Articles | Volume 24, issue 7
https://doi.org/10.5194/hess-24-3753-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/hess-24-3753-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Weak sensitivity of the terrestrial water budget to global soil texture maps in the ORCHIDEE land surface model
Salma Tafasca
CORRESPONDING AUTHOR
METIS (Milieux Environnementaux, Transferts et Interactions dans les Hydrosystèmes et les Sols), Institut Pierre Simon Laplace (IPSL), Sorbonne Université, CNRS, EPHE, Paris, France
Agnès Ducharne
METIS (Milieux Environnementaux, Transferts et Interactions dans les Hydrosystèmes et les Sols), Institut Pierre Simon Laplace (IPSL), Sorbonne Université, CNRS, EPHE, Paris, France
Christian Valentin
iEES-Paris (Institut d'Ecologie et des Sciences de l'Environnement de Paris), Sorbonne Université, CNRS, INRA, IRD, Paris, France
Related authors
No articles found.
Pedro Felipe Arboleda-Obando, Agnès Ducharne, Zun Yin, and Philippe Ciais
EGUsphere, https://doi.org/10.5194/egusphere-2023-1323, https://doi.org/10.5194/egusphere-2023-1323, 2023
Short summary
Short summary
In this study, we show a new irrigation scheme included in ORCHIDEE land surface model. The new irrigation scheme restraint irrigation due to water shortage, includes water adduction, and represents environmental limits and facility to access water due to infrastructure in a simple way. Our results show that the new irrigation scheme helps simulating acceptable land surface conditions and fluxes in irrigated areas, even if there are difficulties due to shortcomings and limited information.
Tom Gleeson, Thorsten Wagener, Petra Döll, Samuel C. Zipper, Charles West, Yoshihide Wada, Richard Taylor, Bridget Scanlon, Rafael Rosolem, Shams Rahman, Nurudeen Oshinlaja, Reed Maxwell, Min-Hui Lo, Hyungjun Kim, Mary Hill, Andreas Hartmann, Graham Fogg, James S. Famiglietti, Agnès Ducharne, Inge de Graaf, Mark Cuthbert, Laura Condon, Etienne Bresciani, and Marc F. P. Bierkens
Geosci. Model Dev., 14, 7545–7571, https://doi.org/10.5194/gmd-14-7545-2021, https://doi.org/10.5194/gmd-14-7545-2021, 2021
Short summary
Short summary
Groundwater is increasingly being included in large-scale (continental to global) land surface and hydrologic simulations. However, it is challenging to evaluate these simulations because groundwater is
hiddenunderground and thus hard to measure. We suggest using multiple complementary strategies to assess the performance of a model (
model evaluation).
Axel P. Belemtougri, Agnès Ducharne, and Harouna Karambiri
Proc. IAHS, 384, 19–23, https://doi.org/10.5194/piahs-384-19-2021, https://doi.org/10.5194/piahs-384-19-2021, 2021
Hiroki Mizuochi, Agnès Ducharne, Frédérique Cheruy, Josefine Ghattas, Amen Al-Yaari, Jean-Pierre Wigneron, Vladislav Bastrikov, Philippe Peylin, Fabienne Maignan, and Nicolas Vuichard
Hydrol. Earth Syst. Sci., 25, 2199–2221, https://doi.org/10.5194/hess-25-2199-2021, https://doi.org/10.5194/hess-25-2199-2021, 2021
Natasha MacBean, Russell L. Scott, Joel A. Biederman, Catherine Ottlé, Nicolas Vuichard, Agnès Ducharne, Thomas Kolb, Sabina Dore, Marcy Litvak, and David J. P. Moore
Hydrol. Earth Syst. Sci., 24, 5203–5230, https://doi.org/10.5194/hess-24-5203-2020, https://doi.org/10.5194/hess-24-5203-2020, 2020
Tom Gleeson, Thorsten Wagener, Petra Döll, Samuel C. Zipper, Charles West, Yoshihide Wada, Richard Taylor, Bridget Scanlon, Rafael Rosolem, Shams Rahman, Nurudeen Oshinlaja, Reed Maxwell, Min-Hui Lo, Hyungjun Kim, Mary Hill, Andreas Hartmann, Graham Fogg, James S. Famiglietti, Agnès Ducharne, Inge de Graaf, Mark Cuthbert, Laura Condon, Etienne Bresciani, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-378, https://doi.org/10.5194/hess-2020-378, 2020
Revised manuscript not accepted
Simon P. K. Bowring, Ronny Lauerwald, Bertrand Guenet, Dan Zhu, Matthieu Guimberteau, Pierre Regnier, Ardalan Tootchi, Agnès Ducharne, and Philippe Ciais
Geosci. Model Dev., 13, 507–520, https://doi.org/10.5194/gmd-13-507-2020, https://doi.org/10.5194/gmd-13-507-2020, 2020
Short summary
Short summary
In this second part of the study, we performed simulations of the carbon and water budget of the Lena catchment with the land surface model ORCHIDEE MICT-LEAK, enabled to simulate dissolved organic carbon (DOC) production in soils and its transport and fate in high-latitude inland waters. We compare simulations using this model to existing data sources to show that it is capable of reproducing dissolved carbon fluxes of potentially great importance for the future of the global permafrost.
Simon P. K. Bowring, Ronny Lauerwald, Bertrand Guenet, Dan Zhu, Matthieu Guimberteau, Ardalan Tootchi, Agnès Ducharne, and Philippe Ciais
Geosci. Model Dev., 12, 3503–3521, https://doi.org/10.5194/gmd-12-3503-2019, https://doi.org/10.5194/gmd-12-3503-2019, 2019
Short summary
Short summary
Few Earth system models represent permafrost soil biogeochemistry, contributing to uncertainty in estimating its response and that of the planet to warming. Because the permafrost contains over double the carbon in the present atmosphere, its fate as it is
unlockedby warming is globally significant. One way it can be mobilised is into rivers, the sea, or the atmosphere: a vector previously ignored in climate modelling. We present a model scheme for resolving this vector at a global scale.
Chunjing Qiu, Dan Zhu, Philippe Ciais, Bertrand Guenet, Shushi Peng, Gerhard Krinner, Ardalan Tootchi, Agnès Ducharne, and Adam Hastie
Geosci. Model Dev., 12, 2961–2982, https://doi.org/10.5194/gmd-12-2961-2019, https://doi.org/10.5194/gmd-12-2961-2019, 2019
Short summary
Short summary
We present a model that can simulate the dynamics of peatland area extent and the vertical buildup of peat. The model is validated across a range of northern peatland sites and over the Northern Hemisphere (> 30° N). It is able to reproduce the spatial extent of northern peatlands and peat carbon accumulation over the Holocene.
Ardalan Tootchi, Anne Jost, and Agnès Ducharne
Earth Syst. Sci. Data, 11, 189–220, https://doi.org/10.5194/essd-11-189-2019, https://doi.org/10.5194/essd-11-189-2019, 2019
Short summary
Short summary
The role of wetlands at regional and global scales depends on their distribution and extent, which is highly uncertain in the literature. We developed comprehensive wetland maps using satellite imagery products and ground water modeling. These high-resolution maps encompass regularly flooded to non-flooded groundwater wetlands, covering more than 21 % of the land surface area, which is among the highest estimates. Wetlands are particularly concentrated over the tropics and northern cold zones.
Gerhard Krinner, Chris Derksen, Richard Essery, Mark Flanner, Stefan Hagemann, Martyn Clark, Alex Hall, Helmut Rott, Claire Brutel-Vuilmet, Hyungjun Kim, Cécile B. Ménard, Lawrence Mudryk, Chad Thackeray, Libo Wang, Gabriele Arduini, Gianpaolo Balsamo, Paul Bartlett, Julia Boike, Aaron Boone, Frédérique Chéruy, Jeanne Colin, Matthias Cuntz, Yongjiu Dai, Bertrand Decharme, Jeff Derry, Agnès Ducharne, Emanuel Dutra, Xing Fang, Charles Fierz, Josephine Ghattas, Yeugeniy Gusev, Vanessa Haverd, Anna Kontu, Matthieu Lafaysse, Rachel Law, Dave Lawrence, Weiping Li, Thomas Marke, Danny Marks, Martin Ménégoz, Olga Nasonova, Tomoko Nitta, Masashi Niwano, John Pomeroy, Mark S. Raleigh, Gerd Schaedler, Vladimir Semenov, Tanya G. Smirnova, Tobias Stacke, Ulrich Strasser, Sean Svenson, Dmitry Turkov, Tao Wang, Nander Wever, Hua Yuan, Wenyan Zhou, and Dan Zhu
Geosci. Model Dev., 11, 5027–5049, https://doi.org/10.5194/gmd-11-5027-2018, https://doi.org/10.5194/gmd-11-5027-2018, 2018
Short summary
Short summary
This paper provides an overview of a coordinated international experiment to determine the strengths and weaknesses in how climate models treat snow. The models will be assessed at point locations using high-quality reference measurements and globally using satellite-derived datasets. How well climate models simulate snow-related processes is important because changing snow cover is an important part of the global climate system and provides an important freshwater resource for human use.
Trung Nguyen-Quang, Jan Polcher, Agnès Ducharne, Thomas Arsouze, Xudong Zhou, Ana Schneider, and Lluís Fita
Geosci. Model Dev., 11, 4965–4985, https://doi.org/10.5194/gmd-11-4965-2018, https://doi.org/10.5194/gmd-11-4965-2018, 2018
Short summary
Short summary
This study presents a revised river routing scheme for the Organising Carbon and Hydrology in Dynamic Ecosystems (ORCHIDEE) land surface model. The revision is carried out to benefit from the high-resolution topography provided by the Hydrological data and maps based on SHuttle Elevation Derivatives at multiple Scales (HydroSHEDS). We demonstrate that the finer description of the catchments allows for an improvement of the simulated river discharge of ORCHIDEE in an area with complex topography.
Ardalan Tootchi, Anne Jost, and Agnès Ducharne
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-48, https://doi.org/10.5194/hess-2018-48, 2018
Manuscript not accepted for further review
Short summary
Short summary
There is a massive disagreement between wetland extent estimates in literature (3 to 21 % of the land surface area). Some inundated wetlands could be detected using satellite imagery while non-inundated ones and those below vegetation are not easily detectedable. We mapped all wetlands, using both satellite data and geomorphological information, showing large wetland over boreal and tropical zones plus thousands of small oases in arid areas.
Matthieu Guimberteau, Dan Zhu, Fabienne Maignan, Ye Huang, Chao Yue, Sarah Dantec-Nédélec, Catherine Ottlé, Albert Jornet-Puig, Ana Bastos, Pierre Laurent, Daniel Goll, Simon Bowring, Jinfeng Chang, Bertrand Guenet, Marwa Tifafi, Shushi Peng, Gerhard Krinner, Agnès Ducharne, Fuxing Wang, Tao Wang, Xuhui Wang, Yilong Wang, Zun Yin, Ronny Lauerwald, Emilie Joetzjer, Chunjing Qiu, Hyungjun Kim, and Philippe Ciais
Geosci. Model Dev., 11, 121–163, https://doi.org/10.5194/gmd-11-121-2018, https://doi.org/10.5194/gmd-11-121-2018, 2018
Short summary
Short summary
Improved projections of future Arctic and boreal ecosystem transformation require improved land surface models that integrate processes specific to these cold biomes. To this end, this study lays out relevant new parameterizations in the ORCHIDEE-MICT land surface model. These describe the interactions between soil carbon, soil temperature and hydrology, and their resulting feedbacks on water and CO2 fluxes, in addition to a recently developed fire module.
Ronny Lauerwald, Pierre Regnier, Marta Camino-Serrano, Bertrand Guenet, Matthieu Guimberteau, Agnès Ducharne, Jan Polcher, and Philippe Ciais
Geosci. Model Dev., 10, 3821–3859, https://doi.org/10.5194/gmd-10-3821-2017, https://doi.org/10.5194/gmd-10-3821-2017, 2017
Short summary
Short summary
ORCHILEAK is a new branch of the terrestrial ecosystem model ORCHIDEE that represents dissolved organic carbon (DOC) production from canopy and soils, DOC and CO2 leaching from soils to streams, DOC decomposition, and CO2 evasion to the atmosphere during its lateral transport in rivers, as well as exchange with the soil carbon and litter stocks on floodplains and in swamps. We parameterized and validated ORCHILEAK for the Amazon basin.
Matthieu Guimberteau, Philippe Ciais, Agnès Ducharne, Juan Pablo Boisier, Ana Paula Dutra Aguiar, Hester Biemans, Hannes De Deurwaerder, David Galbraith, Bart Kruijt, Fanny Langerwisch, German Poveda, Anja Rammig, Daniel Andres Rodriguez, Graciela Tejada, Kirsten Thonicke, Celso Von Randow, Rita C. S. Von Randow, Ke Zhang, and Hans Verbeeck
Hydrol. Earth Syst. Sci., 21, 1455–1475, https://doi.org/10.5194/hess-21-1455-2017, https://doi.org/10.5194/hess-21-1455-2017, 2017
Jean-Philippe Vidal, Benoît Hingray, Claire Magand, Eric Sauquet, and Agnès Ducharne
Hydrol. Earth Syst. Sci., 20, 3651–3672, https://doi.org/10.5194/hess-20-3651-2016, https://doi.org/10.5194/hess-20-3651-2016, 2016
Short summary
Short summary
Possible transient futures of winter and summer low flows for two snow-influenced catchments in the southern French Alps show a strong decrease signal. It is however largely masked by the year-to-year variability, which should be the main target for defining adaptation strategies. Responses of different hydrological models strongly diverge in the future, suggesting to carefully check the robustness of evapotranspiration and snowpack components under a changing climate.
Bart van den Hurk, Hyungjun Kim, Gerhard Krinner, Sonia I. Seneviratne, Chris Derksen, Taikan Oki, Hervé Douville, Jeanne Colin, Agnès Ducharne, Frederique Cheruy, Nicholas Viovy, Michael J. Puma, Yoshihide Wada, Weiping Li, Binghao Jia, Andrea Alessandri, Dave M. Lawrence, Graham P. Weedon, Richard Ellis, Stefan Hagemann, Jiafu Mao, Mark G. Flanner, Matteo Zampieri, Stefano Materia, Rachel M. Law, and Justin Sheffield
Geosci. Model Dev., 9, 2809–2832, https://doi.org/10.5194/gmd-9-2809-2016, https://doi.org/10.5194/gmd-9-2809-2016, 2016
Short summary
Short summary
This manuscript describes the setup of the CMIP6 project Land Surface, Snow and Soil Moisture Model Intercomparison Project (LS3MIP).
Guillaume Lacombe, Olivier Ribolzi, Anneke de Rouw, Alain Pierret, Keoudone Latsachak, Norbert Silvera, Rinh Pham Dinh, Didier Orange, Jean-Louis Janeau, Bounsamai Soulileuth, Henri Robain, Adrien Taccoen, Phouthamaly Sengphaathith, Emmanuel Mouche, Oloth Sengtaheuanghoung, Toan Tran Duc, and Christian Valentin
Hydrol. Earth Syst. Sci., 20, 2691–2704, https://doi.org/10.5194/hess-20-2691-2016, https://doi.org/10.5194/hess-20-2691-2016, 2016
Short summary
Short summary
Laos and Vietnam have switched from net forest loss to net forest expansion between 1990 and 2015. Based on long-term field measurements of land use, river flows, and weather data, we demonstrate that forest expansion can have extreme, yet opposite, impacts on water resources, depending on how the newly established tree-based cover is managed. The conversion of annual crops to teak plantations in Laos or to naturally regrowing forests in Vietnam led to increased and decreased flows, respectively.
P. Roudier, A. Ducharne, and L. Feyen
Hydrol. Earth Syst. Sci., 18, 2789–2801, https://doi.org/10.5194/hess-18-2789-2014, https://doi.org/10.5194/hess-18-2789-2014, 2014
M. Guimberteau, A. Ducharne, P. Ciais, J. P. Boisier, S. Peng, M. De Weirdt, and H. Verbeeck
Geosci. Model Dev., 7, 1115–1136, https://doi.org/10.5194/gmd-7-1115-2014, https://doi.org/10.5194/gmd-7-1115-2014, 2014
Related subject area
Subject: Global hydrology | Techniques and Approaches: Modelling approaches
Assessment of pluri-annual and decadal changes in terrestrial water storage predicted by global hydrological models in comparison with the GRACE satellite gravity mission
Improving the quantification of climate change hazards by hydrological models: a simple ensemble approach for considering the uncertain effect of vegetation response to climate change on potential evapotranspiration
Towards reducing the high cost of parameter sensitivity analysis in hydrologic modeling: a regional parameter sensitivity analysis approach
Point-scale multi-objective calibration of the Community Land Model (version 5.0) using in situ observations of water and energy fluxes and variables
Combined impacts of climate and land-use change on future water resources in Africa
Methodology for constructing a flood-hazard map for a future climate
Diagnosing modeling errors in global terrestrial water storage interannual variability
Hyper-resolution PCR-GLOBWB: opportunities and challenges from refining model spatial resolution to 1 km over the European continent
Poor correlation between large-scale environmental flow violations and freshwater biodiversity: implications for water resource management and the freshwater planetary boundary
Accuracy of five ground heat flux empirical simulation methods in the surface-energy-balance-based remote-sensing evapotranspiration models
Deep Learning for Verification of Earth-System Parametrisation of Water Bodies
Coupling a global glacier model to a global hydrological model prevents underestimation of glacier runoff
Root zone soil moisture in over 25 % of global land permanently beyond pre-industrial variability as early as 2050
Revisiting large-scale interception patterns constrained by a synthesis of global experimental data
Investigating coastal backwater effects and flooding in the coastal zone using a global river transport model on an unstructured mesh
Using a long short-term memory (LSTM) neural network to boost river streamflow forecasts over the western United States
Quantifying overlapping and differing information of global precipitation for GCM forecasts and El Niño–Southern Oscillation
Globally widespread and increasing violations of environmental flow envelopes
Inundation prediction in tropical wetlands from JULES-CaMa-Flood global land surface simulations
Soil moisture estimation in South Asia via assimilation of SMAP retrievals
Toward hyper-resolution global hydrological models including human activities: application to Kyushu island, Japan
Towards hybrid modeling of the global hydrological cycle
The importance of vegetation in understanding terrestrial water storage variations
Large-scale sensitivities of groundwater and surface water to groundwater withdrawal
A hydrography upscaling method for scale-invariant parametrization of distributed hydrological models
A novel method to identify sub-seasonal clustering episodes of extreme precipitation events and their contributions to large accumulation periods
Bright and blind spots of water research in Latin America and the Caribbean
Land surface modeling over the Dry Chaco: the impact of model structures, and soil, vegetation and land cover parameters
Nonstationary weather and water extremes: a review of methods for their detection, attribution, and management
Robust historical evapotranspiration trends across climate regimes
A note on leveraging synergy in multiple meteorological data sets with deep learning for rainfall–runoff modeling
Global scenarios of irrigation water abstractions for bioenergy production: a systematic review
Coordination and control – limits in standard representations of multi-reservoir operations in hydrological modeling
Uncertainty of simulated groundwater recharge at different global warming levels: a global-scale multi-model ensemble study
Ubiquitous increases in flood magnitude in the Columbia River basin under climate change
Evaluation of 18 satellite- and model-based soil moisture products using in situ measurements from 826 sensors
The role of household adaptation measures in reducing vulnerability to flooding: a coupled agent-based and flood modelling approach
Assessing global water mass transfers from continents to oceans over the period 1948–2016
The influence of assimilating leaf area index in a land surface model on global water fluxes and storages
Comparison of generalized non-data-driven lake and reservoir routing models for global-scale hydrologic forecasting of reservoir outflow at diurnal time steps
The pantropical response of soil moisture to El Niño
HESS Opinions: Beyond the long-term water balance: evolving Budyko's supply–demand framework for the Anthropocene towards a global synthesis of land-surface fluxes under natural and human-altered watersheds
Global assessment of how averaging over spatial heterogeneity in precipitation and potential evapotranspiration affects modeled evapotranspiration rates
Evaluation of global terrestrial evapotranspiration using state-of-the-art approaches in remote sensing, machine learning and land surface modeling
Quantification of drainable water storage volumes on landmasses and in river networks based on GRACE and river runoff using a cascaded storage approach – first application on the Amazon
Global catchment modelling using World-Wide HYPE (WWH), open data, and stepwise parameter estimation
Projected increases in magnitude and socioeconomic exposure of global droughts in 1.5 and 2 °C warmer climates
Spatiotemporal assimilation–interpolation of discharge records through inverse streamflow routing
Towards learning universal, regional, and local hydrological behaviors via machine learning applied to large-sample datasets
Climate change, reforestation/afforestation, and urbanization impacts on evapotranspiration and streamflow in Europe
Julia Pfeffer, Anny Cazenave, Alejandro Blazquez, Bertrand Decharme, Simon Munier, and Anne Barnoud
Hydrol. Earth Syst. Sci., 27, 3743–3768, https://doi.org/10.5194/hess-27-3743-2023, https://doi.org/10.5194/hess-27-3743-2023, 2023
Short summary
Short summary
The GRACE (Gravity Recovery And Climate Experiment) satellite mission enabled the quantification of water mass redistributions from 2002 to 2017. The analysis of GRACE satellite data shows here that slow changes in terrestrial water storage occurring over a few years to a decade are severely underestimated by global hydrological models. Several sources of errors may explain such biases, likely including the inaccurate representation of groundwater storage changes.
Thedini Asali Peiris and Petra Döll
Hydrol. Earth Syst. Sci., 27, 3663–3686, https://doi.org/10.5194/hess-27-3663-2023, https://doi.org/10.5194/hess-27-3663-2023, 2023
Short summary
Short summary
Hydrological models often overlook vegetation's response to CO2 and climate, impairing their ability to forecast impacts on evapotranspiration and water resources. To address this, we suggest involving two model variants: (1) the standard method and (2) a modified approach (proposed here) based on the Priestley–Taylor equation (PT-MA). While not universally applicable, a dual approach helps consider uncertainties related to vegetation responses to climate change, enhancing model representation.
Samah Larabi, Juliane Mai, Markus Schnorbus, Bryan A. Tolson, and Francis Zwiers
Hydrol. Earth Syst. Sci., 27, 3241–3263, https://doi.org/10.5194/hess-27-3241-2023, https://doi.org/10.5194/hess-27-3241-2023, 2023
Short summary
Short summary
The computational cost of sensitivity analysis (SA) becomes prohibitive for large hydrologic modeling domains. Here, using a large-scale Variable Infiltration Capacity (VIC) deployment, we show that watershed classification helps identify the spatial pattern of parameter sensitivity within the domain at a reduced cost. Findings reveal the opportunity to leverage climate and land cover attributes to reduce the cost of SA and facilitate more rapid deployment of large-scale land surface models.
Tanja Denager, Torben O. Sonnenborg, Majken C. Looms, Heye Bogena, and Karsten H. Jensen
Hydrol. Earth Syst. Sci., 27, 2827–2845, https://doi.org/10.5194/hess-27-2827-2023, https://doi.org/10.5194/hess-27-2827-2023, 2023
Short summary
Short summary
This study contributes to improvements in the model characterization of water and energy fluxes. The results show that multi-objective autocalibration in combination with mathematical regularization is a powerful tool to improve land surface models. Using the direct measurement of turbulent fluxes as the target variable, parameter optimization matches simulations and observations of latent heat, whereas sensible heat is clearly biased.
Celray James Chawanda, Albert Nkwasa, Wim Thiery, and Ann van Griensven
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2023-93, https://doi.org/10.5194/hess-2023-93, 2023
Revised manuscript accepted for HESS
Short summary
Short summary
Africa's water resources are being negatively impacted by climate change & land use change. The SWAT+ hydrological model was used to simulate the hydrological cycle in Africa and results show likely decrease in river flows in the Zambezi, Congo and highest in Niger River basins due to climate change. Land cover change had the biggest impact in the Congo River basin, emphasizing the importance of including landuse change in studies.
Yuki Kimura, Yukiko Hirabayashi, Yuki Kita, Xudong Zhou, and Dai Yamazaki
Hydrol. Earth Syst. Sci., 27, 1627–1644, https://doi.org/10.5194/hess-27-1627-2023, https://doi.org/10.5194/hess-27-1627-2023, 2023
Short summary
Short summary
Since both the frequency and magnitude of flood will increase by climate change, information on spatial distributions of potential inundation depths (i.e., flood-hazard map) is required. We developed a method for constructing realistic future flood-hazard maps which addresses issues due to biases in climate models. A larger population is estimated to face risk in the future flood-hazard map, suggesting that only focusing on flood-frequency change could cause underestimation of future risk.
Hoontaek Lee, Martin Jung, Nuno Carvalhais, Tina Trautmann, Basil Kraft, Markus Reichstein, Matthias Forkel, and Sujan Koirala
Hydrol. Earth Syst. Sci., 27, 1531–1563, https://doi.org/10.5194/hess-27-1531-2023, https://doi.org/10.5194/hess-27-1531-2023, 2023
Short summary
Short summary
We spatially attribute the variance in global terrestrial water storage (TWS) interannual variability (IAV) and its modeling error with two data-driven hydrological models. We find error hotspot regions that show a disproportionately large significance in the global mismatch and the association of the error regions with a smaller-scale lateral convergence of water. Our findings imply that TWS IAV modeling can be efficiently improved by focusing on model representations for the error hotspots.
Jannis M. Hoch, Edwin H. Sutanudjaja, Niko Wanders, Rens L. P. H. van Beek, and Marc F. P. Bierkens
Hydrol. Earth Syst. Sci., 27, 1383–1401, https://doi.org/10.5194/hess-27-1383-2023, https://doi.org/10.5194/hess-27-1383-2023, 2023
Short summary
Short summary
To facilitate locally relevant simulations over large areas, global hydrological models (GHMs) have moved towards ever finer spatial resolutions. After a decade-long quest for hyper-resolution (i.e. equal to or smaller than 1 km), the presented work is a first application of a GHM at 1 km resolution over Europe. This not only shows that hyper-resolution can be achieved but also allows for a thorough evaluation of model results at unprecedented detail and the formulation of future research.
Chinchu Mohan, Tom Gleeson, James S. Famiglietti, Vili Virkki, Matti Kummu, Miina Porkka, Lan Wang-Erlandsson, Xander Huggins, Dieter Gerten, and Sonja C. Jähnig
Hydrol. Earth Syst. Sci., 26, 6247–6262, https://doi.org/10.5194/hess-26-6247-2022, https://doi.org/10.5194/hess-26-6247-2022, 2022
Short summary
Short summary
The relationship between environmental flow violations and freshwater biodiversity at a large scale is not well explored. This study intended to carry out an exploratory evaluation of this relationship at a large scale. While our results suggest that streamflow and EF may not be the only determinants of freshwater biodiversity at large scales, they do not preclude the existence of relationships at smaller scales or with more holistic EF methods or with other biodiversity data or metrics.
Zhaofei Liu
Hydrol. Earth Syst. Sci., 26, 6207–6226, https://doi.org/10.5194/hess-26-6207-2022, https://doi.org/10.5194/hess-26-6207-2022, 2022
Short summary
Short summary
Ground heat flux (G) accounts for a significant fraction of the surface energy balance (SEB), but there is insufficient research on these models compared with other flux. The accuracy of G simulation methods in the SEB-based remote sensing evapotranspiration models is evaluated. Results show that the accuracy of each method varied significantly at different sites and at half-hour intervals. Further improvement of G simulations is recommended for the remote sensing evapotranspiration modelers.
Tom Kimpson, Margarita Choulga, Matthew Chantry, Gianpaolo Balsamo, Souhail Boussetta, Peter Dueben, and Tim Palmer
EGUsphere, https://doi.org/10.5194/egusphere-2022-1177, https://doi.org/10.5194/egusphere-2022-1177, 2022
Short summary
Short summary
Lakes play an important role when we try to explain and predict the weather. More accurate and up-to-date description of lakes all around the world for the numerical models is a continuous task. However, it is difficult to assess the impact of updated lake description within a weather prediction system. In this work we develop a method to quickly and automatically define how, where, and when updated lake description affect weather prediction.
Pau Wiersma, Jerom Aerts, Harry Zekollari, Markus Hrachowitz, Niels Drost, Matthias Huss, Edwin H. Sutanudjaja, and Rolf Hut
Hydrol. Earth Syst. Sci., 26, 5971–5986, https://doi.org/10.5194/hess-26-5971-2022, https://doi.org/10.5194/hess-26-5971-2022, 2022
Short summary
Short summary
We test whether coupling a global glacier model (GloGEM) with a global hydrological model (PCR-GLOBWB 2) leads to a more realistic glacier representation and to improved basin runoff simulations across 25 large-scale basins. The coupling does lead to improved glacier representation, mainly by accounting for glacier flow and net glacier mass loss, and to improved basin runoff simulations, mostly in strongly glacier-influenced basins, which is where the coupling has the most impact.
En Ning Lai, Lan Wang-Erlandsson, Vili Virkki, Miina Porkka, and Ruud J. van der Ent
EGUsphere, https://doi.org/10.5194/egusphere-2022-971, https://doi.org/10.5194/egusphere-2022-971, 2022
Short summary
Short summary
Root-zone soil moisture, important for ecosystems and agriculture, is now substantially modified by human activities and global warming. We studied how it changes in possible future climates (2021–2100). Based on the output of climate models, we can say that the Mediterranean, South Africa, parts of North and South America will become permanently drier, while Northern Africa and Southern Asia become wetter. This occurs even under mitigation scenarios, making climate adaptation imperative.
Feng Zhong, Shanhu Jiang, Albert I. J. M. van Dijk, Liliang Ren, Jaap Schellekens, and Diego G. Miralles
Hydrol. Earth Syst. Sci., 26, 5647–5667, https://doi.org/10.5194/hess-26-5647-2022, https://doi.org/10.5194/hess-26-5647-2022, 2022
Short summary
Short summary
A synthesis of rainfall interception data from past field campaigns is performed, including 166 forests and 17 agricultural plots distributed worldwide. These site data are used to constrain and validate an interception model that considers sub-grid heterogeneity and vegetation dynamics. A global, 40-year (1980–2019) interception dataset is generated at a daily temporal and 0.1° spatial resolution. This dataset will serve as a benchmark for future investigations of the global hydrological cycle.
Dongyu Feng, Zeli Tan, Darren Engwirda, Chang Liao, Donghui Xu, Gautam Bisht, Tian Zhou, Hong-Yi Li, and L. Ruby Leung
Hydrol. Earth Syst. Sci., 26, 5473–5491, https://doi.org/10.5194/hess-26-5473-2022, https://doi.org/10.5194/hess-26-5473-2022, 2022
Short summary
Short summary
Sea level rise, storm surge and river discharge can cause coastal backwater effects in downstream sections of rivers, creating critical flood risks. This study simulates the backwater effects using a large-scale river model on a coastal-refined computational mesh. By decomposing the backwater drivers, we revealed their relative importance and long-term variations. Our analysis highlights the increasing strength of backwater effects due to sea level rise and more frequent storm surge.
Kieran M. R. Hunt, Gwyneth R. Matthews, Florian Pappenberger, and Christel Prudhomme
Hydrol. Earth Syst. Sci., 26, 5449–5472, https://doi.org/10.5194/hess-26-5449-2022, https://doi.org/10.5194/hess-26-5449-2022, 2022
Short summary
Short summary
In this study, we use three models to forecast river streamflow operationally for 13 months (September 2020 to October 2021) at 10 gauges in the western US. The first model is a state-of-the-art physics-based streamflow model (GloFAS). The second applies a bias-correction technique to GloFAS. The third is a type of neural network (an LSTM). We find that all three are capable of producing skilful forecasts but that the LSTM performs the best, with skilful 5 d forecasts at nine stations.
Tongtiegang Zhao, Haoling Chen, Yu Tian, Denghua Yan, Weixin Xu, Huayang Cai, Jiabiao Wang, and Xiaohong Chen
Hydrol. Earth Syst. Sci., 26, 4233–4249, https://doi.org/10.5194/hess-26-4233-2022, https://doi.org/10.5194/hess-26-4233-2022, 2022
Short summary
Short summary
This paper develops a novel set operations of coefficients of determination (SOCD) method to explicitly quantify the overlapping and differing information for GCM forecasts and ENSO teleconnection. Specifically, the intersection operation of the coefficient of determination derives the overlapping information for GCM forecasts and the Niño3.4 index, and then the difference operation determines the differing information in GCM forecasts (Niño3.4 index) from the Niño3.4 index (GCM forecasts).
Vili Virkki, Elina Alanärä, Miina Porkka, Lauri Ahopelto, Tom Gleeson, Chinchu Mohan, Lan Wang-Erlandsson, Martina Flörke, Dieter Gerten, Simon N. Gosling, Naota Hanasaki, Hannes Müller Schmied, Niko Wanders, and Matti Kummu
Hydrol. Earth Syst. Sci., 26, 3315–3336, https://doi.org/10.5194/hess-26-3315-2022, https://doi.org/10.5194/hess-26-3315-2022, 2022
Short summary
Short summary
Direct and indirect human actions have altered streamflow across the world since pre-industrial times. Here, we apply a method of environmental flow envelopes (EFEs) that develops the existing global environmental flow assessments by methodological advances and better consideration of uncertainty. By assessing the violations of the EFE, we comprehensively quantify the frequency, severity, and trends of flow alteration during the past decades, illustrating anthropogenic effects on streamflow.
Toby R. Marthews, Simon J. Dadson, Douglas B. Clark, Eleanor M. Blyth, Garry D. Hayman, Dai Yamazaki, Olivia R. E. Becher, Alberto Martínez-de la Torre, Catherine Prigent, and Carlos Jiménez
Hydrol. Earth Syst. Sci., 26, 3151–3175, https://doi.org/10.5194/hess-26-3151-2022, https://doi.org/10.5194/hess-26-3151-2022, 2022
Short summary
Short summary
Reliable data on global inundated areas remain uncertain. By matching a leading global data product on inundation extents (GIEMS) against predictions from a global hydrodynamic model (CaMa-Flood), we found small but consistent and non-random biases in well-known tropical wetlands (Sudd, Pantanal, Amazon and Congo). These result from known limitations in the data and the models used, which shows us how to improve our ability to make critical predictions of inundation events in the future.
Jawairia A. Ahmad, Barton A. Forman, and Sujay V. Kumar
Hydrol. Earth Syst. Sci., 26, 2221–2243, https://doi.org/10.5194/hess-26-2221-2022, https://doi.org/10.5194/hess-26-2221-2022, 2022
Short summary
Short summary
Assimilation of remotely sensed data into a land surface model to improve the spatiotemporal estimation of soil moisture across South Asia exhibits potential. Satellite retrieval assimilation corrects biases that are generated due to an unmodeled hydrologic phenomenon, i.e., irrigation. The improvements in fine-scale, modeled soil moisture estimates by assimilating coarse-scale retrievals indicates the utility of the described methodology for data-scarce regions.
Naota Hanasaki, Hikari Matsuda, Masashi Fujiwara, Yukiko Hirabayashi, Shinta Seto, Shinjiro Kanae, and Taikan Oki
Hydrol. Earth Syst. Sci., 26, 1953–1975, https://doi.org/10.5194/hess-26-1953-2022, https://doi.org/10.5194/hess-26-1953-2022, 2022
Short summary
Short summary
Global hydrological models (GHMs) are usually applied with a spatial resolution of about 50 km, but this time we applied the H08 model, one of the most advanced GHMs, with a high resolution of 2 km to Kyushu island, Japan. Since the model was not accurate as it was, we incorporated local information and improved the model, which revealed detailed water stress in subregions that were not visible with the previous resolution.
Basil Kraft, Martin Jung, Marco Körner, Sujan Koirala, and Markus Reichstein
Hydrol. Earth Syst. Sci., 26, 1579–1614, https://doi.org/10.5194/hess-26-1579-2022, https://doi.org/10.5194/hess-26-1579-2022, 2022
Short summary
Short summary
We present a physics-aware machine learning model of the global hydrological cycle. As the model uses neural networks under the hood, the simulations of the water cycle are learned from data, and yet they are informed and constrained by physical knowledge. The simulated patterns lie within the range of existing hydrological models and are plausible. The hybrid modeling approach has the potential to tackle key environmental questions from a novel perspective.
Tina Trautmann, Sujan Koirala, Nuno Carvalhais, Andreas Güntner, and Martin Jung
Hydrol. Earth Syst. Sci., 26, 1089–1109, https://doi.org/10.5194/hess-26-1089-2022, https://doi.org/10.5194/hess-26-1089-2022, 2022
Short summary
Short summary
We assess the effect of how vegetation is defined in a global hydrological model on the composition of total water storage (TWS). We compare two experiments, one with globally uniform and one with vegetation parameters that vary in space and time. While both experiments are constrained against observational data, we found a drastic change in the partitioning of TWS, highlighting the important role of the interaction between groundwater–soil moisture–vegetation in understanding TWS variations.
Marc F. P. Bierkens, Edwin H. Sutanudjaja, and Niko Wanders
Hydrol. Earth Syst. Sci., 25, 5859–5878, https://doi.org/10.5194/hess-25-5859-2021, https://doi.org/10.5194/hess-25-5859-2021, 2021
Short summary
Short summary
We introduce a simple analytical framework that allows us to estimate to what extent large-scale groundwater withdrawal affects groundwater levels and streamflow. It also calculates which part of the groundwater withdrawal comes out of groundwater storage and which part from a reduction in streamflow. Global depletion rates obtained with the framework are compared with estimates from satellites, from global- and continental-scale groundwater models, and from in situ datasets.
Dirk Eilander, Willem van Verseveld, Dai Yamazaki, Albrecht Weerts, Hessel C. Winsemius, and Philip J. Ward
Hydrol. Earth Syst. Sci., 25, 5287–5313, https://doi.org/10.5194/hess-25-5287-2021, https://doi.org/10.5194/hess-25-5287-2021, 2021
Short summary
Short summary
Digital elevation models and derived flow directions are crucial to distributed hydrological modeling. As the spatial resolution of models is typically coarser than these data, we need methods to upscale flow direction data while preserving the river structure. We propose the Iterative Hydrography Upscaling (IHU) method and show it outperforms other often-applied methods. We publish the multi-resolution MERIT Hydro IHU hydrography dataset and the algorithm as part of the pyflwdir Python package.
Jérôme Kopp, Pauline Rivoire, S. Mubashshir Ali, Yannick Barton, and Olivia Martius
Hydrol. Earth Syst. Sci., 25, 5153–5174, https://doi.org/10.5194/hess-25-5153-2021, https://doi.org/10.5194/hess-25-5153-2021, 2021
Short summary
Short summary
Episodes of extreme rainfall events happening in close temporal succession can lead to floods with dramatic impacts. We developed a novel method to individually identify those episodes and deduced the regions where they occur frequently and where their impact is substantial. Those regions are the east and northeast of the Asian continent, central Canada and the south of California, Afghanistan, Pakistan, the southwest of the Iberian Peninsula, and north of Argentina and south of Bolivia.
Alyssa J. DeVincentis, Hervé Guillon, Romina Díaz Gómez, Noelle K. Patterson, Francine van den Brandeler, Arthur Koehl, J. Pablo Ortiz-Partida, Laura E. Garza-Díaz, Jennifer Gamez-Rodríguez, Erfan Goharian, and Samuel Sandoval Solis
Hydrol. Earth Syst. Sci., 25, 4631–4650, https://doi.org/10.5194/hess-25-4631-2021, https://doi.org/10.5194/hess-25-4631-2021, 2021
Short summary
Short summary
Latin America and the Caribbean face many water-related stresses which are expected to worsen with climate change. To assess the vulnerability, we reviewed over 20 000 multilingual research articles using machine learning and an understanding of the regional landscape. Results reveal that the region’s inherent vulnerability is compounded by research blind spots in niche topics (reservoirs and risk assessment) and subregions (Caribbean nations), as well as by its reliance on one country (Brazil).
Michiel Maertens, Gabriëlle J. M. De Lannoy, Sebastian Apers, Sujay V. Kumar, and Sarith P. P. Mahanama
Hydrol. Earth Syst. Sci., 25, 4099–4125, https://doi.org/10.5194/hess-25-4099-2021, https://doi.org/10.5194/hess-25-4099-2021, 2021
Short summary
Short summary
In this study, we simulated the water balance over the South American Dry Chaco and assessed the impact of land cover changes thereon using three different land surface models. Our simulations indicated that different models result in a different partitioning of the total water budget, but all showed an increase in soil moisture and percolation over the deforested areas. We also found that, relative to independent data, no specific land surface model is significantly better than another.
Louise J. Slater, Bailey Anderson, Marcus Buechel, Simon Dadson, Shasha Han, Shaun Harrigan, Timo Kelder, Katie Kowal, Thomas Lees, Tom Matthews, Conor Murphy, and Robert L. Wilby
Hydrol. Earth Syst. Sci., 25, 3897–3935, https://doi.org/10.5194/hess-25-3897-2021, https://doi.org/10.5194/hess-25-3897-2021, 2021
Short summary
Short summary
Weather and water extremes have devastating effects each year. One of the principal challenges for society is understanding how extremes are likely to evolve under the influence of changes in climate, land cover, and other human impacts. This paper provides a review of the methods and challenges associated with the detection, attribution, management, and projection of nonstationary weather and water extremes.
Sanaa Hobeichi, Gab Abramowitz, and Jason P. Evans
Hydrol. Earth Syst. Sci., 25, 3855–3874, https://doi.org/10.5194/hess-25-3855-2021, https://doi.org/10.5194/hess-25-3855-2021, 2021
Short summary
Short summary
Evapotranspiration (ET) links the water, energy and carbon cycle on land. Reliable ET estimates are key to understand droughts and flooding. We develop a new ET dataset, DOLCE V3, by merging multiple global ET datasets, and we show that it matches ET observations better and hence is more reliable than its parent datasets. Next, we use DOLCE V3 to examine recent changes in ET and find that ET has increased over most of the land, decreased in some regions, and has not changed in some other regions
Frederik Kratzert, Daniel Klotz, Sepp Hochreiter, and Grey S. Nearing
Hydrol. Earth Syst. Sci., 25, 2685–2703, https://doi.org/10.5194/hess-25-2685-2021, https://doi.org/10.5194/hess-25-2685-2021, 2021
Short summary
Short summary
We investigate how deep learning models use different meteorological data sets in the task of (regional) rainfall–runoff modeling. We show that performance can be significantly improved when using different data products as input and further show how the model learns to combine those meteorological input differently across time and space. The results are carefully benchmarked against classical approaches, showing the supremacy of the presented approach.
Fabian Stenzel, Dieter Gerten, and Naota Hanasaki
Hydrol. Earth Syst. Sci., 25, 1711–1726, https://doi.org/10.5194/hess-25-1711-2021, https://doi.org/10.5194/hess-25-1711-2021, 2021
Short summary
Short summary
Ideas to mitigate climate change include the large-scale cultivation of fast-growing plants to capture atmospheric CO2 in biomass. To maximize the productivity of these plants, they will likely be irrigated. However, there is strong disagreement in the literature on how much irrigation water is needed globally, potentially inducing water stress. We provide a comprehensive overview of global irrigation demand studies for biomass production and discuss the diverse underlying study assumptions.
Charles Rougé, Patrick M. Reed, Danielle S. Grogan, Shan Zuidema, Alexander Prusevich, Stanley Glidden, Jonathan R. Lamontagne, and Richard B. Lammers
Hydrol. Earth Syst. Sci., 25, 1365–1388, https://doi.org/10.5194/hess-25-1365-2021, https://doi.org/10.5194/hess-25-1365-2021, 2021
Short summary
Short summary
Amid growing interest in using large-scale hydrological models for flood and drought monitoring and forecasting, it is important to evaluate common assumptions these models make. We investigated the representation of reservoirs as separate (non-coordinated) infrastructure. We found that not appropriately representing coordination and control processes can lead a hydrological model to simulate flood and drought events that would not occur given the coordinated emergency response in the basin.
Robert Reinecke, Hannes Müller Schmied, Tim Trautmann, Lauren Seaby Andersen, Peter Burek, Martina Flörke, Simon N. Gosling, Manolis Grillakis, Naota Hanasaki, Aristeidis Koutroulis, Yadu Pokhrel, Wim Thiery, Yoshihide Wada, Satoh Yusuke, and Petra Döll
Hydrol. Earth Syst. Sci., 25, 787–810, https://doi.org/10.5194/hess-25-787-2021, https://doi.org/10.5194/hess-25-787-2021, 2021
Short summary
Short summary
Billions of people rely on groundwater as an accessible source of drinking water and for irrigation, especially in times of drought. Groundwater recharge is the primary process of regenerating groundwater resources. We find that groundwater recharge will increase in northern Europe by about 19 % and decrease by 10 % in the Amazon with 3 °C global warming. In the Mediterranean, a 2 °C warming has already lead to a reduction in recharge by 38 %. However, these model predictions are uncertain.
Laura E. Queen, Philip W. Mote, David E. Rupp, Oriana Chegwidden, and Bart Nijssen
Hydrol. Earth Syst. Sci., 25, 257–272, https://doi.org/10.5194/hess-25-257-2021, https://doi.org/10.5194/hess-25-257-2021, 2021
Short summary
Short summary
Using a large ensemble of simulated flows throughout the northwestern USA, we compare daily flood statistics in the past (1950–1999) and future (2050–1999) periods and find that nearly all locations will experience an increase in flood magnitudes. The flood season expands significantly in many currently snow-dominant rivers, moving from only spring to both winter and spring. These results, properly extended, may help inform flood risk management and negotiations of the Columbia River Treaty.
Hylke E. Beck, Ming Pan, Diego G. Miralles, Rolf H. Reichle, Wouter A. Dorigo, Sebastian Hahn, Justin Sheffield, Lanka Karthikeyan, Gianpaolo Balsamo, Robert M. Parinussa, Albert I. J. M. van Dijk, Jinyang Du, John S. Kimball, Noemi Vergopolan, and Eric F. Wood
Hydrol. Earth Syst. Sci., 25, 17–40, https://doi.org/10.5194/hess-25-17-2021, https://doi.org/10.5194/hess-25-17-2021, 2021
Short summary
Short summary
We evaluated the largest and most diverse set of surface soil moisture products ever evaluated in a single study. We found pronounced differences in performance among individual products and product groups. Our results provide guidance to choose the most suitable product for a particular application.
Yared Abayneh Abebe, Amineh Ghorbani, Igor Nikolic, Natasa Manojlovic, Angelika Gruhn, and Zoran Vojinovic
Hydrol. Earth Syst. Sci., 24, 5329–5354, https://doi.org/10.5194/hess-24-5329-2020, https://doi.org/10.5194/hess-24-5329-2020, 2020
Short summary
Short summary
The paper presents a coupled agent-based and flood model for Hamburg, Germany. It explores residents’ adaptation behaviour in relation to flood event scenarios, economic incentives and shared and individual strategies. We found that unique trajectories of adaptation behaviour emerge from different flood event series. Providing subsidies improves adaptation behaviour in the long run. The coupled modelling technique allows the role of individual measures in flood risk management to be examined.
Denise Cáceres, Ben Marzeion, Jan Hendrik Malles, Benjamin Daniel Gutknecht, Hannes Müller Schmied, and Petra Döll
Hydrol. Earth Syst. Sci., 24, 4831–4851, https://doi.org/10.5194/hess-24-4831-2020, https://doi.org/10.5194/hess-24-4831-2020, 2020
Short summary
Short summary
We analysed how and to which extent changes in water storage on continents had an effect on global ocean mass over the period 1948–2016. Continents lost water to oceans at an accelerated rate, inducing sea level rise. Shrinking glaciers explain 81 % of the long-term continental water mass loss, while declining groundwater levels, mainly due to sustained groundwater pumping for irrigation, is the second major driver. This long-term decline was partly offset by the impoundment of water in dams.
Xinxuan Zhang, Viviana Maggioni, Azbina Rahman, Paul Houser, Yuan Xue, Timothy Sauer, Sujay Kumar, and David Mocko
Hydrol. Earth Syst. Sci., 24, 3775–3788, https://doi.org/10.5194/hess-24-3775-2020, https://doi.org/10.5194/hess-24-3775-2020, 2020
Short summary
Short summary
This study assesses the extent to which a land surface model can be optimized via the assimilation of leaf area index (LAI) observations at the global scale. The model performance is evaluated by the model-estimated LAI and five water flux/storage variables. Results show the LAI assimilation reduces errors in the model-estimated LAI. The LAI assimilation also improves the five water variables under wet conditions, but some of the model-estimated variables tend to be worse under dry conditions.
Joseph L. Gutenson, Ahmad A. Tavakoly, Mark D. Wahl, and Michael L. Follum
Hydrol. Earth Syst. Sci., 24, 2711–2729, https://doi.org/10.5194/hess-24-2711-2020, https://doi.org/10.5194/hess-24-2711-2020, 2020
Short summary
Short summary
Global-scale hydrologic forecasts should account for attenuation through lakes and reservoirs. There is no consensus on the best approach to estimating this attenuation in large-spatial-scale hydrologic forecasts. This article investigates two existing parsimonious approaches to estimating reservoir outflows. We test each method at 60 reservoirs in the United States. We find that a method first developed in 2003 can provide a reasonable approximation of diurnal reservoir outflows.
Kurt C. Solander, Brent D. Newman, Alessandro Carioca de Araujo, Holly R. Barnard, Z. Carter Berry, Damien Bonal, Mario Bretfeld, Benoit Burban, Luiz Antonio Candido, Rolando Célleri, Jeffery Q. Chambers, Bradley O. Christoffersen, Matteo Detto, Wouter A. Dorigo, Brent E. Ewers, Savio José Filgueiras Ferreira, Alexander Knohl, L. Ruby Leung, Nate G. McDowell, Gretchen R. Miller, Maria Terezinha Ferreira Monteiro, Georgianne W. Moore, Robinson Negron-Juarez, Scott R. Saleska, Christian Stiegler, Javier Tomasella, and Chonggang Xu
Hydrol. Earth Syst. Sci., 24, 2303–2322, https://doi.org/10.5194/hess-24-2303-2020, https://doi.org/10.5194/hess-24-2303-2020, 2020
Short summary
Short summary
We evaluate the soil moisture response in the humid tropics to El Niño during the three most recent super El Niño events. Our estimates are compared to in situ soil moisture estimates that span five continents. We find the strongest and most consistent soil moisture decreases in the Amazon and maritime southeastern Asia, while the most consistent increases occur over eastern Africa. Our results can be used to improve estimates of soil moisture in tropical ecohydrology models at multiple scales.
A. Sankarasubramanian, Dingbao Wang, Stacey Archfield, Meredith Reitz, Richard M. Vogel, Amirhossein Mazrooei, and Sudarshana Mukhopadhyay
Hydrol. Earth Syst. Sci., 24, 1975–1984, https://doi.org/10.5194/hess-24-1975-2020, https://doi.org/10.5194/hess-24-1975-2020, 2020
Short summary
Short summary
The Budyko framework which relies on the supply and demand concept could be effectively adapted and extended to quantify the role of drivers – both changing climate and local human disturbances – in altering the land-surface response. This framework is extended with a few illustrative examples for quantifying the variability in land-surface fluxes for natural and human-altered watersheds. Potential for using observed and remotely sensed datasets in capturing this variability is also discussed.
Elham Rouholahnejad Freund, Ying Fan, and James W. Kirchner
Hydrol. Earth Syst. Sci., 24, 1927–1938, https://doi.org/10.5194/hess-24-1927-2020, https://doi.org/10.5194/hess-24-1927-2020, 2020
Short summary
Short summary
Evapotranspiration (ET) rates and properties that regulate them are spatially heterogeneous. Averaging over spatial heterogeneity in precipitation (P) and potential evapotranspiration (PET) as the main drivers of ET may lead to biased estimates of energy and water fluxes from the land to the atmosphere. We show that this bias is largest in mountainous terrains, in regions with temperate climates and dry summers, and in landscapes where spatial variations in P and PET are inversely correlated.
Shufen Pan, Naiqing Pan, Hanqin Tian, Pierre Friedlingstein, Stephen Sitch, Hao Shi, Vivek K. Arora, Vanessa Haverd, Atul K. Jain, Etsushi Kato, Sebastian Lienert, Danica Lombardozzi, Julia E. M. S. Nabel, Catherine Ottlé, Benjamin Poulter, Sönke Zaehle, and Steven W. Running
Hydrol. Earth Syst. Sci., 24, 1485–1509, https://doi.org/10.5194/hess-24-1485-2020, https://doi.org/10.5194/hess-24-1485-2020, 2020
Short summary
Short summary
Evapotranspiration (ET) links global water, carbon and energy cycles. We used 4 remote sensing models, 2 machine-learning algorithms and 14 land surface models to analyze the changes in global terrestrial ET. These three categories of approaches agreed well in terms of ET intensity. For 1982–2011, all models showed that Earth greening enhanced terrestrial ET. The small interannual variability of global terrestrial ET suggests it has a potential planetary boundary of around 600 mm yr-1.
Johannes Riegger
Hydrol. Earth Syst. Sci., 24, 1447–1465, https://doi.org/10.5194/hess-24-1447-2020, https://doi.org/10.5194/hess-24-1447-2020, 2020
Short summary
Short summary
The combined use of GRACE mass anomalies and observed river discharge for the first time allows us to quantify the water storage volumes drainable by gravity on global scales. Modelling of catchment and river network storages in a cascade with different dynamics reveals the time lag between total mass and runoff is caused by a non-zero river network storage. This allows catchment and river network storage volumes to be distinguished and is thus of great importance for water resources management.
Berit Arheimer, Rafael Pimentel, Kristina Isberg, Louise Crochemore, Jafet C. M. Andersson, Abdulghani Hasan, and Luis Pineda
Hydrol. Earth Syst. Sci., 24, 535–559, https://doi.org/10.5194/hess-24-535-2020, https://doi.org/10.5194/hess-24-535-2020, 2020
Short summary
Short summary
How far can we reach in predicting river flow globally, using integrated catchment modelling and open global data? For the first time, a catchment model was applied world-wide, covering the entire globe with a relatively high resolution. The results show that stepwise calibration provided better performance than traditional modelling of the globe. The study highlights that open data and models are crucial to advance hydrological sciences by sharing knowledge and enabling transparent evaluation.
Lei Gu, Jie Chen, Jiabo Yin, Sylvia C. Sullivan, Hui-Min Wang, Shenglian Guo, Liping Zhang, and Jong-Suk Kim
Hydrol. Earth Syst. Sci., 24, 451–472, https://doi.org/10.5194/hess-24-451-2020, https://doi.org/10.5194/hess-24-451-2020, 2020
Short summary
Short summary
Focusing on the multifaceted nature of droughts, this study quantifies the change in global drought risks for 1.5 and 2.0 °C warming trajectories by a multi-model ensemble under three representative concentration pathways (RCP2.6, 4.5 and 8.5). Socioeconomic exposures are investigated by incorporating the dynamic shared socioeconomic pathways (SSPs) into the drought impact assessment. The results show that even the ambitious 1.5 °C warming level can cause substantial increases on the global scale.
Colby K. Fisher, Ming Pan, and Eric F. Wood
Hydrol. Earth Syst. Sci., 24, 293–305, https://doi.org/10.5194/hess-24-293-2020, https://doi.org/10.5194/hess-24-293-2020, 2020
Short summary
Short summary
Poorly monitored river flows in many regions of the world have been hindering our ability to accurately estimate global water usage. In this paper we present a method to derive continuous records of streamflow from a set of in situ gauges. Applying this method to the Ohio River basin, we found that we could reliably generate estimates of streamflow throughout the basin using only a small set of streamflow gauges, which can be useful for global river basins where we do not have good observations.
Frederik Kratzert, Daniel Klotz, Guy Shalev, Günter Klambauer, Sepp Hochreiter, and Grey Nearing
Hydrol. Earth Syst. Sci., 23, 5089–5110, https://doi.org/10.5194/hess-23-5089-2019, https://doi.org/10.5194/hess-23-5089-2019, 2019
Short summary
Short summary
A new approach for regional rainfall–runoff modeling using long short-term memory (LSTM)-based models is presented and benchmarked against a range of well-known hydrological models. The approach significantly outperforms regionally calibrated hydrological models but also basin-wise calibrated models. Furthermore, we propose an adaption of the LSTM that allows us to extract the learned catchment understanding of the model and show that it matches our hydrology expert knowledge.
Adriaan J. Teuling, Emile A. G. de Badts, Femke A. Jansen, Richard Fuchs, Joost Buitink, Anne J. Hoek van Dijke, and Shannon M. Sterling
Hydrol. Earth Syst. Sci., 23, 3631–3652, https://doi.org/10.5194/hess-23-3631-2019, https://doi.org/10.5194/hess-23-3631-2019, 2019
Short summary
Short summary
Over the past decades, changes in land use and climate over Europe have impacted the average flow of water flowing through rivers and reservoirs (the so-called
water yield). We quantify these changes using a simple but widely tested modelling approach constrained by observations of lysimeters across Europe. Results show that the contribution of land use to changes in water yield are of the same order as changes in climate, showing that impacts of land use changes cannot be neglected.
Cited articles
An, N., Tang, C.-S., Xu, S.-K., Gong, X.-P., Shi, B., and Inyang, H. I.: Effects of soil
characteristics on moisture evaporation, Eng. Geol., 239, 126–135,
https://doi.org/10.1016/j.enggeo.2018.03.028, 2018.
Batjes, N. H.: Harmonized soil property values for broad-scale modelling (WISE30sec)
with estimates of global soil carbon stocks, Geoderma, 269, 61–68,
https://doi.org/10.1016/j.geoderma.2016.01.034, 2016.
Beven, K. J. and Kirkby, M. J.: A physically based, variable contributing area model of
basin hydrology / Un modèle à base physique de zone d'appel variable de l'hydrologie du
bassin versant, Hydrol. Sci. B., 24, 43–69, https://doi.org/10.1080/02626667909491834, 1979.
Boucher, O., Servonnat, J., Albright, A. L., Aumont, O., Balkanski, Y., Bastrikov, V.,
Bekki, S., Bonnet, R., Bony, S., Bopp, L., Braconnot, P., Brockmann, P., Cadule, P., Caubel, A.,
Cheruy, F., Codron, F., Cozic, A., Cugnet, D., D'Andrea, F., Davini, P., de Lavergne, C., Denvil,
S., Deshayes, J., Devilliers, M., Ducharne, A., Dufresne, J.-L., Dupont, E., Éthé, C.,
Fairhead, L., Falletti, L., Flavoni, S., Foujols, M.-A., Gardoll, S., Gastineau, G., Ghattas, J.,
Grandpeix, J.-Y., Guenet, B., Guez, L., Guilyardi, É., Guimberteau, M., Hauglustaine, D., Hourdin,
F., Idelkadi, A., Joussaume, S., Kageyama, M., Khodri, M., Krinner, G., Lebas, N., Levavasseur,
G., Lévy, C., Li, L., Lott, F., Lurton, T., Luyssaert, S., Madec, G., Madeleine, J.-B.,
Maignan, F., Marchand, M., Marti, O., Mellul, L., Meurdesoif, Y., Mignot, J., Musat, I.,
Ottlé, C., Peylin, P., Planton, Y., Polcher, J., Rio, C., Rochetin, N., Rousset, C.,
Sepulchre, P., Sima, A., Swingedouw, D., Thiéblemont, R., Traore, A. K., Vancoppenolle, M.,
Vial, J., Vialard, J., Viovy, N., and Vuichard, N.: Presentation and evaluation of the
IPSL-CM6A-LR climate model, J. Adv. Model. Earth Syst., 12, e2019MS002010, https://doi.org/10.1029/2019MS002010, 2019.
Bouvier, C., Bouchenaki, L., and Tramblay, Y.: Comparison of SCS and Green-Ampt
Distributed Models for Flood Modelling in a Small Cultivated Catchment in Senegal, Geosciences, 8,
122, https://doi.org/10.3390/geosciences8040122, 2018.
Brakensiek, D. L. and Rawls, W. J.: Soil containing rock fragments: effects on
infiltration, CATENA, 23, 99–110, https://doi.org/10.1016/0341-8162(94)90056-6, 1994.
Campoy, A., Ducharne, A., Cheruy, F., Hourdin, F., Polcher, J., and Dupont, J. C.:
Response of land surface fluxes and precipitation to different soil bottom hydrological conditions
in a general circulation model, J. Geophys. Res.-Atmos., 118, 10725–10739,
https://doi.org/10.1002/jgrd.50627, 2013.
Carsel, R. F. and Parrish, R. S.: Developing joint probability distributions of soil
water retention characteristics, Water Resour. Res., 24, 755–769, https://doi.org/10.1029/WR024i005p00755,
1988.
Casenave, A. and Valentin, C.: A runoff capability classification system based on
surface features criteria in semi-arid areas of West Africa, J. Hydrol., 130, 231–249,
https://doi.org/10.1016/0022-1694(92)90112-9, 1992.
Cheruy, F., Ducharne, A., Hourdin, F., Musat, I., Vignon, E., Gastineau, G., Bastrikov,
V., Vuichard, V., Diallo, B., Dufresne, J.-L., Ghattas, J., Grandpeix, J.-Y., Idelkadi, A.,
Mellul, L., Maignan, F., Menegoz, M., Ottlé, C., Peylin, P., Wang, F., and Zhao, Y.: Improved
near surface continental climate in IPSL-CM6 by combined evolutions of atmospheric and land
surface physics, J. Adv. Model. Earth Syst., in review, 2019.
Clapp, R. B. and Hornberger, G. M.: Empirical equations for some soil hydraulic
properties, Water Resour. Res., 14, 601–604, https://doi.org/10.1029/WR014i004p00601, 1978.
Collatz, G. J., Ribas-Carbo, M., and Berry, J. A.: Coupled Photosynthesis-Stomatal
Conductance Model for Leaves of C4 Plants, Funct. Plant Biol., 19, 519–538,
https://doi.org/10.1071/pp9920519, 1992.
Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D., Matsui, N., Allan, R. J., Yin, X.,
Gleason, B. E., Vose, R. S., Rutledge, G., Bessemoulin, P., Brönnimann, S., Brunet, M.,
Crouthamel, R. I., Grant, A. N., Groisman, P. Y., Jones, P. D., Kruk, M. C., Kruger, A. C.,
Marshall, G. J., Maugeri, M., Mok, H. Y., Nordli, Ø., Ross, T. F., Trigo, R. M., Wang, X. L.,
Woodruff, S. D., and Worley, S. J.: The Twentieth Century Reanalysis Project,
Q. J. Roy. Meteor. Soc., 137, 1–28, https://doi.org/10.1002/qj.776, 2011.
Cosby, B. J., Hornberger, G. M., Clapp, R. B., and Ginn, T. R.: A Statistical
Exploration of the Relationships of Soil Moisture Characteristics to the Physical Properties of
Soils, Water Resour. Res., 20, 682–690, https://doi.org/10.1029/WR020i006p00682, 1984.
De Lannoy, G. J. M., Koster, R. D., Reichle, R. H., Mahanama, S. P. P., and Liu, Q.:
An updated treatment of soil texture and associated hydraulic properties in a global land modeling
system, J. Adv. Model. Earth Syst., 6, 957–979, https://doi.org/10.1002/2014MS000330, 2014.
Deckers, J., Nachtergaele, F., and Spaargaren, O.: Tropical soils in the classification
systems of USDA, FAO and WRB, Evolution of Tropical Soil Science, Past and Future, 79, Brussels,
Royal Academy of Overseas Sciences, 79–94, 2003.
de Rosnay, P. and Polcher, J.: Modelling root water uptake in a complex land surface
scheme coupled to a GCM, Hydrol. Earth Syst. Sci., 2, 239–255, https://doi.org/10.5194/hess-2-239-1998,
1998.
De Rosnay, P., Polcher, J., Bruen, M., and Laval, K.: Impact of a physically based soil
water flow and soil-plant interaction representation for modeling large-scale land surface
processes, J. Geophys. Res.-Atmos., 107, ACL 3-1–ACL 3-19, https://doi.org/10.1029/2001JD000634, 2002.
d'Orgeval, T., Polcher, J., and de Rosnay, P.: Sensitivity of the West African
hydrological cycle in ORCHIDEE to infiltration processes, Hydrol. Earth Syst. Sci., 12,
1387–1401, https://doi.org/10.5194/hess-12-1387-2008, 2008.
Ducharne, A. and Laval, K.: Influence of the Realistic Description of Soil
Water-Holding Capacity on the Global Water Cycle in a GCM, J. Clim., 13, 4393–4413,
https://doi.org/10.1175/1520-0442(2000)013<4393:IOTRDO>2.0.CO;2, 2000.
Entekhabi, D. and Eagleson, P. S.: Land Surface Hydrology Parameterization for
Atmospheric General Circulation models Including Subgrid Scale Spatial Variability, J. Clim., 2,
816–831, https://doi.org/10.1175/1520-0442(1989)002<0816:LSHPFA>2.0.CO;2, 1989.
Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and
Taylor, K. E.: Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental
design and organization, Geosci. Model Dev., 9, 1937–1958, https://doi.org/10.5194/gmd-9-1937-2016, 2016.
FAO and UNESCO: FAO-UNESCO Soil Map of the World, 1971–1981.
Farquhar, G. D., von Caemmerer, S., and Berry, J. A.: A biochemical model of
photosynthetic CO2 assimilation in leaves of C3 species, Planta, 149, 78–90,
https://doi.org/10.1007/BF00386231, 1980.
Gal, L., Grippa, M., Hiernaux, P., Pons, L., and Kergoat, L.: The paradoxical evolution
of runoff in the pastoral Sahel: analysis of the hydrological changes over the Agoufou watershed
(Mali) using the KINEROS-2 model, Hydrol. Earth Syst. Sci., 21, 4591–4613,
https://doi.org/10.5194/hess-21-4591-2017, 2017.
Green, W. H. and Ampt, G. A.: Studies on Soil Phyics, J. Agric. Sci., 4, 1–24,
https://doi.org/10.1017/S0021859600001441, 1911.
GLEAM: Global Land Evaporation Amsterdam Model, available at:
http://www.GLEAM.eu, last access: 22 July 2020.
Guimberteau, M., Ciais, P., Ducharne, A., Boisier, J. P., Dutra Aguiar, A. P., Biemans,
H., De Deurwaerder, H., Galbraith, D., Kruijt, B., Langerwisch, F., Poveda, G., Rammig, A.,
Rodriguez, D. A., Tejada, G., Thonicke, K., Von Randow, C., Von Randow, R. C. S., Zhang, K., and
Verbeeck, H.: Impacts of future deforestation and climate change on the hydrology of the Amazon
Basin: a multi-model analysis with a new set of land-cover change scenarios, Hydrol. Earth
Syst. Sci., 21, 1455–1475, https://doi.org/10.5194/hess-21-1455-2017, 2017.
Gundmundsson, L. and Cuntz, M.: Soil Parameter Model Intercomparison Project (SP-MIP):
Assessing the influence of soil parameters on the variability of Land Surface Models, available at: https://www.gewexevents.org/wp-content/uploads/GLASS2017_SP-MIP_Protocol.pdf
(last access: 4 April 2019), 2017.
Guo, Z., Dirmeyer, P. A., Hu, Z.-Z., Gao, X., and Zhao, M.: Evaluation of the Second
Global Soil Wetness Project soil moisture simulations: 2. Sensitivity to external meteorological
forcing, J. Geophys. Res.-Atmos., 111, D22S03, https://doi.org/10.1029/2006JD007845, 2006.
Haddeland, I., Clark, D. B., Franssen, W., Ludwig, F., Voß, F., Arnell, N. W.,
Bertrand, N., Best, M., Folwell, S., Gerten, D., Gomes, S., Gosling, S. N., Hagemann, S.,
Hanasaki, N., Harding, R., Heinke, J., Kabat, P., Koirala, S., Oki, T., Polcher, J., Stacke, T.,
Viterbo, P., Weedon, G. P. and Yeh, P.: Multimodel Estimate of the Global Terrestrial Water
Balance: Setup and First Results, J. Hydrometeorol., 12, 869–884, https://doi.org/10.1175/2011JHM1324.1,
2011.
Hengl, T., Jesus, J. M. de, MacMillan, R. A., Batjes, N. H., Heuvelink, G. B. M.,
Ribeiro, E., Samuel-Rosa, A., Kempen, B., Leenaars, J. G. B., Walsh, M. G., and Gonzalez, M. R.:
SoilGrids1km — Global Soil Information Based on Automated Mapping, PLOS ONE, 9, e105992,
https://doi.org/10.1371/journal.pone.0105992, 2014.
Hengl, T., Jesus, J. M. de, Heuvelink, G. B. M., Gonzalez, M. R., Kilibarda, M.,
Blagotić, A., Shangguan, W., Wright, M. N., Geng, X., Bauer-Marschallinger, B., Guevara,
M. A., Vargas, R., MacMillan, R. A., Batjes, N. H., Leenaars, J. G. B., Ribeiro, E., Wheeler, I.,
Mantel, S., and Kempen, B.: SoilGrids250m: Global gridded soil information based on machine
learning, PLOS ONE, 12, e0169748, https://doi.org/10.1371/journal.pone.0169748, 2017.
Jung, M., Reichstein, M., Ciais, P., Seneviratne, S. I., Sheffield, J., Goulden, M. L.,
Bonan, G., Cescatti, A., Chen, J., de Jeu, R., Dolman, A. J., Eugster, W., Gerten, D., Gianelle,
D., Gobron, N., Heinke, J., Kimball, J., Law, B. E., Montagnani, L., Mu, Q., Mueller, B., Oleson,
K., Papale, D., Richardson, A. D., Roupsard, O., Running, S., Tomelleri, E., Viovy, N., Weber, U.,
Williams, C., Wood, E., Zaehle, S., and Zhang, K.: Recent decline in the global land
evapotranspiration trend due to limited moisture supply, Nature, 467, 951–954,
https://doi.org/10.1038/nature09396, 2010.
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell,
M., Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak,
J., Mo, K. C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R., and Joseph, D.: The
NCEP/NCAR 40-Year Reanalysis Project, B. Am. Meteorol. Soc., 77, 437–472,
https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2, 1996.
Karambiri, H., Ribolzi, O., Delhoume, J. P., Ducloux, J., Coudrain-Ribstein, A., and
Casenave, A.: Importance of soil surface characteristics on water erosion in a small grazed
Sahelian catchment, Hydrol. Process., 17, 1495–1507, https://doi.org/10.1002/hyp.1195, 2003.
Kim, H.: Global Soil Wetness Project Phase 3 Atmospheric Boundary Conditions
(Experiment 1), Data Integration and Analysis System (DIAS), https://doi.org/10.20783/DIAS.501, 2017.
Krinner, G., Viovy, N., Noblet-Ducoudré, N. de, Ogée, J., Polcher, J.,
Friedlingstein, P., Ciais, P., Sitch, S., and Prentice, I. C.: A dynamic global vegetation model
for studies of the coupled atmosphere-biosphere system, Global Biogeochem. Cy., 19, GB1015,
https://doi.org/10.1029/2003GB002199, 2005.
Lehmann, P., Merlin, O., Gentine, P., and Or, D.: Soil Texture Effects on Surface
Resistance to Bare-Soil Evaporation, Geophys. Res. Lett., 45, 10398–10405,
https://doi.org/10.1029/2018GL078803, 2018.
Li, J., Chen, F., Zhang, G., Barlage, M., Gan, Y., Xin, Y., and Wang, C.: Impacts of
Land Cover and Soil Texture Uncertainty on Land Model Simulations Over the Central Tibetan
Plateau, J. Adv. Model. Earth Syst., 10, 2121–2146, https://doi.org/10.1029/2018MS001377, 2018.
Livneh, B., Kumar, R., and Samaniego, L.: Influence of soil textural properties on
hydrologic fluxes in the Mississippi river basin, Hydrol. Process., 29, 4638–4655,
https://doi.org/10.1002/hyp.10601, 2015.
Looy, K. V., Bouma, J., Herbst, M., Koestel, J., Minasny, B., Mishra, U., Montzka, C.,
Nemes, A., Pachepsky, Y. A., Padarian, J., Schaap, M. G., Tóth, B., Verhoef, A., Vanderborght,
J., Ploeg, M. J. van der, Weihermüller, L., Zacharias, S., Zhang, Y., and Vereecken, H.:
Pedotransfer Functions in Earth System Science: Challenges and Perspectives, Rev. Geophys., 55,
1199–1256, https://doi.org/10.1002/2017RG000581, 2017.
Martens, B., Miralles, D. G., Lievens, H., van der Schalie, R., de Jeu, R. A. M.,
Fernández-Prieto, D., Beck, H. E., Dorigo, W. A., and Verhoest, N. E. C.: GLEAM v3:
satellite-based land evaporation and root-zone soil moisture, Geosci. Model Dev., 10, 1903–1925,
https://doi.org/10.5194/gmd-10-1903-2017, 2017.
Milly, P. C. D. and Dunne, K. A.: Sensitivity of the Global Water Cycle to the
Water-Holding Capacity of Land, J. Climate, 7, 506–526,
https://doi.org/10.1175/1520-0442(1994)007<0506:SOTGWC>2.0.CO;2, 1994.
Montzka, C., Herbst, M., Weihermüller, L., Verhoef, A., and Vereecken, H.: A global
data set of soil hydraulic properties and sub-grid variability of soil water retention and
hydraulic conductivity curves, Earth Syst. Sci. Data, 9, 529–543, https://doi.org/10.5194/essd-9-529-2017,
2017.
Mualem, Y.: A new model for predicting the hydraulic conductivity of unsaturated porous
media, Water Resour. Res., 12, 513–522, https://doi.org/10.1029/WR012i003p00513, 1976.
Nachtergaele, F. O., Velthuizen, H. van, Verelst, L., Batjes, N. H., Dijkshoorn, J. A.,
van Engelen, V. W. P., Fischer, G., Jones, A., Montanarela, L., Petri, M., Prieler, S., Shi, X.,
Teixeira, E., and Wiberg, D.: The Harmonized World Soil Database, 19th World Congress of Soil
Science, Soil Solutions for a Changing World 1–6 August 2010, Brisbane, Australia, published on
DVD, 2010.
Osman, K. T.: Soils: Principles, Properties and Management, Springer
Netherlands, available at: https://www.springer.com/gp/book/9789400756625 (last
access: 22 May 2019), 2013.
Peylin, P., Ghattas, J., Cadule, P., Cheruy, F., Ducharne, A., Guenet, B., Lathière, J., Luyssaert, S., Maignan, F., Maugis, P., Ottle, C., Polcher, J., Viovy, N., Vuichard, N., Bastrikov, V., Guimberteau, M., Lanso, A.-S., MacBean, N., Mcgrath, M., Tafasca, S., and Wang, F.:
The global land surface model ORCHIDEE – Tag2.0, available at: http://forge.ipsl.jussieu.fr/orchidee/browser/tags/ORCHIDEE_2_0/ORCHIDEE/,
last access: 20 July 2020. a
Priestley, C. H. B. and Taylor, R. J.: On the Assessment of Surface Heat Flux and
Evaporation Using Large-Scale Parameters, Mon. Weather Rev., 100, 81–92,
https://doi.org/10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2, 1972.
Rawls, W. J., Brakensiek, D. L., Simanton, J. R., and Kohl, K. D.: Development of
a crust factor for a Green-Ampt model, Trans. ASAE, 33, 1224–1228, 1990.
Rawls, W. J., Ahuja, L. R., Brakensiek, D. L., and Shirmohammadi, A.: Infiltration and
soil water movement, in: Handbook of Hydrology, New York, available at:
https://ci.nii.ac.jp/naid/10018251877/ (last access: 23 May 2019), 1993.
Remaud, M., Chevallier, F., Cozic, A., Lin, X., and Bousquet, P.: On the impact of
recent developments of the LMDz atmospheric general circulation model on the simulation of
CO2 transport, Geosci. Model Dev., 11, 4489–4513, https://doi.org/10.5194/gmd-11-4489-2018, 2018.
Reynolds, C. A., Jackson, T. J., and Rawls, W. J.: Estimating soil water-holding
capacities by linking the Food and Agriculture Organization Soil map of the world with global
pedon databases and continuous pedotransfer functions, Water Resour. Res., 36, 3653–3662,
https://doi.org/10.1029/2000WR900130, 2000.
Rodell, M., Beaudoing, H. K., L'Ecuyer, T. S., Olson, W. S., Famiglietti, J. S.,
Houser, P. R., Adler, R., Bosilovich, M. G., Clayson, C. A., Chambers, D., Clark, E., Fetzer,
E. J., Gao, X., Gu, G., Hilburn, K., Huffman, G. J., Lettenmaier, D. P., Liu, W. T., Robertson,
F. R., Schlosser, C. A., Sheffield, J., and Wood, E. F.: The Observed State of the Water Cycle in
the Early Twenty-First Century, J. Climate, 28, 8289–8318, https://doi.org/10.1175/JCLI-D-14-00555.1, 2015.
Samaniego, L., Kumar, R., and Attinger, S.: Multiscale parameter regionalization of
a grid-based hydrologic model at the mesoscale, Water Resour. Res., 46, W05523,
https://doi.org/10.1029/2008WR007327, 2010.
Schaap, M. G., Leij, F. J., and van Genuchten, M. T.: rosetta: a computer program for
estimating soil hydraulic parameters with hierarchical pedotransfer functions, J. Hydrol., 251,
163–176, https://doi.org/10.1016/S0022-1694(01)00466-8, 2001.
Smettem, K. R. J.: Characterization of water entry into a soil with a contrasting
textural class: spatial variability of infiltration parameters and influence of macroporosity,
Soil Sci., 144, 167–174, 1987.
Song, R., Chu, G., Ye, J., Bai, L., Zhang, R., and Yang, J.: Effects of surface soil
mixed with sand on water infiltration and evaporation in laboratory,
Editor. Off. Trans. Chin. Soc. Agric. Eng., 26, 109–114, 2010.
Spaargaren, O. C. and Deckers, J.: The World Reference Base for Soil Resources, in:
Soils of Tropical Forest Ecosystems, edited by: Schulte, A., Ruhiyat, D., Springer, Berlin,
Heidelberg, pp. 21–28, 1998.
Stamm, J. F., Wood, E. F., and Lettenmaier, D. P.: Sensitivity of a GCM Simulation of
Global Climate to the Representation of Land-Surface Hydrology, J. Climate, 7, 1218–1239,
https://doi.org/10.1175/1520-0442(1994)007<1218:SOAGSO>2.0.CO;2, 1994.
Sterling, S. M., Ducharne, A., and Polcher, J.: The impact of global land-cover change
on the terrestrial water cycle, Nat. Clim. Change, 3, 385–390, https://doi.org/10.1038/nclimate1690, 2013.
Sun, D., Yang, H., Guan, D., Yang, M., Wu, J., Yuan, F., Jin, C., Wang, A. and Zhang,
Y.: The effects of land use change on soil infiltration capacity in China: A meta-analysis,
Sci. Total Environ., 626, 1394–1401, https://doi.org/10.1016/j.scitotenv.2018.01.104, 2018.
USDA Soil Survey Staff and Bureau of Plant Industry, Soils and agricultural
Engineering: Soil survey manual, Agricultural Research Administration, US Dept. of Agriculture,
Washington, D.C., 1951.
Valentin, C.: Surface sealing as affected by various rock fragment covers in West
Africa, CATENA, 23, 87–97, https://doi.org/10.1016/0341-8162(94)90055-8, 1994.
Valentin, C. and Bresson, L.-M.: Morphology, genesis and classification of surface
crusts in loamy and sandy soils, Geoderma, 55, 225–245, https://doi.org/10.1016/0016-7061(92)90085-L, 1992.
Valentin, C., Agus, F., Alamban, R., Boosaner, A., Bricquet, J. P., Chaplot, V., de
Guzman, T., de Rouw, A., Janeau, J. L., Orange, D., Phachomphonh, K., Do Duy Phai, Podwojewski,
P., Ribolzi, O., Silvera, N., Subagyono, K., Thiébaux, J. P., Tran Duc Toan, and Vadari, T.:
Runoff and sediment losses from 27 upland catchments in Southeast Asia: Impact of rapid land use
changes and conservation practices, Agric. Ecosyst. Environ., 128, 225–238,
https://doi.org/10.1016/j.agee.2008.06.004, 2008.
van den Hurk, B., Kim, H., Krinner, G., Seneviratne, S. I., Derksen, C., Oki, T.,
Douville, H., Colin, J., Ducharne, A., Cheruy, F., Viovy, N., Puma, M. J., Wada, Y., Li, W., Jia,
B., Alessandri, A., Lawrence, D. M., Weedon, G. P., Ellis, R., Hagemann, S., Mao, J., Flanner,
M. G., Zampieri, M., Materia, S., Law, R. M., and Sheffield, J.: LS3MIP (v1.0) contribution to
CMIP6: the Land Surface, Snow and Soil moisture Model Intercomparison Project – aims, setup and
expected outcome, Geosci. Model Dev., 9, 2809–2832, https://doi.org/10.5194/gmd-9-2809-2016, 2016.
Van Genuchten, M.: A Closed-form Equation for Predicting the Hydraulic Conductivity of
Unsaturated Soils 1, Soil Sci. Soc. Am. J., 44, 892–898,
https://doi.org/10.2136/sssaj1980.03615995004400050002x, 1980.
Vereecken, H., Pachepsky, Y., Bogena, H., and Montzka, C.: Upscaling Issues in
Ecohydrological Observations, in Observation and Measurement of Ecohydrological Processes, edited
by: Li, X., Vereecken, H., Springer Berlin Heidelberg, Berlin, Heidelberg, 435–454, 2019.
Wang, F., Cheruy, F., and Dufresne, J.-L.: The improvement of soil thermodynamics and
its effects on land surface meteorology in the IPSL climate model, Geosci. Model Dev., 9,
363–381, https://doi.org/10.5194/gmd-9-363-2016, 2016.
Wang, F., Ducharne, A., Cheruy, F., Lo, M.-H., and Grandpeix, J.-Y.: Impact of
a shallow groundwater table on the global water cycle in the IPSL land–atmosphere coupled model,
Clim. Dynam., 50, 3505–3522, https://doi.org/10.1007/s00382-017-3820-9, 2018.
Wang, T., Istanbulluoglu, E., Lenters, J., and Scott, D.: On the role of groundwater
and soil texture in the regional water balance: An investigation of the Nebraska Sand Hills, USA,
Water Resour. Res., 45, W10413, https://doi.org/10.1029/2009WR007733, 2009.
Wei, Y., Liu, S., Huntzinger, D. N., Michalak, A. M., Viovy, N., Post, W. M., Schwalm,
C. R., Schaefer, K., Jacobson, A. R., Lu, C., Tian, H., Ricciuto, D. M., Cook, R. B., Mao, J., and
Shi, X.: The North American Carbon Program Multi-scale Synthesis and Terrestrial Model
Intercomparison Project – Part 2: Environmental driver data, Geosci. Model Dev., 7, 2875–2893,
https://doi.org/10.5194/gmd-7-2875-2014, 2014.
Xia, Y., Ek, M. B., Wu, Y., Ford, T., and Quiring, S. M.: Comparison of NLDAS-2
Simulated and NASMD Observed Daily Soil Moisture. Part II: Impact of Soil Texture Classification
and Vegetation Type Mismatches, J. Hydrometeorol., 16, 1981–2000, https://doi.org/10.1175/JHM-D-14-0097.1,
2015.
Yair, A.: Runoff generation in a sandy area – the nizzana sands, Western Negev,
Israel, Earth Surf. Proc. Land., 15, 597–609, https://doi.org/10.1002/esp.3290150703, 1990.
Yin, Z., Ottlé, C., Ciais, P., Guimberteau, M., Wang, X., Zhu, D., Maignan, F.,
Peng, S., Piao, S., Polcher, J., Zhou, F., Kim, H., and other China-Trend-Stream project members:
Evaluation of ORCHIDEE-MICT-simulated soil moisture over China and impacts of different
atmospheric forcing data, Hydrol. Earth Syst. Sci., 22, 5463–5484,
https://doi.org/10.5194/hess-22-5463-2018, 2018.
Zhao, F., Veldkamp, T. I. E., Frieler, K., Schewe, J., Ostberg, S., Willner, S.,
Schauberger, B., Gosling, S. N., Schmied, H. M., Portmann, F. T., Leng, G., Huang, M., Liu, X.,
Tang, Q., Hanasaki, N., Biemans, H., Gerten, D., Satoh, Y., Pokhrel, Y., Stacke, T., Ciais, P.,
Chang, J., Ducharne, A., Guimberteau, M., Wada, Y., Kim, H., and Yamazaki, D.: The critical role
of the routing scheme in simulating peak river discharge in global hydrological models,
Environ. Res. Lett., 12, 075003, https://doi.org/10.1088/1748-9326/aa7250, 2017.
Zheng, H. and Yang, Z.-L.: Effects of soil-type datasets on regional terrestrial water
cycle simulations under different climatic regimes, J. Geophys. Res.-Atmos., 121, 14387–14402,
https://doi.org/10.1002/2016JD025187, 2016.
Zobler, L.: A world soil hydrology file for global climate modeling, Technical
Memorandum 87802, National Aeronautics and Space Administration, Washington, 1986.
Short summary
In land surface models (LSMs), soil properties are inferred from soil texture. In this study, we use different input global soil texture maps from the literature to investigate the impact of soil texture on the simulated water budget in an LSM. The medium loamy textures give the highest evapotranspiration and lowest total runoff rates. However, the different soil texture maps result in similar water budgets because of their inherent similarities, especially when upscaled at the 0.5° resolution.
In land surface models (LSMs), soil properties are inferred from soil texture. In this study, we...