Chaudhuri, A., Rajaram, H., Viswanathan, H., Zyvoloski, G., and Stauffer, P.: Buoyant convection resulting from dissolution and permeability growth in vertical limestone fractures, Geophys. Res. Lett., 36, L03401, https://doi.org/10.1029/2008GL036533, 2009.
Chaudhuri, A., Rajaram, H., and Viswanathan, H.: Early-stage hypogene karstification in a mountain hydrologic system: A coupled thermohydrochemical model incorporating buoyant convection, Water Resour. Res., 49, 5880–5899, https://doi.org/10.1002/wrcr.20427, 2013.
Cheung, W. and Rajaram, H.: Dissolution finger growth in variable aperture fractures: Role of the tip-region flow field, Geophys. Res. Lett., 29, 32-31–32-34, https://doi.org/10.1029/2002GL015196, 2002.
De Simoni, M., Sanchez-Vila, X., Carrera, J., and Saaltink, M. W.: A mixing ratios-based formulation for multicomponent reactive transport, Water Resour. Res., 43, W07419, https://doi.org/10.1029/2006WR005256, 2007.
Dreybrodt, W.: Processes in karst systems: physics, chemistry, and geology, Springer-Verlag, Berlin, New York, xii, 288 pp., 1988.
Dreybrodt, W.: The role of dissolution kinetics in the development of karst aquifers in limestone – A model simulation of karst evolution, J. Geol., 98, 639–655, 1990.
Dreybrodt, W.: Principles of early development of karst conduits under natural and man-made conditions revealed by mathematical analysis of numerical models, Water Resour. Res., 32, 2923–2935, https://doi.org/10.1029/96WR01332 1996.
Dreybrodt, W. and Gabrovšek, F.: Dynamics of wormhole formation in fractured limestones, Hydrol. Earth Syst. Sci., 23, 1995–2014, https://doi.org/10.5194/hess-23-1995-2019, 2019.
Dreybrodt, W., Gabrovšek, F., and Romanov, D.: Processes of speleogenesis: A modeling approach, Carsologica, edited by: Gabrovšek, F., Založba ZRC, Ljubljana, 375 pp., 2005.
Eisenlohr, L., Meteva, K., Gabrovšek, F., and Dreybrodt, W.: The inhibiting action of intrinsic impurities in natural calcium carbonate minerals to their dissolution kinetics in aqueous
H2O–
CO2 solutions, Geochim. Cosmochim. Ac., 63, 989–1001, 1999.
Gabrovšek, F. and Dreybrodt, W.: A model of the early evolution of karst aquifers in limestone in the dimensions of lenght and depth, J. Hydrol., 240, 206–224, https://doi.org/10.1016/S0022-1694(00)00323-1, 2001.
Gabrovšek, F. and Dreybrodt, W.: Karstification in unconfined limestone aquifers by mixing of phreatic water with surface water from a local input: A model, J. Hydrol., 386, 130–141, https://doi.org/10.1016/j.jhydrol.2010.03.015, 2010.
Gong, X., Hou, W., Feng, D., Luo, Q., and Yang, X.: Modelling early karstification in future limestone geothermal reservoirs by mixing of meteoric water with cross-formational warm water, Geothermics, 77, 313–326, https://doi.org/10.1016/j.geothermics.2018.10.009, 2019.
Groves, C. G. and Howard, A. D.: Early development of karst systems, 1. Preferential flow path enlargement under laminar-flow, Water Resour. Res., 30, 2837–2846, 1994.
Hanna, R. B. and Rajaram, H.: Influence of aperture variability on dissolutional growth of fissures in karst formations, Water Resour. Res., 34, 2843–2853, 1998.
Jeong, C. H., Kim, H. J., and Lee, S. Y.: Hydrochemistry and genesis of CO2-rich springs from Mesozoic granitoids and their adjacent rocks in South Korea, Geochem. J., 39, 517–530, https://doi.org/10.2343/geochemj.39.517, 2005.
Kaufmann, G.: Modelling unsaturated flow in an evolving karst aquifer, J. Hydrol., 276, 53–70, 2003.
Kaufmann, G.: Modelling karst aquifer evolution in fractured, porous rocks, J. Hydrol., 543, 796–807, https://doi.org/10.1016/j.jhydrol.2016.10.049, 2016.
Kaufmann, G. and Romanov, D.: Modelling speleogenesis in soluble rocks: A case study from the Permian Zechstein sequences exposed along the southern Harz Mountains and the Kyffhäuser Hills, German, Acta Carsologica, 48, 173–197, https://doi.org/10.3986/ac.v48i2.7282, 2019.
Kaufmann, G., Gabrovšek, F., and Romanov, D.: Deep conduit flow in karst aquifers revisited, Water Resour. Res., 50, 4821–4836, https://doi.org/10.1002/2014wr015314, 2014.
Klimchouk, A.: Hypogene Speleogenesis: Hydrogeological and Morphogenetic Perspective, National Cave and Karst Resear
ch Institute, Special Paper National Cave and Karst Research Institute, Carlsbad, 106 pp., 2007.
Klimchouk, A.: Speleogenesis – Hypogene, in: Encyclopedia of Caves (Third Edition), edited by: White, W. B., Culver, D. C., and Pipan, T., Academic Press, chap. 14, 974–988, 2019.
Klimchouk, A., Palmer, A. N., Waele, J. D., Auler, A. S., and Audra, P.: Hypogene Karst Regions and Caves of the World, in: Cave and Karst Systems of the World, edited by: LaMoreaux, J. W., Springer, Cham, 911 pp., 2017.
Klimchouk, A. B.: Hypogene Speleogenesis, in: Treatise on Geomorphology, edited by: Shroder, J. F., Academic Press, San Diego, chap. 6.19, 220–240, 2013.
Klimchouk, A. B.: The Karst Paradigm: Changes, Trends and Perspectives, Acta Carsologica, 44, 289–313, https://doi.org/10.3986/ac.v44i3.2996, 2016.
Laabidi, E. and Bouhlila, R.: Nonstationary porosity evolution in mixing zone in coastal carbonate aquifer using an alternative modeling approach, Environ. Sci. Pollut. R., 22, 10070–10082, https://doi.org/10.1007/s11356-015-4207-2, 2015.
Li, S., Kang, Z., Feng, X.-T., Pan, Z., Huang, X., and Zhang, D.: Three-Dimensional Hydrochemical Model for Dissolutional Growth of Fractures in Karst Aquifers, Water Resour. Res., 56, e2019WR025631, https://doi.org/10.1029/2019wr025631, 2020.
Palmer, A. N.: Origin and morphology of limestone caves, Geol. Soc. Am. Bull., 103, 1–21, https://doi.org/10.1130/0016-7606(1991)103%3C0001:OAMOLC{%}3E2.3.CO;2, 1991.
Palmer, A. N.: Hydrogeologic control of cave patterns, in: Speleogenesis: Evolution of karst aquifers, edited by: Klimchouk, A., Ford, D. C., Palmer, A., and Dreybrodt, W., National Speleological Society, Huntsville, 77–90, 2000.
Palmer, A. N.: Support for a sulfuric acid origin for caves in the Guadalupe Mountains, New Mexico, in: Caves and Karst of Southeastern New Mexico, edited by: Land, L., Lueth, V. W., Raatz, W., Boston, P., and Love, D. L., NMGS 57th Fall Field Conference, New Mexico Geological Society, Socorro, Mew Mexico, USA, 159–202, 2006.
Palmer, A. N.: Cave geology, Cave Books, Dayton, Ohio, vi, 454 pp., 2007.
Palmer, A. N.: 6.20 Sulfuric Acid Caves: Morphology and Evolution, in: Treatise on Geomorphology, edited by: Shroder, J. F., Academic Press, San Diego, 241–257, 2013.
Palmer, A. N.: Hypogenic Versus Epigenic Aspects of the Black Hills Caves, South Dakota, in: Hypogene Karst Regions and Caves of the World, edited by: Klimchouk, A., N. Palmer, A., De Waele, J., S. Auler, A., and Audra, P., Springer International Publishing, Cham, 601–615, 2017.
Rajaram, H., Cheung, W., and Chaudhuri, A.: Natural analogs for improved understanding of coupled processes in engineered earth systems: examples from karst system evolution, Curr. Sci. India, 97, 1162–1176, 2009.
Rehrl, C., Birk, S., and Klimchouk, A. B.: Conduit evolution in deep-seated settings: Conceptual and numerical models based on field observations, Water Resour. Res., 44, W11425, https://doi.org/10.1029/2008WR006905, 2008.
Romanov, D. and Dreybrodt, W.: Evolution of porosity in the saltwater–freshwater mixing zone of coastal carbonate aquifers: An alternative modelling approach, J. Hydrol., 329, 661–673, https://doi.org/10.1016/j.jhydrol.2006.03.030, 2006.
Siemers, J. and Dreybrodt, W.: Early development of karst aquifers on percolation networks of fractures in limestone, Water Resour. Res., 34, 409–419, 1998.
Svensson, U. and Dreybrodt, W.: Dissolution kinetics of natural calcite minerals in
CO2-water systems approaching calcite equilibrium, Chem. Geol., 100, 129–145, https://doi.org/10.1016/0009-2541(92)90106-F, 1992.
Szymczak, P. and Ladd, A. J. C.: Wormhole formation in dissolving fractures, J. Geophys. Res.-Sol. Ea., 114, B06203, https://doi.org/10.1029/2008JB006122, 2009.