Articles | Volume 25, issue 6
https://doi.org/10.5194/hess-25-3691-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-25-3691-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Time lags of nitrate, chloride, and tritium in streams assessed by dynamic groundwater flow tracking in a lowland landscape
Vince P. Kaandorp
CORRESPONDING AUTHOR
Department of Subsurface and Groundwater Systems, Deltares, Utrecht, the Netherlands
Department of Earth Sciences, Utrecht University, Utrecht, the
Netherlands
Hans Peter Broers
TNO Geological Survey of the Netherlands, Utrecht, the Netherlands
Ype van der Velde
Faculty of Science, Earth and Climate, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
Joachim Rozemeijer
Department of Subsurface and Groundwater Systems, Deltares, Utrecht, the Netherlands
Perry G. B. de Louw
Department of Subsurface and Groundwater Systems, Deltares, Utrecht, the Netherlands
Soil Physics and Land Management, Wageningen University, Wageningen, the Netherlands
Related authors
No articles found.
Anna Luisa Hemshorn de Sánchez, Wouter R. Berghuijs, Anne F. Van Loon, Dimmie Hendriks, and Ype van der Velde
EGUsphere, https://doi.org/10.5194/egusphere-2025-5139, https://doi.org/10.5194/egusphere-2025-5139, 2025
This preprint is open for discussion and under review for Hydrology and Earth System Sciences (HESS).
Short summary
Short summary
This study explores how mean and extreme river flows respond to annual climate variability. Maps show where river flow is more sensitive to climate in Europe. Maximum flows are generally the most sensitive and minimum flows the least sensitive to precipitation changes. Sensitivities are influenced by many factors like climate, soil, and terrain. These findings improve our understanding of how rivers respond to climate and can support water management and disaster risk reduction across Europe.
Laura M. van der Poel, Laurent V. Bataille, Bart Kruijt, Wietse Franssen, Wilma Jans, Jan Biermann, Anne Rietman, Alex J. V. Buzacott, Ype van der Velde, Ruben Boelens, and Ronald W. A. Hutjes
Biogeosciences, 22, 3867–3898, https://doi.org/10.5194/bg-22-3867-2025, https://doi.org/10.5194/bg-22-3867-2025, 2025
Short summary
Short summary
We combine two types of carbon dioxide (CO2) data from Dutch peatlands in a machine learning model: from fixed measurement towers and from a light research aircraft. We find that emissions increase with deeper water table depths (WTDs) by 4.6 tons of CO2 per hectare per year for each 10 cm deeper WTD on average. The effect is stronger in winter than in summer and varies between locations. This variability should be taken into account when developing mitigation measures.
Ralf C. H. Aben, Daniël van de Craats, Jim Boonman, Stijn H. Peeters, Bart Vriend, Coline C. F. Boonman, Ype van der Velde, Gilles Erkens, and Merit van den Berg
Biogeosciences, 21, 4099–4118, https://doi.org/10.5194/bg-21-4099-2024, https://doi.org/10.5194/bg-21-4099-2024, 2024
Short summary
Short summary
Drained peatlands cause high CO2 emissions. We assessed the effectiveness of subsurface water infiltration systems (WISs) in reducing CO2 emissions related to increases in water table depth (WTD) on 12 sites for up to 4 years. Results show WISs markedly reduced emissions by 2.1 t CO2-C ha-1 yr-1. The relationship between the amount of carbon above the WTD and CO2 emission was stronger than the relationship between WTD and emission. Long-term monitoring is crucial for accurate emission estimates.
Merit van den Berg, Thomas M. Gremmen, Renske J. E. Vroom, Jacobus van Huissteden, Jim Boonman, Corine J. A. van Huissteden, Ype van der Velde, Alfons J. P. Smolders, and Bas P. van de Riet
Biogeosciences, 21, 2669–2690, https://doi.org/10.5194/bg-21-2669-2024, https://doi.org/10.5194/bg-21-2669-2024, 2024
Short summary
Short summary
Drained peatlands emit 3 % of the global greenhouse gas emissions. Paludiculture is a way to reduce CO2 emissions while at the same time generating an income for landowners. The side effect is the potentially high methane emissions. We found very high methane emissions for broadleaf cattail compared with narrowleaf cattail and water fern. The rewetting was, however, effective to stop CO2 emissions for all species. The highest potential to reduce greenhouse gas emissions had narrowleaf cattail.
Tanya J. R. Lippmann, Ype van der Velde, Monique M. P. D. Heijmans, Han Dolman, Dimmie M. D. Hendriks, and Ko van Huissteden
Geosci. Model Dev., 16, 6773–6804, https://doi.org/10.5194/gmd-16-6773-2023, https://doi.org/10.5194/gmd-16-6773-2023, 2023
Short summary
Short summary
Vegetation is a critical component of carbon storage in peatlands but an often-overlooked concept in many peatland models. We developed a new model capable of simulating the response of vegetation to changing environments and management regimes. We evaluated the model against observed chamber data collected at two peatland sites. We found that daily air temperature, water level, harvest frequency and height, and vegetation composition drive methane and carbon dioxide emissions.
Alexa Marion Hinzman, Ylva Sjöberg, Steve W. Lyon, Wouter R. Berghuijs, and Ype van der Velde
EGUsphere, https://doi.org/10.5194/egusphere-2023-2391, https://doi.org/10.5194/egusphere-2023-2391, 2023
Preprint archived
Short summary
Short summary
An Arctic catchment with permafrost responds in a linear fashion: water in=water out. As permafrost thaws, 9 of 10 nested catchments become more non-linear over time. We find upstream catchments have stronger streamflow seasonality and exhibit the most nonlinear storage-discharge relationships. Downstream catchments have the greatest increases in non-linearity over time. These long-term shifts in the storage-discharge relationship are not typically seen in current hydrological models.
Cindy Quik, Ype van der Velde, Jasper H. J. Candel, Luc Steinbuch, Roy van Beek, and Jakob Wallinga
Biogeosciences, 20, 695–718, https://doi.org/10.5194/bg-20-695-2023, https://doi.org/10.5194/bg-20-695-2023, 2023
Short summary
Short summary
In NW Europe only parts of former peatlands remain. When these peatlands formed is not well known but relevant for questions on landscape, climate and archaeology. We investigated the age of Fochteloërveen, using radiocarbon dating and modelling. Results show that peat initiated at several sites 11 000–7000 years ago and expanded rapidly 5000 years ago. Our approach may ultimately be applied to model peat ages outside current remnants and provide a view of these lost landscapes.
Jim Boonman, Mariet M. Hefting, Corine J. A. van Huissteden, Merit van den Berg, Jacobus (Ko) van Huissteden, Gilles Erkens, Roel Melman, and Ype van der Velde
Biogeosciences, 19, 5707–5727, https://doi.org/10.5194/bg-19-5707-2022, https://doi.org/10.5194/bg-19-5707-2022, 2022
Short summary
Short summary
Draining peat causes high CO2 emissions, and rewetting could potentially help solve this problem. In the dry year 2020 we measured that subsurface irrigation reduced CO2 emissions by 28 % and 83 % on two research sites. We modelled a peat parcel and found that the reduction depends on seepage and weather conditions and increases when using pressurized irrigation or maintaining high ditchwater levels. We found that soil temperature and moisture are suitable as indicators of peat CO2 emissions.
Tanya Juliette Rebecca Lippmann, Monique Heijmans, Han Dolman, Ype van der Velde, Dimmie Hendriks, and Ko van Huissteden
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2022-143, https://doi.org/10.5194/gmd-2022-143, 2022
Preprint withdrawn
Short summary
Short summary
To assess the impact of vegetation on GHG fluxes in peatlands, we developed a new model, Peatland-VU-NUCOM (PVN). These results showed that plant communities impact GHG emissions, indicating that plant community re-establishment is a critical component of peatland restoration. This is the first time that a peatland emissions model investigated the role of re-introducing peat forming vegetation on GHG emissions.
Yousef Albuhaisi, Ype van der Velde, and Sander Houweling
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-55, https://doi.org/10.5194/bg-2022-55, 2022
Manuscript not accepted for further review
Short summary
Short summary
An important uncertainty in the modelling of methane emissions from natural wetlands is the wetland area. It is important to get the spatiotemporal covariance between the variables that drive methane emissions right for accurate quantification. Using high-resolution wetland and soil carbon maps, in combination with a simplified methane emission model that is coarsened in six steps from 0.005° to 1°, we find a strong relation between wetland emissions and the model resolution.
Thomas Janssen, Ype van der Velde, Florian Hofhansl, Sebastiaan Luyssaert, Kim Naudts, Bart Driessen, Katrin Fleischer, and Han Dolman
Biogeosciences, 18, 4445–4472, https://doi.org/10.5194/bg-18-4445-2021, https://doi.org/10.5194/bg-18-4445-2021, 2021
Short summary
Short summary
Satellite images show that the Amazon forest has greened up during past droughts. Measurements of tree stem growth and leaf litterfall upscaled using machine-learning algorithms show that leaf flushing at the onset of a drought results in canopy rejuvenation and green-up during drought while simultaneously trees excessively shed older leaves and tree stem growth declines. Canopy green-up during drought therefore does not necessarily point to enhanced tree growth and improved forest health.
Liang Yu, Joachim C. Rozemeijer, Hans Peter Broers, Boris M. van Breukelen, Jack J. Middelburg, Maarten Ouboter, and Ype van der Velde
Hydrol. Earth Syst. Sci., 25, 69–87, https://doi.org/10.5194/hess-25-69-2021, https://doi.org/10.5194/hess-25-69-2021, 2021
Short summary
Short summary
The assessment of the collected water quality information is for the managers to find a way to improve the water environment to satisfy human uses and environmental needs. We found groundwater containing high concentrations of nutrient mixes with rain water in the ditches. The stable solutes are diluted during rain. The change in nutrients over time is determined by and uptaken by organisms and chemical processes. The water is more enriched with nutrients and looked
dirtierduring winter.
Cited articles
Ali, G., Birkel, C., Tetzlaff, D., Soulsby, C., McDonnell, J. J., and Tarolli, P.: A comparison of wetness indices for the prediction of observed connected saturated areas under contrasting conditions, Earth Surf. Proc.
Land., 39, 399–413, https://doi.org/10.1002/esp.3506, 2014.
Anderson, T. R., Groffman, P. M., Kaushal, S. S., and Walter, M. T.: Shallow
Groundwater Denitrification in Riparian Zones of a Headwater Agricultural
Landscape, J. Environ. Qual., 43, 732–744, https://doi.org/10.2134/jeq2013.07.0303, 2014.
Aquilina, L., Vergnaud-Ayraud, V., Labasque, T., Bour, O., Molénat, J.,
Ruiz, L., de Montety, V., De Ridder, J., Roques, C., and Longuevergne, L.:
Nitrate dynamics in agricultural catchments deduced from groundwater dating
and long-term nitrate monitoring in surface- and groundwaters, Sci. Total
Environ., 435–436, 167–178, https://doi.org/10.1016/j.scitotenv.2012.06.028, 2012.
Benettin, P., Rinaldo, A., and Botter, G.: Tracking residence times in hydrological systems: Forward and backward formulations, Hydrol. Process., 29, 5203–5213, https://doi.org/10.1002/hyp.10513, 2015.
Benettin, P., Soulsby, C., Birkel, C., Tetzlaff, D., Botter, G., and Rinaldo,
A.: Using SAS functions and high-resolution isotope data to unravel travel
time distributions in headwater catchments, Water Resour. Res., 53, 1864–1878, https://doi.org/10.1002/2016WR020117, 2017.
Birkel, C., Soulsby, C., and Tetzlaff, D.: Conceptual modelling to assess how
the interplay of hydrological connectivity, catchment storage and tracer
dynamics controls nonstationary water age estimates, Hydrol. Process., 29, 2956–2969, https://doi.org/10.1002/hyp.10414, 2015.
Bohlke, J. K. and Denver, J. M.: Combined use of ground- water dating, chemical, and isotopic analyses to resolve the history and fate of nitrate
contamination in two agricultural watersheds, atlantic coastal Plain, Maryland, Water Resour. Res., 31, 2319–2339, https://doi.org/10.1029/95WR01584, 1995.
Boumans, L. J. M., Fraters, D., and Van Drecht, G.: Nitrate leaching in
agriculture to upper groundwater in the sandy regions of the Netherlands during the 1992–1995 period, Environ. Monit. Assess., 102, 225–241,
https://doi.org/10.1007/s10661-005-6023-5, 2005.
Boumans, L. J. M., Fraters, D., and Drecht, G.: Mapping nitrate leaching to
upper groundwater in the sandy regions of The Netherlands, using conceptual
knowledge, Environ. Monit. Assess., 137, 243–249, https://doi.org/10.1007/s10661-007-9756-5, 2008.
Boumans, L. J. M., Wattel-Koekkoek, E. J. W., and van der Swaluw, E.:
Veranderingen in regen- en grondwaterkwaliteit als gevolg van atmosferische
emissiereducties, RIVM Rapport 680720005/2012, Rijksinstituut voor Volksgezondheid en Milieu, Bilthoven, 2013.
Broers, H. P.: The spatial distribution of groundwater age for different
geohydrological situations in the Netherlands: implications for groundwater
quality monitoring at the regional scale, J. Hydrol., 299, 84–106, https://doi.org/10.1016/j.jhydrol.2004.04.023, 2004.
Broers, H. P. and van der Grift, B.: Regional monitoring of temporal changes
in groundwater quality, J. Hydrol., 296, 192–220, https://doi.org/10.1016/j.jhydrol.2004.03.022, 2004.
Broers, H. P. and van Geer, F. C.: Monitoring strategies at phreatic wellfields: a 3D travel time approach., Ground Water, 43, 850–862, https://doi.org/10.1111/j.1745-6584.2005.00043.x, 2005.
Broers, H. P. and van Vliet, M. E.: Age-dating springs and spring-streams in
South-Limburg (Dateringsonderzoek bronnen en bronbeken Zuid-Limburg),
TNO-rapport TNO 2018 R10421, TNO, Utrecht, p. 21, 2018.
Cartwright, I. and Morgenstern, U.: Transit times from rainfall to baseflow
in headwater catchments estimated using tritium: The Ovens River, Australia,
Hydrol. Earth Syst. Sci., 19, 3771–3785, https://doi.org/10.5194/hess-19-3771-2015,
2015.
De Lange, W. J., Prinsen, G. F., Hoogewoud, J. C., Veldhuizen, A. A., Verkaik, J., Oude Essink, G. H. P., van Walsum, P. E. V., Delsman, J. R.,
Hunink, J. C., Massop, H. T. L. L., and Kroon, T.: An operational, multi-scale, multi-model system for consensus-based, integrated water management and policy analysis: The Netherlands Hydrological Instrument,
Environ. Model. Softw., 59, 98–108, https://doi.org/10.1016/j.envsoft.2014.05.009, 2014.
Duffy, C. J. and Lee, D.-H.: Base Flow Response From Nonpoint Source Contamination' Simulated Spatial Variability in Source, Structure, and Initial Condition, Water Resour. Res., 28, 905–914, 1992.
Duvert, C., Stewart, M. K., Cendón, D. I., and Raiber, M.: Time series of
tritium, stable isotopes and chloride reveal short-term variations in groundwater contribution to a stream, Hydrol. Earth Syst. Sci., 20, 257–277, https://doi.org/10.5194/hess-20-257-2016, 2016.
EEA: European waters – Assessment of status and pressures 2018, Publications Office of the European Union, Luxembourg, ISBN 978-92-9213-947-6,
ISSN 1977-8449, https://doi.org/10.2800/303664, 2018.
Ehrhardt, S., Kumar, R., Fleckenstein, J. H., Attinger, S., and Musolff, A.:
Trajectories of nitrate input and output in three nested catchments along a
land use gradient, Hydrol. Earth Syst. Sci., 23, 3503–3524,
https://doi.org/10.5194/hess-23-3503-2019, 2019.
Engdahl, N. B., McCallum, J. L., and Massoudieh, A.: Transient age
distributions in subsurface hydrologic systems, J. Hydrol., 542, 88–100,
https://doi.org/10.1016/j.jhydrol.2016.04.066, 2016.
EU Nitrates Directive: EC, Directive of the Council of 12 December 1991,
concerning the protection of waters against pollution caused by nitrates
form agricultural sources, 91/676/ EEC, European Community, Brussels, 1991.
Feld, C. K., Fernandes, M. R., Ferreira, M. T., Hering, D., Ormerod, S. J.,
Venohr, M., and Gutiérrez-Cánovas, C.: Evaluating riparian solutions
to multiple stressor problems in river ecosystems – A conceptual study, Water Res., 139, 381–394, https://doi.org/10.1016/j.watres.2018.04.014, 2018.
Flewelling, S. A., Herman, J. S., Hornberger, G. M., and Mills, A. L.: Travel
time controls the magnitude of nitrate discharge in groundwater bypassing the riparian zone to a stream on Virginia's coastal plain, Hydrol. Process.,
26, 1242–1253, https://doi.org/10.1002/hyp.8219, 2012.
Fraters, D., van Leeuwen, T., Boumans, L. J. M., and Reijs, J.: Use of long-term monitoring data to derive a relationship between nitrogen surplus
and nitrate leaching for grassland and arable land on well-drained sandy
soils in the Netherlands, Acta Agric. Scand. B, 65, 144–154, https://doi.org/10.1080/09064710.2014.956789, 2015.
Green, C. T., Liao, L., Nolan, B. T., Juckem, P. F., Shope, C. L., Tesoriero, A. J., and Jurgens, B. C.: Regional Variability of Nitrate Fluxes in the Unsaturated Zone and Groundwater, Wisconsin, USA, Water Resour. Res., 54, 301–322, https://doi.org/10.1002/2017WR022012, 2018.
Gustard, A., Bullock, A., and Dixon, J. M.: Low flow estimation in the United
Kingdom, available at: http://nora.nerc.ac.uk/id/eprint/6050/ (last access: 17 May 2017), 1992.
Gusyev, M. A., Abrams, D., Toews, M. W., Morgenstern, U., and Stewart, M. K.: A comparison of particle-tracking and solute transport methods for simulation of tritium concentrations and groundwater transit times in river water, Hydrol. Earth Syst. Sci., 18, 3109–3119, https://doi.org/10.5194/hess-18-3109-2014, 2014.
Hansen, B., Thorling, L., Dalgaard, T., and Erlandsen, M.: Trend reversal of
nitrate in Danish groundwater – A reflection of agricultural practices and
nitrogen surpluses since 1950, Environ. Sci. Technol., 45, 228–234,
https://doi.org/10.1021/es102334u, 2011.
Harbaugh, A. W.: MODFLOW-2005, The U.S. Geological Survey Modular Ground-Water Model — the Ground-Water Flow Process, US Geol. Surv. Tech.
Methods 253, US Geological Survey Techniques and Methods 6-A16, US Geological Survey, Reston, Virginia, 2005.
Harman, C. J.: Time-variable transit time distributions and transport: Theory and application to storage-dependent transport of chloride in a watershed, Water Resour. Res., 51, 1–30, https://doi.org/10.1002/2014WR015707, 2015.
Hartog, N., van Bergen, P. F., de Leeuw, J. W., and Griffioen, J.: Reactivity
of organic matter in aquifer sediments: Geological and geochemical controls,
Geochim. Cosmochim. Ac., 68, 1281–1292, https://doi.org/10.1016/j.gca.2003.09.004,
2004.
Hefting, M. M. and de Klein, J. J. M.: Nitrogen removal in buffer strips along a lowlandstream in the Netherlands: a pilot study, Environ. Pollut., 102, 521–526, https://doi.org/10.1016/s0269-7491(98)80078-x, 1998.
Hendriks, D. M. D., Kuijper, M. J. M., and van Ek, R.: Groundwater impact on environmental flow needs of streams in sandy catchments in the Netherlands, Hydrolog. Sci. J., 59, 1–16, https://doi.org/10.1080/02626667.2014.892601, 2014.
Higler, L. W., Repko, F. F., and Sinkeldam, J. A.: Hydrobiologische waarnemingen in het Springendal, RIN-rapport 81/16, Rijksinstituut voor Natuurbeheerd, Leersum, 1981.
Hill, A. R.: Nitrate Removal in Stream Riparian Zones, J. Environ. Qual.,
25, 743–755, 1996.
Hoek, D.: Nutriëntenbelasting in de bovenloop van de Springendalse
beek: een onderzoek naar de waterkwaliteit van een Twentse bronbeek in
bestuurskundig alsmede civieltechnisch perpectief, Universiteit Twente, Twente, avaiable at: http://library.wur.nl/WebQuery/hydrotheek/2196989
(last access: 15 October 2019), 1992.
Howden, N. J. K., Burt, T. P., Mathias, S. A., Worrall, F., and Whelan, M. J.: Modelling long-term diffuse nitrate pollution at the catchment-scale: Data, parameter and epistemic uncertainty, J. Hydrol., 403, 337–351,
https://doi.org/10.1016/j.jhydrol.2011.04.012, 2011a.
Howden, N. J. K., Burt, T. P., Worrall, F., Mathias, S., and Whelan, M. J.:
Nitrate pollution in intensively farmed regions: What are the prospects for
sustaining high-quality groundwater?, Water Resour. Res., 47, W00L02, https://doi.org/10.1029/2011WR010843, 2011b.
Hrachowitz, M., Soulsby, C., Tetzlaff, D., Dawson, J. J. C., Dunn, S. M., and
Malcolm, I. A.: Using long-term data sets to understand transit times in
contrasting headwater catchments, J. Hydrol., 367, 237–248, 2009.
Hrachowitz, M., Benettin, P., Breukelen, B. M., Fovet, O., Howden, N. J. K.,
Ruiz, L., van der Velde, Y., and Wade, A. J.: Transit times – the link between hydrology and water quality at the catchment scale, WIREs Water, 3,
629–657, https://doi.org/10.1002/wat2.1155, 2016.
IAEA/WMO: Global Network of Isotopes in Precipitation, The GNIP Database,
available at: http://www.iaea.org/water, last access: November 2018.
Johnes, P. J. and Heathwaite, A. L.: Modelling the Impact of Land Use Change
on Water Quality in Agricultural Catchments, Hydrol. Process., 11, 269–286, 1997.
Kaandorp, V. P.: Data and scripts belonging to “Time lags of nitrate, chloride, and tritium in streams assessed by dynamic groundwater flow tracking in a lowland landscape”, Zenodo, https://doi.org/10.5281/zenodo.5039434, 2021.
Kaandorp, V. P., de Louw, P. G. B., van der Velde, Y., and Broers, H. P.:
Transient Groundwater Travel Time Distributions and Age-Ranked Storage–Discharge Relationships of Three Lowland Catchments, Water Resour.
Res., 54, 4519–4536, https://doi.org/10.1029/2017WR022461, 2018a.
Kaandorp, V. P., Molina-Navarro, E., Andersen, H. E., Bloomfield, J. P.,
Kuijper, M. J. M., and de Louw, P. G. B.: A conceptual model for the analysis
of multi-stressors in linked groundwater–surface water systems, Sci. Total
Environ., 627, 880–895, https://doi.org/10.1016/j.scitotenv.2018.01.259, 2018b.
Kaandorp, V. P., Doornenbal, P. J., Kooi, H., Broers, H. P., and de Louw, P.
G. B.: Temperature buffering by groundwater in ecologically valuable lowland
streams under current and future climate conditions, J. Hydrol., 3, 100031, https://doi.org/10.1016/j.hydroa.2019.100031, 2019.
Kolbe, T., De Dreuzy, J., Abbott, B. W., Aquilina, L., and Babey, T.:
Stratification of reactivity determines nitrate removal in groundwater, P. Natl. Acad. Sci. USA, 116, 2494–2499, https://doi.org/10.1073/pnas.1816892116, 2019.
Kros, J., Tietema, A., Mol-Dijkstra, J. P., and de Vries, W.: Quantification of nitrate leaching from forest soils on a national scale in The Netherlands, Hydrol. Earth Syst. Sci., 8, 813–822, https://doi.org/10.5194/hess-8-813-2004, 2004.
Kuijper, M. J. M., Goorden, N., and Vermeulen, P. T. M.: Update Grondwatermodel Waterschap Regge en Dinkel, Deltares Report 1202490-000, Deltares, Utrecht, 2012.
Lutz, S. R., Trauth, N., Musolff, A., Van Breukelen, B. M., Knöller, K.,
and Fleckenstein, J. H.: How important is denitrification in riparian zones? Combining end-member mixing and isotope modeling to quantify nitrate removal from riparian groundwater, Water Resour. Res., 56, e2019WR025528, https://doi.org/10.1029/2019WR025528, 2020.
Martin, C., Aquilina, L., Gascuel-Odoux, C., Molénat, J., Faucheux, M., and Ruiz, L.: Seasonal and interannual variations of nitrate and chloride in
stream waters related to spatial and temporal patterns of groundwater
concentrations in agricultural catchments, Hydrol. Process., 18, 1237–1254, https://doi.org/10.1002/hyp.1395, 2004.
McDonnell, J. J., McGuire, K. J., Aggarwal, P., Beven, K. J., Biondi, D.,
Destouni, G., Dunn, S. M., James, a., Kirchner, J. W., Kraft, P., Lyon, S.,
Maloszewski, P., Newman, B., Pfister, L., Rinaldo, A., Rodhe, A., Sayama, T., Seibert, J., Solomon, D. K., Soulsby, C., Stewart, M. K., Tetzlaff, D., Tobin, C., Troch, P., Weiler, M., Western, A., Wörman, A., and Wrede, S.:
How old is streamwater? Open questions in catchment transit time conceptualization, modelling and analysis, Hydrol. Process., 24, 1745–1754, https://doi.org/10.1002/hyp.7796, 2010.
McGuire, K. J. and McDonnell, J. J.: Hydrological connectivity of hillslopes
and streams: Characteristic time scales and nonlinearities, Water Resour. Res., 46, W10543, https://doi.org/10.1029/2010WR009341, 2010.
Meinardi, C. R.: Groundwater recharge and travel times in the sandy regions
of the Netherlands, Vrije Universiteit Amsterdam, available at:
http://dare.ubvu.vu.nl//handle/1871/12739 (last access: 3 February 2019), 1994.
Middelburg, J. J.: A simple rate model for organic matter decomposition in
marine sediments, Geochim. Cosmochim. Ac., 53, 1577–1581, 1989.
Modica, E., Buxton, H. T., and Plummer, L. N.: Evaluating the source and
residence times of groundwater seepage to streams, New Jersey Coastal Plain,
Water Resour. Res., 34, 2797–2810, 1998.
Morgenstern, U., Stewart, M. K., and Stenger, R.: Dating of streamwater using
tritium in a post nuclear bomb pulse world: continuous variation of mean
transit time with streamflow, Hydrol. Earth Syst. Sci., 14, 2289–2301,
https://doi.org/10.5194/hess-14-2289-2010, 2010.
Musolff, A., Schmidt, C., Rode, M., Lischeid, G., Weise, S. M., and Fleckenstein, J. H.: Groundwater head controls nitrate export from an
agricultural lowland catchment, Adv. Water Resour., 96, 95–107,
https://doi.org/10.1016/j.advwatres.2016.07.003, 2016.
Musolff, A., Fleckenstein, J. H., Rao, P. S. C., and Jawitz, J. W.: Emergent
archetype patterns of coupled hydrologic and biogeochemical responses in
catchments, Geophys. Res. Lett., 44, 4143–4151, https://doi.org/10.1002/2017GL072630,
2017.
Nijboer, R. C., Wiggers, R., van den Hoek, T. H., and van Rhenen-Kersten, C.
H.: Herstel van een brongebied in natuurreservaat het Springendal, Wageningen, Alterra, Wageningen, 2003.
Oenema, O., Boers, P. C. M., van Eerdt, M. M., Fraters, B., van der Meer, H.
G., Roest, C. W. J., Schroder, J. J., and Willems, W. J.: Leaching of nitrate
from agriculture to groundwater: the effect of policies and measures in the
Netherlands, Environ. Pollut., 102, 471–478, 1998.
O'Toole, P., Chambers, J. M., and Bell, R. W.: Understanding the characteristics of riparian zones in low relief, sandy catchments that affect their nutrient removal potential, Agric. Ecosyst. Environ., 258, 182–196, https://doi.org/10.1016/j.agee.2018.02.020, 2018.
Pollock, D. W.: User's guide for MODPATH: A particle tracking post-processing package for MODFLOW, US Geological Survey, Reston, Virginia,
https://doi.org/10.3133/ofr94464, 1994.
Postma, D., Boesen, C., Kristiansen, H., and Larsen, F.: Nitrate Reduction in
an Unconfined Sandy Aquifer: Water Chemistry, Reduction Processes, and Geochemical Modeling, Water Resour. Res., 27, 2027–2045, 1991.
Prommer, H. and Stuyfzand, P. J.: Identification of temperature-dependent water quality changes during a deep well injection experiment in a pyritic
aquifer, Environ. Sci. Technol., 39, 2200–2209, https://doi.org/10.1021/es0486768, 2005.
Raats, P. A. C.: Convective Transport of Solutes by Steady State Flows I. General Theory, Agr. Water Manage., 1, 201–218, 1978.
Ranalli, A. J. and Macalady, D. L.: The importance of the riparian zone and
in-stream processes in nitrate attenuation in undisturbed and agricultural
watersheds – A review of the scientific literature, J. Hydrol., 389, 406–415, https://doi.org/10.1016/j.jhydrol.2010.05.045, 2010.
REGIS II, Hydrogeological model of The Netherlands, Report: Vernes, R .W.,
Van Doorn, Th. H. M. From Guide layer to Hydrogeological Unit, Explanation of
the construction of the data set, TNO report NITG 05–038-B, available at:
https://www.dinoloket.nl/ (last access: 8 February 2019), 2005.
Rodriguez, N. B., Benettin, P., and Klaus, J.: Multimodal water age distributions and the challenge of complex hydrological landscapes, Hydrol.
Process., 34, 2707–2724, https://doi.org/10.1002/hyp.13770, 2020.
Rozemeijer, J. C. and Broers, H. P.: The groundwater contribution to surface
water contamination in a region with intensive agricultural land use (Noord-Brabant, The Netherlands), Environ. Pollut., 148, 695–706,
https://doi.org/10.1016/j.envpol.2007.01.028, 2007.
Rozemeijer, J. C., Klein, J., Broers, H. P., van Tol-Leenders, T. P., and van der Grift, B.: Water quality status and trends in agriculture-dominated
headwaters; a national monitoring network for assessing the effectiveness of
national and European manure legislation in The Netherlands, Environ. Monit. Assess., 186, 8981–8995, https://doi.org/10.1007/s10661-014-4059-0, 2014.
Schroder, J. J., Aarts, H. F. M., Van Middelkoop, J. C., Schils, R. L. M.,
Velthof, G. L., Fraters, B., and Willems, W. J.: Permissible manure and
fertilizer use in dairy farming systems on sandy soils in The Netherlands to
comply with the Nitrates Directive target, Eur. J. Agron., 27, 102–114,
https://doi.org/10.1016/j.eja.2007.02.008, 2007.
Solomon, D. K., Gilmore, T. E., Solder, J. E., Kimball, B., and Genereux, D.
P.: Evaluating an unconfined aquifer by analysis of age-dating tracers in
streamwater, Water Resour. Res., 51, 8883–8899, https://doi.org/10.1002/2014WR016259,
2015.
Sprenger, M., Seeger, S., Blume, T., and Weiler, M.: Travel times in the
vadose zone: Variability in space and time, Water Resour. Res., 52, 1–20,
https://doi.org/10.1002/2014WR015716, 2016.
Steenvoorden, J. H. A. M., Roest, C. W. J., and Boers, P. C. M.: Simulation
of nutrient losses to groundwaters and surface waters in The Netherlands, in:
Freshwater Contamination (Proceedings of Rabat Symposium S4, April–May 1997), No. 243, IAHS Publ., Wallingford, Oxfordshire, UK, 392 pp., 1997.
Stewart, M. K., Morgenstern, U., Gusyev, M. A., and Małoszewski, P.: Aggregation effects on tritium-based mean transit times and young water fractions in spatially heterogeneous catchments and groundwater systems, Hydrol. Earth Syst. Sci., 21, 4615–4627, https://doi.org/10.5194/hess-21-4615-2017, 2017.
Stolp, B. J., Solomon, D. K., Suckow, A., Vitvar, T., Rank, D., Aggarwal, P.,
and Han, L. F.: Age dating base flow at springs and gaining streams using
helium-3 and tritium: Fischa–Dagnitz system, southern Vienna Basin, Austria,
Water Resour. Res., 46, 1–13, https://doi.org/10.1029/2009WR008006, 2010.
Sültenfuß, J., Roether, W., and Rhein, M.: The Bremen mass spectrometric facility for the measurement of helium isotopes, neon, and
tritium in water of helium isotopes, Isotop. Environ. Health Stud., 45, 83–95, https://doi.org/10.1080/10256010902871929, 2009.
Tesoriero, A. J. and Puckett, L. J.: O2 reduction and denitrification rates in shallow aquifers, Water Resour. Res., 47, 1–17,
https://doi.org/10.1029/2011WR010471, 2011.
Tesoriero, A. J., Liebscher, H., and Cox, S. E.: Mechanism and rate of
denitrification in an agricultural watershed: Electron and mass balance
along groundwater flow paths, Water Resour. Res., 36, 1545–1559, 2000.
Tufford, D. L., McKellar, H. N., and Hussey, J. R.: In-Stream Nonpoint Source
Nutrient Prediction with Land-Use Proximity and Seasonality, J. Environ. Qual., 27, 100–111, https://doi.org/10.2134/jeq1998.00472425002700010015x, 1998.
Van Beek, C. G. E. M., Laeven, M. P., and Vogelaar, A. J.: Modellering
denitrificatie in grondwater onder invloed van organisch materiaal, H2O, 27, 180–184, 1994.
Van Dam, H., Mertens, A., and Janmaat, L. M.: De invloed van atmosferische
depositie op diatomeeën en chemische samenstelling van het water in
sprengen, beken en bronnen, Wageningen, 1993.
van den Brink, C., Jan, W., van der Grift, B., de Ruiter, P. C., and
Griffioen, J.: Using a groundwater quality negotiation support system to
change land-use management near a drinking-water abstraction in the Netherlands, J. Hydrol., 350, 339–356, https://doi.org/10.1016/j.jhydrol.2007.10.046,
2008.
van der Aa, N. G. F. M., Goes, B. J. M., de Louw, P. G. B., den Otter, C.,
Reckman, J. W. T. M., and Stuurman, R. J.: Ecohydrologische Systeemanalyse
Springendalse Beek, Delft, TNO-rapport 99-168-B, NITG TNO, Delft, 1999.
van der Velde, Y., de Rooij, G. H., and Torfs, P. J. J. F.: Catchment-scale non-linear groundwater–surface water interactions in densely drained lowland catchments, Hydrol. Earth Syst. Sci., 13, 1867–1885, https://doi.org/10.5194/hess-13-1867-2009, 2009.
van der Velde, Y., de Rooij, G. H., Rozemeijer, J. C., van Geer, F. C., and
Broers, H. P.: Nitrate response of a lowland catchment: On the relation
between stream concentration and travel time distribution dynamics, Water
Resour. Res., 46, W11534, https://doi.org/10.1029/2010WR009105, 2010.
van der Velde, Y., Torfs, P. J. J. F., van der Zee, S. E. A. T. M., and
Uijlenhoet, R.: Quantifying catchment-scale mixing and its effect on time-varying travel time distributions, Water Resour. Res., 48, W06536,
https://doi.org/10.1029/2011WR011310, 2012.
Van Meter, K. J. and Basu N. B.: Time lags in watershed-scale nutrient
transport: An exploration of dominant controls, Environ. Res. Lett., 12,
084017, https://doi.org/10.1088/1748-9326/aa7bf4, 2017.
van Ommen, H. C.: Influence of diffuse sources of contamination on the quality of outflowing groundwater including non-equilibrium adsorption and
decomposition, J. Hydrol., 88, 79–95, https://doi.org/10.1016/0022-1694(86)90198-8, 1986.
van Walsum, P. E. V. and Groenendijk, P.: Quasi Steady-State Simulation of
the Unsaturated Zone in Groundwater Modeling of Lowland Regions, Vadose Zone
J., 7, 769–781, https://doi.org/10.2136/vzj2007.0146, 2008.
van Walsum, P. E. V. and Veldhuizen, A. A.: Integration of models using shared state variables: Implementation in the regional hydrologic modelling
system SIMGRO, J. Hydrol., 409, 363–370, https://doi.org/10.1016/j.jhydrol.2011.08.036, 2011.
Verdonschot, P. F. M. and Loeb, R.: Effecten van grondwatertoevoer op
oppervlaktewaterkwaliteit: Een casestudie in twee natuurgebieden, Wageningen, Alterra-rapport 1752, Alterra, Wageningen, 2008.
Verdonschot, P. F. M., van den Hoek, T. H., and van den Hoorn, M. W.: De
effecten van bodemverhoging op het beekecosysteem van de Springendalse beek,
Wageningen, Alterra-rapport 1075, Alterra, Wageningen, 2002.
Visser, A., Broers, H. P., van der Grift, B., and Bierkens, M. F. P.:
Demonstrating trend reversal of groundwater quality in relation to time of
recharge determined by 3H/3He., Environ. Pollut., 148, 797–807,
https://doi.org/10.1016/j.envpol.2007.01.027, 2007.
Visser, A., Heerdink, R., Broers, H. P., and Bierkens, M. F. P.: Travel time
distributions derived from particle tracking in groundwater models containing weak sinks, Groundwater, 47, 237–245, 2009.
Vogel, J. C.: Investigation of groundwater flow with radiocarbon, IAEA – International Atomic Energy Agency, Vienna, 1967.
Wang, L., Stuart, M. E., Bloomfield, J. P., Butcher, A. S., Gooddy, D. C.,
Mckenzie, A. A., Lewis, M. A., and Williams, A. T.: Prediction of the arrival
of peak nitrate concentrations at the water table at the regional scale in
Great Britain, Hydrol. Process., 26, 226–239, https://doi.org/10.1002/hyp.8164, 2012.
Worrall, F., Howden, N. J. K., and Burt, T. P.: Time series analysis of the
world's longest fluvial nitrate record: Evidence for changing states of
catchment saturation, Hydrol. Process., 29, 434–444, https://doi.org/10.1002/hyp.10164, 2015.
Wriedt, G., Spindler, J., Neef, T., Meißner, R., and Rode, M.: Groundwater dynamics and channel activity as major controls of in-stream
nitrate concentrations in a lowland catchment system?, J. Hydrol., 343, 154–168, https://doi.org/10.1016/j.jhydrol.2007.06.010, 2007.
Yang, J., Heidbüchel, I., Musolff, A., Reinstorf, F., and Fleckenstein, J. H.: Exploring the Dynamics of Transit Times and Subsurface Mixing in a
Small Agricultural Catchment, Water Resour. Res., 54, 2317–2335,
https://doi.org/10.1002/2017WR021896, 2018.
Zhang, Y. C., Slomp, C. P., Broers, H. P., Passier, H. F., and Cappellen, P.
Van: Denitrification coupled to pyrite oxidation and changes in groundwater
quality in a shallow sandy aquifer, Geochim. Cosmochim. Ac., 73, 6716–6726, https://doi.org/10.1016/j.gca.2009.08.026, 2009.
Zhang, Y. C., Prommer, H., Broers, H. P., Slomp, C. P., Greskowiak, J., van der Grift, B., and Van Cappellen, P.: Model-based integration and analysis of biogeochemical and isotopic dynamics in a nitrate-polluted pyritic aquifer, Environ. Sci. Technol., 47, 10415–10422, https://doi.org/10.1021/es4023909, 2013.
Short summary
We reconstructed historical and present-day tritium, chloride, and nitrate concentrations in stream water of a catchment using
land-use-based input curves and calculated travel times of groundwater. Parameters such as the unsaturated zone thickness, mean travel time, and input patterns determine time lags between inputs and in-stream concentrations. The timescale of the breakthrough of pollutants in streams is dependent on the location of pollution in a catchment.
We reconstructed historical and present-day tritium, chloride, and nitrate concentrations in...