Articles | Volume 24, issue 9
https://doi.org/10.5194/hess-24-4587-2020
https://doi.org/10.5194/hess-24-4587-2020
Research article
 | 
22 Sep 2020
Research article |  | 22 Sep 2020

Rainfall interception and redistribution by a common North American understory and pasture forb, Eupatorium capillifolium (Lam. dogfennel)

D. Alex R. Gordon, Miriam Coenders-Gerrits, Brent A. Sellers, S. M. Moein Sadeghi, and John T. Van Stan II

Related authors

Barriers to urban hydrometeorological simulation: a review
Xuan Chen, Job Augustijn van der Werf, Arjan Droste, Miriam Coenders-Gerrits, and Remko Uijlenhoet
Hydrol. Earth Syst. Sci., 29, 3447–3480, https://doi.org/10.5194/hess-29-3447-2025,https://doi.org/10.5194/hess-29-3447-2025, 2025
Short summary
Evaporation measurements using commercial microwave links as scintillometers
Luuk D. van der Valk, Oscar K. Hartogensis, Miriam Coenders-Gerrits, Rolf W. Hut, and Remko Uijlenhoet
EGUsphere, https://doi.org/10.5194/egusphere-2025-1128,https://doi.org/10.5194/egusphere-2025-1128, 2025
Short summary
Catchments do not strictly follow Budyko curves over multiple decades, but deviations are minor and predictable
Muhammad Ibrahim, Miriam Coenders-Gerrits, Ruud van der Ent, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 29, 1703–1723, https://doi.org/10.5194/hess-29-1703-2025,https://doi.org/10.5194/hess-29-1703-2025, 2025
Short summary
Use of commercial microwave links as scintillometers: potential and limitations towards evaporation estimation
Luuk D. van der Valk, Oscar K. Hartogensis, Miriam Coenders-Gerrits, Rolf W. Hut, Bas Walraven, and Remko Uijlenhoet
EGUsphere, https://doi.org/10.5194/egusphere-2024-2974,https://doi.org/10.5194/egusphere-2024-2974, 2025
Short summary
On the importance of plant phenology in the evaporative process of a semi-arid woodland: could it be why satellite-based evaporation estimates in the miombo differ?
Henry M. Zimba, Miriam Coenders-Gerrits, Kawawa E. Banda, Petra Hulsman, Nick van de Giesen, Imasiku A. Nyambe, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 28, 3633–3663, https://doi.org/10.5194/hess-28-3633-2024,https://doi.org/10.5194/hess-28-3633-2024, 2024
Short summary

Cited articles

Alavi, G., Jansson, P.-E., Hällgren, J.-E., and Bergholm, J.: Interception of a dense spruce forest, performance of a simplified canopy water balance model, Hydrol. Res., 32, 265–284, 2001. 
Alexandratos, N. and Bruinsma, J.: World agriculture towards 2030/2050: the 2012 revision, ESA Working paper, FAO, Rome, 2012. 
Aston, A. R.: Rainfall interception by eight small trees, J. Hydrol., 42, 383–396, 1979. 
Baier, W.: Studies on dew formation under semi-arid conditions, Agricult. Meteorol., 3, 103–112, 1966. 
Berry, Z. C., Emery, N. C., Gotsch, S. G., and Goldsmith, G. R.: Foliar water uptake: processes, pathways, and integration into plant water budgets, Plant Cell Environ., 42, 410–423, 2019. 
Download
Short summary
Where plants exist, rain must pass through canopies to reach soils. We studied how rain interacts with dogfennel – a highly problematic weed that is abundant in pastures, grasslands, rangelands, urban forests and along highways. Dogfennels evaporated large portions (approx. one-fifth) of rain and drained significant (at times > 25 %) rain (and dew) down their stems to their roots (via stemflow). This may explain how dogfennel survives and even invades managed landscapes during extended droughts.
Share