Articles | Volume 24, issue 9
https://doi.org/10.5194/hess-24-4587-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-24-4587-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Rainfall interception and redistribution by a common North American understory and pasture forb, Eupatorium capillifolium (Lam. dogfennel)
D. Alex R. Gordon
Geology and Geography, Georgia Southern University, Statesboro,
GA, USA
Applied Coastal Research Lab, Georgia Southern University, Savannah, GA, USA
Miriam Coenders-Gerrits
CORRESPONDING AUTHOR
Delft University of Technology, Water Resources Section, Delft, the Netherlands
Brent A. Sellers
Agronomy Department, University of Florida, Gainesville, FL, USA
Range Cattle Research and Education Center, University of Florida,
Institute of Food and Agricultural Sciences, Gainesville, FL, USA
S. M. Moein Sadeghi
Department of Forestry and Forest Economics, University of Tehran,
Karaj, Iran
John T. Van Stan II
Applied Coastal Research Lab, Georgia Southern University, Savannah, GA, USA
Related authors
No articles found.
Xuan Chen, Job Augustijn van der Werf, Arjan Droste, Miriam Coenders-Gerrits, and Remko Uijlenhoet
Hydrol. Earth Syst. Sci., 29, 3447–3480, https://doi.org/10.5194/hess-29-3447-2025, https://doi.org/10.5194/hess-29-3447-2025, 2025
Short summary
Short summary
The review highlights the need to integrate urban land surface and hydrological models to better predict and manage compound climate events in cities. We find that inadequate representation of water surfaces, hydraulic systems and detailed building representations are key areas for improvement in future models. Coupled models show promise but face challenges at regional and neighbourhood scales. Interdisciplinary communication is crucial to enhance urban hydrometeorological simulations.
Luuk D. van der Valk, Oscar K. Hartogensis, Miriam Coenders-Gerrits, Rolf W. Hut, and Remko Uijlenhoet
EGUsphere, https://doi.org/10.5194/egusphere-2025-1128, https://doi.org/10.5194/egusphere-2025-1128, 2025
Short summary
Short summary
Commercial microwave links (CMLs), part of mobile phone networks, transmit comparable signals as instruments specially designed to estimate evaporation. Therefore, we investigate if CMLs could be used to estimate evaporation, even though they have not been designed for this purpose. Our results illustrate the potential of using CMLs to estimate evaporation, especially given their global coverage, but also outline some major drawbacks, often a consequence of unfavourable design choices for CMLs.
Muhammad Ibrahim, Miriam Coenders-Gerrits, Ruud van der Ent, and Markus Hrachowitz
Hydrol. Earth Syst. Sci., 29, 1703–1723, https://doi.org/10.5194/hess-29-1703-2025, https://doi.org/10.5194/hess-29-1703-2025, 2025
Short summary
Short summary
The quantification of precipitation into evaporation and runoff is vital for water resources management. The Budyko framework, based on aridity and evaporative indices of a catchment, can be an ideal tool for that. However, recent research highlights deviations of catchments from the expected evaporative index, casting doubt on its reliability. This study quantifies deviations of 2387 catchments, finding them minor and predictable. Integrating these into predictions upholds the framework's efficacy.
Luuk D. van der Valk, Oscar K. Hartogensis, Miriam Coenders-Gerrits, Rolf W. Hut, Bas Walraven, and Remko Uijlenhoet
EGUsphere, https://doi.org/10.5194/egusphere-2024-2974, https://doi.org/10.5194/egusphere-2024-2974, 2025
Short summary
Short summary
Commercial microwave links (CMLs), part of mobile phone networks, transmit comparable signals as instruments specially designed to estimate evaporation. Therefore, we investigate if CMLs could be used to estimate evaporation, even though they have not been designed for this purpose. Our results illustrate the potential of using CMLs to estimate evaporation, especially given their global coverage, but also outline some major drawbacks, often a consequence of unfavourable design choices for CMLs.
Henry M. Zimba, Miriam Coenders-Gerrits, Kawawa E. Banda, Petra Hulsman, Nick van de Giesen, Imasiku A. Nyambe, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 28, 3633–3663, https://doi.org/10.5194/hess-28-3633-2024, https://doi.org/10.5194/hess-28-3633-2024, 2024
Short summary
Short summary
The fall and flushing of new leaves in the miombo woodlands co-occur in the dry season before the commencement of seasonal rainfall. The miombo species are also said to have access to soil moisture in deep soils, including groundwater in the dry season. Satellite-based evaporation estimates, temporal trends, and magnitudes differ the most in the dry season, most likely due to inadequate understanding and representation of the highlighted miombo species attributes in simulations.
Luuk D. van der Valk, Miriam Coenders-Gerrits, Rolf W. Hut, Aart Overeem, Bas Walraven, and Remko Uijlenhoet
Atmos. Meas. Tech., 17, 2811–2832, https://doi.org/10.5194/amt-17-2811-2024, https://doi.org/10.5194/amt-17-2811-2024, 2024
Short summary
Short summary
Microwave links, often part of mobile phone networks, can be used to measure rainfall along the link path by determining the signal loss caused by rainfall. We use high-frequency data of multiple microwave links to recreate commonly used sampling strategies. For time intervals up to 1 min, the influence of sampling strategies on estimated rainfall intensities is relatively little, while for intervals longer than 5–15 min, the sampling strategy can have significant influences on the estimates.
Bart Schilperoort, César Jiménez Rodríguez, Bas van de Wiel, and Miriam Coenders-Gerrits
Geosci. Instrum. Method. Data Syst., 13, 85–95, https://doi.org/10.5194/gi-13-85-2024, https://doi.org/10.5194/gi-13-85-2024, 2024
Short summary
Short summary
Heat storage in the soil is difficult to measure due to vertical heterogeneity. To improve measurements, we designed a 3D-printed probe that uses fiber-optic distributed temperature sensing to measure a vertical profile of soil temperature. We validated the temperature measurements against standard instrumentation. With the high-resolution data we were able to determine the thermal diffusivity of the soil at a resolution of 2.5 cm, which is much higher compared to traditional methods.
Henry Zimba, Miriam Coenders-Gerrits, Kawawa Banda, Bart Schilperoort, Nick van de Giesen, Imasiku Nyambe, and Hubert H. G. Savenije
Hydrol. Earth Syst. Sci., 27, 1695–1722, https://doi.org/10.5194/hess-27-1695-2023, https://doi.org/10.5194/hess-27-1695-2023, 2023
Short summary
Short summary
Miombo woodland plants continue to lose water even during the driest part of the year. This appears to be facilitated by the adapted features such as deep rooting (beyond 5 m) with access to deep soil moisture, potentially even ground water. It appears the trend and amount of water that the plants lose is correlated more to the available energy. This loss of water in the dry season by miombo woodland plants appears to be incorrectly captured by satellite-based evaporation estimates.
Henry Zimba, Miriam Coenders-Gerrits, Kawawa Banda, Petra Hulsman, Nick van de Giesen, Imasiku Nyambe, and Hubert Savenije
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-114, https://doi.org/10.5194/hess-2022-114, 2022
Manuscript not accepted for further review
Short summary
Short summary
We compare performance of evaporation models in the Luangwa Basin located in a semi-arid and complex Miombo ecosystem in Africa. Miombo plants changes colour, drop off leaves and acquire new leaves during the dry season. In addition, the plant roots go deep in the soil and appear to access groundwater. Results show that evaporation models with structure and process that do not capture this unique plant structure and behaviour appears to have difficulties to correctly estimating evaporation.
Lívia M. P. Rosalem, Miriam Coenders-Gerritis, Jamil A. A. Anache, Seyed M. M. Sadeghi, and Edson Wendland
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-59, https://doi.org/10.5194/hess-2022-59, 2022
Manuscript not accepted for further review
Short summary
Short summary
We monitored the interception process on an undisturbed savanna forest and applied two interception models to evaluate their performance at different time scales and study their seasonal response. As results, both models performed well at a monthly scale and could represent the seasonal trends observed. However, they presented some limitations to predict the evaporative processes on a daily basis.
Vassilis Aschonitis, Dimos Touloumidis, Marie-Claire ten Veldhuis, and Miriam Coenders-Gerrits
Earth Syst. Sci. Data, 14, 163–177, https://doi.org/10.5194/essd-14-163-2022, https://doi.org/10.5194/essd-14-163-2022, 2022
Short summary
Short summary
This work provides a global database of correction coefficients for improving the performance of the temperature-based Thornthwaite potential evapotranspiration formula and aridity indices (e.g., UNEP, Thornthwaite) that make use of this formula. The coefficients were produced using as a benchmark the ASCE-standardized reference evapotranspiration formula (formerly FAO-56) that requires temperature, solar radiation, wind speed, and relative humidity data.
Markus Hrachowitz, Michael Stockinger, Miriam Coenders-Gerrits, Ruud van der Ent, Heye Bogena, Andreas Lücke, and Christine Stumpp
Hydrol. Earth Syst. Sci., 25, 4887–4915, https://doi.org/10.5194/hess-25-4887-2021, https://doi.org/10.5194/hess-25-4887-2021, 2021
Short summary
Short summary
Deforestation affects how catchments store and release water. Here we found that deforestation in the study catchment led to a 20 % increase in mean runoff, while reducing the vegetation-accessible water storage from about 258 to 101 mm. As a consequence, fractions of young water in the stream increased by up to 25 % during wet periods. This implies that water and solutes are more rapidly routed to the stream, which can, after contamination, lead to increased contaminant peak concentrations.
César Dionisio Jiménez-Rodríguez, Miriam Coenders-Gerrits, Bart Schilperoort, Adriana del Pilar González-Angarita, and Hubert Savenije
Hydrol. Earth Syst. Sci., 25, 619–635, https://doi.org/10.5194/hess-25-619-2021, https://doi.org/10.5194/hess-25-619-2021, 2021
Short summary
Short summary
During rainfall events, evaporation from tropical forests is usually ignored. However, the water retained in the canopy during rainfall increases the evaporation despite the high-humidity conditions. In a tropical wet forest in Costa Rica, it was possible to depict vapor plumes rising from the forest canopy during rainfall. These plumes are evidence of forest evaporation. Also, we identified the conditions that allowed this phenomenon to happen using time-lapse videos and meteorological data.
Bart Schilperoort, Miriam Coenders-Gerrits, César Jiménez Rodríguez, Christiaan van der Tol, Bas van de Wiel, and Hubert Savenije
Biogeosciences, 17, 6423–6439, https://doi.org/10.5194/bg-17-6423-2020, https://doi.org/10.5194/bg-17-6423-2020, 2020
Short summary
Short summary
With distributed temperature sensing (DTS) we measured a vertical temperature profile in a forest, from the forest floor to above the treetops. Using this temperature profile we can see which parts of the forest canopy are colder (thus more dense) or warmer (and less dense) and study the effect this has on the suppression of turbulent mixing. This can be used to improve our knowledge of the interaction between the atmosphere and forests and improve carbon dioxide flux measurements over forests.
Justus G. V. van Ramshorst, Miriam Coenders-Gerrits, Bart Schilperoort, Bas J. H. van de Wiel, Jonathan G. Izett, John S. Selker, Chad W. Higgins, Hubert H. G. Savenije, and Nick C. van de Giesen
Atmos. Meas. Tech., 13, 5423–5439, https://doi.org/10.5194/amt-13-5423-2020, https://doi.org/10.5194/amt-13-5423-2020, 2020
Short summary
Short summary
In this work we present experimental results of a novel actively heated fiber-optic (AHFO) observational wind-probing technique. We utilized a controlled wind-tunnel setup to assess both the accuracy and precision of AHFO under a range of operational conditions (wind speed, angles of attack and temperature differences). AHFO has the potential to provide high-resolution distributed observations of wind speeds, allowing for better spatial characterization of fine-scale processes.
Cited articles
Alavi, G., Jansson, P.-E., Hällgren, J.-E., and Bergholm, J.: Interception of a dense spruce forest, performance of a simplified canopy
water balance model, Hydrol. Res., 32, 265–284, 2001.
Alexandratos, N. and Bruinsma, J.: World agriculture towards 2030/2050: the
2012 revision, ESA Working paper, FAO, Rome, 2012.
Aston, A. R.: Rainfall interception by eight small trees, J. Hydrol., 42, 383–396, 1979.
Baier, W.: Studies on dew formation under semi-arid conditions, Agricult.
Meteorol., 3, 103–112, 1966.
Berry, Z. C., Emery, N. C., Gotsch, S. G., and Goldsmith, G. R.: Foliar water uptake: processes, pathways, and integration into plant water budgets, Plant Cell Environ., 42, 410–423, 2019.
Bradley, D. J., Gilbert, G. S., and Parker, I. M.: Susceptibility of clover
species to fungal infection: the interaction of leaf surface traits and
environment, Am. J. Bot., 90, 857–864, 2003.
Breuer, L., Eckhardt, K., and Frede, H.-G.: Plant parameter values for models in temperate climates, Ecol. Model., 169, 237–293, 2003.
Brockway, D. G., Wolters, G. L., Pearson, H. A., Thill, R. E., Baldwin, V. C., and Martin, A.: Understory plant response to site preparation and
fertilization of loblolly and shortleaf pine forests, J. Range Manage., 51, 47–54, 1998.
Carlisle, R. J., Watson, V. H., and Cole, A. W.: Canopy and chemistry of
pasture weeds, Weed Sci., 28, 139–141, 1980.
Carlyle-Moses, D. E., Iida, S. I., Germer, S., Llorens, P., Michalzik, B., Nanko, K., Tischer, A., and Levia, D. F.: Expressing stemflow commensurate with its ecohydrological importance, Adv. Water Resour., 121, 472–479, 2018.
Cattan, P., Ruy, S. M., Cabidoche, Y. M., Findeling, A., Desbois, P., and Charlier, J. B.: Effect on runoff of rainfall redistribution by the impluvium-shaped canopy of banana cultivated on an Andosol with a high infiltration rate, J. Hydrol., 368, 251–261, 2009.
Coenders-Gerrits, A., Schilperoort, B., and Jiménez-Rodríguez, C.:
Evaporative Processes on Vegetation: An Inside Look, in: Precipitation
Partitioning by Vegetation: A Global Synthesis, chap. 3, edited by: Van Stan, J. T., Gutmann, E., and Friesen, J., Springer Nature, 35–48, https://doi.org/10.1007/978-3-030-29702-2_3, 2020.
David, T. S., Gash, J. H. C., Valente, F., Pereira, J. S., Ferreira, M. I., and David, J. S.: Rainfall interception by an isolated evergreen oak tree in a Mediterranean savannah, Hydrol. Process., 20, 2713–2726,
https://doi.org/10.1002/hyp.6062, 2006.
Davies-Barnard, T., Valdes, P., Jones, C., and Singarayer, J.: Sensitivity
of a coupled climate model to canopy interception capacity, Clim. Dynam., 42, 1715–1732, 2014.
Dawson, T. E. and Goldsmith, G. R.: The value of wet leaves, New Phytol., 219, 1156–1169, 2018.
Dias, J. L., Sellers, B. A., Ferrell, J. A., Silveira, M. L., and Vendramini, J.: Herbage Responses to Dogfennel Cover and Limited Nitrogen Fertilization in Bahiagrass Pastures, Agron. J., 110, 2507–2512, https://doi.org/10.2134/agronj2018.02.0084, 2018.
Drastig, K., Quiñones, T. S., Zare, M., Dammer, K.-H., and Prochnow, A.:
Rainfall interception by winter rapeseed in Brandenburg (Germany) under
various nitrogen fertilization treatments, Agr. Forest Meteorol., 268, 308–317, 2019.
Dunkerley, D. L.: Evaporation of impact water droplets in interception
processes: Historical precedence of the hypothesis and a brief literature
overview, J. Hydrol., 376, 599–604, https://doi.org/10.1016/j.jhydrol.2009.08.004, 2009.
Ebermayer, E.: Physical Effects of Forests on Air and Soil and their Climatological and Hygienic Importance, Krebs, Aschaffenburg, Germany, 1873.
Forthman, C. A.: The effects of prescribed burning on sawgrass, Cladium jamaicense Crantz, South Florida, MS thesis, University of Miami, Coral Gables, FL, USA, 1973.
Friesen, J.: Flow Pathways of Throughfall and Stemflow through the Subsurface, in: Precipitation Partitioning by Vegetation: A Global Synthesis, chap. 13, edited by: Van Stan, J. T., Gutmann, E., and Friesen, J., Springer Nature, Cham, 215–228, https://doi.org/10.1007/978-3-030-29702-2_13, 2020.
Friesen, J., Lundquist, J., and Van Stan, J. T.: Evolution of forest precipitation water storage measurement methods, Hydrol. Process., 29, 2504–2520, https://doi.org/10.1002/hyp.10376, 2015.
Georgia Southern University: Digital Commons @ Georgia Southern, available at: https://digitalcommons.georgiasouthern.edu/, last access: September 2020.
Gerrits, A. and Savenije, H.: Forest floor interception, in: Forest Hydrology and Biogeochemistry, chap. 22, Springer, Dordrecht, 445–454, https://doi.org/10.1007/978-94-007-1363-5_22, 2011.
Gersper, P. L. and Holowaychuk, N.: Some effects of stem flow from forest canopy trees on chemical properties of soils, Ecology, 52, 691–702, 1971.
González-Martínez, T. M., Williams-Linera, G., and Holwerda, F.: Understory and small trees contribute importantly to stemflow of a lower montane cloud forest, Hydrol. Process., 31, 1174–1183, https://doi.org/10.1002/hyp.11114, 2017.
Hao, X. M., Li, C., Guo, B., Ma, J. X., Ayupa, M., and Chen, Z. S.: Dew
formation and its long-term trend in a desert riparian forest ecosystem on
the eastern edge of the Taklimakan Desert in China, J. Hydrol., 472–473, 90–98, 2012.
Herwitz, S. R.: Infiltration-excess caused by stemflow in a cyclone-prone
tropical rainforest, Earth Surf. Proc. Land., 11, 401–412, 1986.
Ilek, A., Kucza, J., and Morkisz, K.: Hygroscopicity of the bark of selected
forest tree species, iForest – Biogeosci. Forest., 10, 220–226,
https://doi.org/10.3832/ifor1979-009, 2017.
Jiménez-Rodríguez, C. D., Coenders-Gerrits, M., Wenninger, J., Gonzalez-Angarita, A., and Savenije, H.: Contribution of understory evaporation in a tropical wet forest during the dry season, Hydrol. Earth Syst. Sci., 24, 2179–2206, https://doi.org/10.5194/hess-24-2179-2020, 2020.
Keen, B., Cox, J., Morris, S., and Dalby, T.: Stemflow runoff contributes to
soil erosion at the base of macadamia trees, in: 19th World Congress of Soil
Science, Soil Solutions for a Changing World, 1–6 August 2010, Brisbane, Australia, 240–243, 2010.
Keim, R. F., Skaugset, A. E., and Weiler, M.: Temporal persistence of spatial patterns in throughfall, J. Hydrol., 314, 263–274, https://doi.org/10.1016/j.jhydrol.2005.03.021, 2005.
Klaassen, W., Bosveld, F., and De Water, E.: Water storage and evaporation as constituents of rainfall interception, J. Hydrol., 212, 36–50, 1998.
Klamerus-Iwan, A., Link, T., Keim, R., and Van Stan, J.: Storage and routing
of precipitation through canopies, in: Precipitation Partitioning by Vegetation: A Global Synthesis, chap. 2, edited by: Van Stan, J. T., Gutmann, E., and Friesen, J., Springer Nature, Cham, 17–34, https://doi.org/10.1007/978-3-030-29702-2_2, 2020.
Lajtha, K. and Schlesinger, W. H.: Plant response to variations in nitrogen
availability in a desert shrubland community, Biogeochemistry, 2, 29–37, 1986.
Levia, D. F. and Germer, S.: A review of stemflow generation dynamics and
stemflow-environment interactions in forests and shrublands, Rev. Geophys., 53, 673–714, 2015.
Levia, D. F. and Herwitz, S. R.: Interspecific variation of bark water storage capacity of three deciduous tree species in relation to stemflow yield and solute flux to forest soils, Catena, 64, 117–137,
https://doi.org/10.1016/j.catena.2005.08.001, 2005.
Levia Jr., D. F., and Wubbena, N. P.: Vertical variation of bark water
storage capacity of Pinus strobus L. (Eastern white pine) in southern Illinois, Northeast. Nat., 13, 131–137, 2006.
Loveless, C. M.: A study of the vegetation in the Florida Everglades, Ecology, 40, 1–9, 1959.
Macdonald, G. E., Brecke, B. J., and Shilling, D. G.: Factors affecting
germination of dogfennel (Eupatorium capillifolium) and yankeeweed (Eupatorium compositifolium), Weed Sci., 40, 424–428, 1992.
Macdonald, G. E., Brecke, B. J., Colvin, D. L., and Shilling, D. G.: Chemical and mechanical control of dogfennel (Eupatorium capillifolium), Weed Technol., 8, 483–487, 1994.
Mesta, D., Van Stan, J. T., Yankine, S., Cote, J., Jarvis, M., Hildebrandt,
A., Friesen, J., and Maldonado, G.: Canopy rainfall partitioning across an
urbanization gradient in forest structure as characterized by terrestrial
LiDAR, in: AGU Fall Meeting, December 2017, New Orleans, LA, USA, 2017.
Moore, L. D., Van Stan, J. T., Gay, T. E., Rosier, C., and Wu, T.: Alteration of soil chitinolytic bacterial and ammonia oxidizing archaeal community diversity by rainwater redistribution in an epiphyte-laden Quercus virginiana canopy, Soil Biol. Biochem., 100, 33–41, https://doi.org/10.1016/j.soilbio.2016.05.016, 2016.
Muzylo, A., Llorens, P., Valente, F., Keizer, J. J., Domingo, F., and Gash, J. H. C.: A review of rainfall interception modelling, J. Hydrol., 370, 191–206, https://doi.org/10.1016/j.jhydrol.2009.02.058, 2009.
Ney, C. E.: Der Wald und die Quellen, Tubingen, Verlag von Franz Bießder, Tübingen, p. 101, 1893.
Nowak, D., Coville, R., Endreny, T., Abdi, R., and Van Stan, J. T.: Valuing
Urban Tree Impacts on Precipitation Partitioning, in: Precipitation Partitioning by Vegetation: A Global Synthesis, edited by: Van Stan, J. T.,
Gutmann, E., and Friesen, J., Springer Nature, Cham, Switzerland, 2020.
Pereira, F. L., Valente, F., David, J. S., Jackson, N., Minunno, F., and Gash, J. H.: Rainfall interception modelling: Is the wet bulb approach adequate to estimate mean evaporation rate from wet/saturated canopies in
all forest types?, J. Hydrol., 534, 606–615, https://doi.org/10.1016/j.jhydrol.2016.01.035, 2016.
Porada, P., Van Stan, J. T., and Kleidon, A.: Significant contribution of
non-vascular vegetation to global rainfall interception, Nat. Geosci., 11, 563–567, 2018.
Price, A., Dunham, K., Carleton, T., and Band, L.: Variability of water fluxes through the black spruce (Picea mariana) canopy and feather moss (Pleurozium schreberi) carpet in the boreal forest of Northern Manitoba, J. Hydrol., 196, 310–323, 1997.
Price, A. G. and Watters, R. J.: The influence of the overstory, understory
and upper soil horizons on the fluxes of some ions in a mixed deciduous forest, J. Hydrol., 109, 185–197, 1989.
Ptatscheck, C., Milne, P. C., and Traunspurger, W.: Is stemflow a vector for
the transport of small metazoans from tree surfaces down to soil?, BMC Ecol., 18, 43, 2018.
Rosier, C. L., Van Stan, J. T., Moore, L. D., Schrom, J. O. S., Wu, T., Reichard, J. S., and Kan, J.: Forest canopy structural controls over throughfall affect soil microbial community structure in an epiphyte-laden
maritime oak stand, Ecohydrology, 8, 1459–1470, https://doi.org/10.1002/eco.1595, 2015.
Rosier, C. L., Levia, D. F., Van Stan, J. T., Aufdenkampe, A., and Kan, J.:
Seasonal dynamics of the soil microbial community structure within the proximal area of tree boles: Possible influence of stemflow, Eur. J. Soil Biol., 73, 108–118, https://doi.org/10.1016/j.ejsobi.2016.02.003, 2016.
Sadeghi, S., Gordon, A., and Van Stan, J. T.: A Global Synthesis of Throughfall and Stemflow Hydrometeorology, in: Precipitation Partitioning by
Vegetation: A Global Synthesis, chap. 4, edited by: Van Stan, J. T., Gutmann, E., and Friesen, J., Springer Nature, Cham, 49–70, https://doi.org/10.1007/978-3-030-29702-2_4, 2020.
Sellers, B. A., Ferrell, J. A., MacDonald, G. E., and Kline, W. N.: Dogfennel
(Eupatorium capillifolium) size at application affects herbicide efficacy, Weed Technol., 23, 247–250, 2009.
Shure, D. J. and Lewis, A. J.: Dew formation and stem flow on common ragweed (Ambrosia artemisiifolia), Ecology, 54, 1152–1155, 1973.
Sioma, A., Socha, J., and Klamerus-Iwan, A.: A New Method for Characterizing
Bark Microrelief Using 3D Vision Systems, Forests, 9, 30, 2018.
Specht, R. and Moll, E.: Mediterranean-type heathlands and sclerophyllous
shrublands of the world: an overview, in: Mediterranean-type Ecosystems,
Springer, Heidelberg, 41–65, https://doi.org/10.1007/978-3-642-68935-2_2, 1983.
Suttie, J. M., Reynolds, S. G., and Batello, C.: Grasslands of the World,
Food & Agriculture Org., Rome, 514 pp., 2005.
Tuller, S. E. and Chilton, R.: The role of dew in the seasonal moisture balance of a summer-dry climate, Agricult. Meteorol., 11, 135–142, 1973.
University of Georgia Weather Network: Historical Data, Statesboro, Bulloch County, Georgia, 2019.
Van Deelen, T.: Eupatorium capillifolium, US Department of Agriculture,
Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory,
Missoula, MT, USA, 1991.
van der Ent, R. J., Wang-Erlandsson, L., Keys, P. W., and Savenije, H. H. G.: Contrasting roles of interception and transpiration in the hydrological cycle –Part 2: Moisture recycling, Earth Syst. Dynam., 5, 471–489, https://doi.org/10.5194/esd-5-471-2014, 2014.
Van Stan, J. T. and Gordon, D. A.: Mini-Review: Stemflow as a Resource
Limitation to Near-Stem Soils, Front. Plant Sci., 9, 248, https://doi.org/10.3389/fpls.2018.00248, 2018.
Van Stan, J. T. and Levia, D. F.: Inter- and intraspecific variation of stemflow production from Fagus grandifolia Ehrh. (American beech) and Liriodendron tulipifera L. (yellow poplar) in relation to bark microrelief in the eastern United States, Ecohydrology, 3, 11–19, https://doi.org/10.1002/eco.83, 2010.
Van Stan, J. T., Stubbins, A., Bittar, T., Reichard, J. S., Wright, K. A., and Jenkins, R. B.: Tillandsia usneoides (L.) L. (Spanish moss) water storage and leachate characteristics from two maritime oak forest settings, Ecohydrology, 8, 988–1004, https://doi.org/10.1002/eco.1549, 2015.
Van Stan, J. T., Gay, T. E., and Lewis, E. S.: Use of multiple correspondence analysis (MCA) to identify interactive meteorological conditions affecting relative throughfall, J. Hydrol., 533, 452–460, https://doi.org/10.1016/j.jhydrol.2015.12.039, 2016.
Van Stan, J. T., Norman, Z., Meghoo, A., Friesen, J., Hildebrandt, A.,
Côté, J.-F., Underwood, S. J., and Maldonado, G.: Edge-to-Stem Variability in Wet-Canopy Evaporation From an Urban Tree Row, Bound.-Lay.
Meteorol., 165, 295–310, 2017a.
Van Stan, J. T., Coenders-Gerrits, M., Dibble, M., Bogeholz, P., and Norman,
Z.: Effects of phenology and meteorological disturbance on litter rainfall
interception for a Pinus elliottii stand in the Southeastern United States, Hydrol. Process., 31, 3719–3728, https://doi.org/10.1002/hyp.11292, 2017b.
Van Stan, J. T., Underwood, S. J., and Friesen, J.: Urban Forestry: An
underutilized tool in water management, in: Advanced Tools for Integrated
Water Resources Management, Advances in Chemical Pollution, Environmental Management and Protection, edited by: Friesen, J. and Rodriguez-Sinobas, L.,
Elsevier, London, UK, 35–62, 2018.
Van Stan, J. T., Hildebrandt, A., Friesen, J., Metzger, J. C., and Yankine, S. A.: Spatial variablity and temporal stability of local net precipitation
patterns, in: Precipitation Partitioning by Vegetation: A Global Synthesis,
chap. 6, edited by: Van Stan, J. T., Gutmann, E., and Friesen, J., Springer Nature, Cham, 89–104, https://doi.org/10.1007/978-3-030-29702-2_6, 2020.
Verry, E. S. and Timmons, D.: Precipitation nutrients in the open and under
two forests in Minnesota, Can. J. Forest Res., 7, 112–119, 1977.
Wang, B., Wu, F., Xiao, S., Yang, W., Justine, M. F., He, J., and Tan, B.:
Effect of succession gaps on the understory water-holding capacity in an
over-mature alpine forest at the upper reaches of the Yangtze River, Hydrol. Process., 30, 692–703, 2016.
Wohlfahrt, G., Bianchi, K., and Cernusca, A.: Leaf and stem maximum water storage capacity of herbaceous plants in a mountain meadow, J. Hydrol., 319, 383–390, 2006.
Wunderlin, R. P. and Hansen, B. F.: Guide to the vascular plants of Florida, University Press of Florida, Gainesville, FL, USA, 2003.
Yankine, S. A., Van Stan, J. T., Mesta, D. C., Côté, J.-F., Hildebrandt, A., Friesen, J., and Maldonado, G.: What controls stemflow? A
LiDAR-based investigation of individual tree canopy structure, neighborhood
conditions, and meteorological factors, AGU Fall Meeting, December 2017, New Orleans, LA, USA, 2017.
Yarie, J.: The role of understory vegetation in the nutrient cycle of forested ecosystems in the mountain hemlock biogeoclimatic zone, Ecology,
61, 1498–1514, 1980.
Yu, K., Pypker, T. G., Keim, R. F., Chen, N., Yang, Y., Guo, S., Li, W., and
Wang, G.: Canopy rainfall storage capacity as affected by sub-alpine grassland degradation in the Qinghai–Tibetan Plateau, China, Hydrol. Process., 26, 3114–3123, 2012.
Zheng, J., Fan, J., Zhang, F., Yan, S., Wu, Y., Lu, J., Guo, J., Cheng, M.,
and Pei, Y.: Throughfall and stemflow heterogeneity under the maize canopy and its effect on soil water distribution at the row scale, Sci. Total Environ., 660, 1367–1382, 2019.
Short summary
Where plants exist, rain must pass through canopies to reach soils. We studied how rain interacts with dogfennel – a highly problematic weed that is abundant in pastures, grasslands, rangelands, urban forests and along highways. Dogfennels evaporated large portions (approx. one-fifth) of rain and drained significant (at times > 25 %) rain (and dew) down their stems to their roots (via stemflow). This may explain how dogfennel survives and even invades managed landscapes during extended droughts.
Where plants exist, rain must pass through canopies to reach soils. We studied how rain...