41 —0.17 —0.31 —0.28
(0.01) (0.00) (0.00) (0.00) (0.00) (0.00)

LAI maximum 0.20 0.41 0.17 —0.37 —0.09 —0.04
(0.00) (0.00) (0.00) (0.00) (0.03) 0.28)

Green veg. fraction 0.18 0.44 0.15 —-0.40 -0.05 -0.01
max (0.00) (0.00) (0.00) (0.00) 0.16) (0.74)
Subsurface —0.16 -0.06 —0.16 —0.08 0.13 0.16
porosity (0.00) 0.12) (0.00) (0.03) (0.00) (0.00)
Subsurface —0.11 -0.04 0.06 0.03 —0.09 —0.18
permeability (0.00) (0.34) 0.12) (0.39) (0.02) (0.00)
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Figure 7. Regional variability of streamflow indices associated with the falling limb (a) falling limb density [d=11, (b) upper recession

coefficient, (¢) lower recession coefficient over the CONUS.

ter 8), and the Central Plains (cluster 2) characterize low val-
ues of rising limb shape parameters (Fig. 6¢). This is due to
low water availability, low snow fraction precipitation falling
as snow, low leaf area index, and high evaporation experi-
enced in these regions (Jehn et al., 2020). Excessive evap-
oration and a low snow fraction of precipitation falling as
snow can contribute to low discharge and thus lower ris-
ing limb shape parameters. It is noted that the rising limb
shape parameter indicates (Table 2) a positive correlation
with vegetation attributes (r = 0.41 for forest fraction) and
the fraction of precipitation falling as snow (r = 0.53), mean
slope (r = 0.36), mean elevation (r = 0.41), and sand frac-

Hydrol. Earth Syst. Sci., 26, 2019-2033, 2022

tion (r = 0.37) whereas, it negatively correlates with precipi-
tation frequency (r = —0.42 for high precipitation frequency
and r = —0.45 for low precipitation frequency). High val-
ues of rising limb shape parameters are seen in clusters 3, 4
(Fig. 6¢) located in the northwestern forested mountains of
the western US (Fig. S2), dominant with a summer peak
of discharge caused by rapid snowmelt. The rapid snowmelt
can cause flashy hydrographs with high values of rising limb
shape parameters.

Catchments with a high falling limb density are predom-
inantly located along the Great Basin and the Rocky Moun-
tains and in the High Plains region (Fig. 7a). This is due to
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less forest cover in these arid regions and falling limb density
shows a positive association with the arid climate (» = 0.39)
(Table 2). Clusters 6, 7 (Fig. 8a) over marine West Coast
forests and Western Cordillera (Table S2) experience smaller
falling limb densities. We can see that falling limb density is
mainly governed by climate indices and is negatively corre-
lated with the land cover characteristics (for LAI maximum
(r = —0.37) and green veg. fraction max (r = —0.40), Ta-
ble 2). Mean elevation (r = 0.55) also strongly characterizes
the nature of the falling limb density (Table 2). Besides, frac-
tion of precipitation falling as snow (r = 0.42) is also posi-
tively correlated with falling limb density (Table 2).
Similarities exist between the patterns of the upper reces-
sion coefficient and the lower recession coefficient (Fig. 7b
and c). Clusters 3, 4 located in the northwestern forested
mountains (Fig. S2), which have overall low discharge, show
low values of upper and lower recession coefficients (Fig. 8b
and c). Clusters 2 and 9, located in the eastern US, wit-
ness high values of recession coefficients; due to low slope
inclinations (Jehn et al., 2020), water takes a long time
to reach the outlet (Fig. 8b and c). Recession coefficients
are negatively correlated (Table 2) with topographic indices
(with mean elevation: upper_r = —0.40, lower_r=—0.35;
with mean slope: upper_r = —0.38, lower_r = —0.37, where
upper_r and lower_r corresponds to correlation values of
upper and lower recession coefficients, respectively). Fur-
thermore, the recession coefficients show a positive corre-
lation with clay (upper_r=0.52, lower_r=0.32) and neg-
ative correlations with the fraction of precipitation falling
as snow (upper_r = —0.46, lower_r= —0.39), forest frac-
tion (upper_r= —0.31, lower_r= —0.28), and sand frac-
tion (upper_r= —0.38, lower_r=—0.23, Table 2). More-
over, the geology attributes such as subsurface porosity (up-
per_r=0.13, lower_r=0.16) reveal a positive correlation
to recession coefficients and a negative (upper_r= —0.09,
lower_r = —0.18) with subsurface permeability (Table 2).

4.2 Influence of attributes of climate to streamflow
indices

The climatic indices indicate a more substantial influence on
hydrologic signatures than the topographic, soil, land cover,
and geological attributes combined (Addor et al., 2018; Stein
et al., 2021). Additionally, the findings of Jehn et al. (2020)
highlighted that the climate appears to be the most criti-
cal factor influencing hydrologic behavior in the CAMELS
dataset. Hence, the streamflow indices are examined in the
climate index space (aridity along x-axis and fraction of pre-
cipitation falling as snow along the y-axis) to evaluate the
main drivers of the catchments. Single dots show the catch-
ments and are colored by their hydrological clusters (Fig. 9a).

Clusters 1, 5, 6, 7, 10 are characterized by a low fraction
of precipitation falling as snow and humid climate, whereas
clusters 3, 4 have humid climates experiencing a high frac-
tion of precipitation falling as snow (Fig. 9a). Clusters 2, 8, 9
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Figure 8. Boxplots of the streamflow indices related with the falling
limb (a) falling limb density [d_l], (b) upper recession coefficient,
(c) lower recession coefficient of the clusters.

are featured by a low fraction of precipitation falling as snow
and arid climate (Fig. 9a). The three categories mentioned
above are referred to as G1, G2, and G3, respectively.
Clusters G1 with a low fraction of precipitation falling as
snow with humid climate show (clusters 1, 9, 10) high rising
limb densities (Fig. 9b) and (clusters 5, 7) high rising limb
scale parameters (Fig. 9c). This is because the rising limb
density negatively correlates with the fraction of precipita-
tion falling as snow (Table 2: r = —0.33, Fig. 9b), whereas
the rising limb scale parameter negatively correlates with
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Figure 9. (a) Comparison of the hydrologic clusters of Jehn et al. (2020) with the climate index space (fraction of precipitation falling as
snow vs. aridity). Single dots show the catchments and are colored by their hydrologic clusters. Comparison of the streamflow indices in
climate index space, (b) rising limb density, (¢) rising limb scale parameter, (d) rising limb shape parameter, (e) falling limb density, (f) upper
recession coefficient, (g) lower recession coefficient for all catchments. Single dots show the catchments and are colored according to the

value of the streamflow indices.

aridity (Table 2: r = —0.53, Fig. 9c). Moreover, these clus-
ters G1 experience a low value of (clusters 6, 7) falling limb
density (Fig. 9e). This is because the falling limb density pos-
itively correlates with the climate indices (Table 2: r = 0.42
for fraction of precipitation falling as snow and r = 0.39 for
aridity, Fig. Oe).

As mentioned earlier, clusters G2 with humid climates and
with a high fraction of precipitation falling as snow (clus-
ters 3, 4) display low values of rising limb density as rising
limb density correlates negatively with the fraction of precip-
itation falling as snow (Table 2: r = —0.33, Fig. 9b). Cluster
G2 witnesses higher values of rising limb shape parameter
due to its negative correlation with aridity (r = —0.16) and
positive correlation with the fraction of precipitation falling
as snow (Table 2: r = 0.53, Fig. 9d). Furthermore, the clus-
ters of G2 (clusters 3, 4) show low values of recession co-
efficients as they depict a strong negative correlation with
the fraction of precipitation falling as snow (Table 2: up-
per_r = —0.46, and lower_r = —0.39, Fig. 9f and g).

Hydrol. Earth Syst. Sci., 26, 2019-2033, 2022

Low values of rising limb scale and shape parameters are
noticed for the clusters 2, 8, 9 (clusters G3) with arid cli-
mate and low fraction of precipitation falling as snow (Fig. 9¢
and d) due to its negative correlation with aridity as stated
earlier. Cluster 8 experiences the maximum values of falling
limb density (Fig. 9¢) where the region witnesses low frac-
tion of snow and arid catchments, due to its strong positive
correlates with the aridity (» = 0.39, Table 2).

5 Concluding remarks

Streamflow hydrographs portray the time distribution of
runoff at the point of measurement by a single curve, and
the hydrographs are characterized by their time irreversibil-
ity property. In this study, the indices related to this char-
acteristic feature are used to study the catchment drivers of
streamflow hydrographs. The streamflow indices associated
with the time irreversibility of hydrographs open new op-
portunities to investigate the interaction between topography,
soil, climate, vegetation, geology that drive the hydrologic
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behavior of catchments. Moreover, most of the previously
presented hydrologic indices are employed only for time-
symmetric processes (McMillan, 2021); the importance of
the time irreversibility of streamflow is highlighted in this
study. The indices associated with rising and falling limbs are
primarily correlated to distinct catchment attributes, estab-
lishing a relationship between the indices and catchment at-
tributes, such as climate, topography, soil, geology, and veg-
etation to delineate the controlling drivers in corresponding
hydrograph sections. A set of streamflow indices with tem-
poral asymmetry for 671 catchments in the US is presented
in this study. The regional variations among catchments over
the US are compared and discussed using the spatial maps
of streamflow indices. Such spatial maps of the streamflow
indices supplement the hydrometeorologic time series and
catchment attributes provided by Addor et al. (2017).

The study showed that the rising limb density is mainly
governed by the elevation and fraction of precipitation falling
as snow. Climate indices, mean elevation, and the fraction of
precipitation falling as snow mainly influence falling limb
density. In contrast, the aridity and frequency of precipita-
tion drive the rising limb scale parameter. Furthermore, forest
fraction, the fraction of precipitation falling as snow, mean
slope, mean elevation, sand fraction, and precipitation fre-
quency influence the rising limb shape parameter. Mean ele-
vation, mean slope, clay, the fraction of precipitation falling
as snow, forest fraction, and sand fraction all determine re-
cession coefficients. Finally, streamflow indices are studied
in the climate index space to isolate the leading drivers of
runoff generation. High rising limb densities and rising limb
scale parameters are observed in catchments with low pre-
cipitation falling as snow and a humid climate. It is observed
that the catchments with a humid climate and a high fraction
of precipitation falling as snow display low values of rising
limb density, high values of the rising limb shape parameter,
and low values of recession coefficients. The lowest values
of rising limb scale and shape parameters, and the highest
values of falling limb density, are seen in catchments of arid
climates and a low fraction of precipitation falling as snow.

In general, the contribution of this work lies in differen-
tiating hydrographs depending on their time irreversibility
property and using the corresponding indices to provide an
alternative methodology for identifying the drivers of stream-
flow hydrographs. In the context of large sample hydrologic
research, the concept of time-irreversibility and the indices
associated with it could also be used to describe the drivers
at catchment scale. It must be noted that each attribute (e.g.,
climate vegetation, soil, geology) usually does not exist alone
in space but is closely interwoven, resulting in strongly cor-
related attributes in a catchment (Jehn et al., 2020; Stein et
al., 2021); however, it would be beyond the scope of this pa-
per to describe all probable relationships between attributes.
Keeping this in mind, the main focus of this study was con-
strained to only identify the controlling attributes of stream-
flow indices. Another limitation of the work is related with
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the characterization of recessions used. Future work may in-
vestigate using the inflection point or another recession sep-
aration technique to characterize recessions.

Data availability. The CAMELS dataset can be found
at https://doi.org/10.5194/hess21-5293-2017 (Addor
et al, 2017). The hydrometeorologic time  series
(https://doi.org/10.5065/D6MW2F4D; Newman et al., 2014)

used in this paper are freely available online.
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