Articles | Volume 24, issue 3
https://doi.org/10.5194/hess-24-1145-2020
https://doi.org/10.5194/hess-24-1145-2020
Research article
 | 
11 Mar 2020
Research article |  | 11 Mar 2020

Understanding the effects of climate warming on streamflow and active groundwater storage in an alpine catchment: the upper Lhasa River

Lu Lin, Man Gao, Jintao Liu, Jiarong Wang, Shuhong Wang, Xi Chen, and Hu Liu

Related authors

Quantifying streamflow and active groundwater storage in response to climate warming in an alpine catchment on the Tibetan Plateau
Lu Lin, Man Gao, Jintao Liu, Xi Chen, and Hu Liu
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-541,https://doi.org/10.5194/hess-2018-541, 2018
Manuscript not accepted for further review
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Theory development
Technical Note: The divide and measure nonconformity – how metrics can mislead when we evaluate on different data partitions
Daniel Klotz, Martin Gauch, Frederik Kratzert, Grey Nearing, and Jakob Zscheischler
Hydrol. Earth Syst. Sci., 28, 3665–3673, https://doi.org/10.5194/hess-28-3665-2024,https://doi.org/10.5194/hess-28-3665-2024, 2024
Short summary
Bimodal hydrographs in a semi-humid forested watershed: characteristics and occurrence conditions
Zhen Cui, Fuqiang Tian, Zilong Zhao, Zitong Xu, Yongjie Duan, Jie Wen, and Mohd Yawar Ali Khan
Hydrol. Earth Syst. Sci., 28, 3613–3632, https://doi.org/10.5194/hess-28-3613-2024,https://doi.org/10.5194/hess-28-3613-2024, 2024
Short summary
Flood drivers and trends: a case study of the Geul River catchment (the Netherlands) over the past half century
Athanasios Tsiokanos, Martine Rutten, Ruud J. van der Ent, and Remko Uijlenhoet
Hydrol. Earth Syst. Sci., 28, 3327–3345, https://doi.org/10.5194/hess-28-3327-2024,https://doi.org/10.5194/hess-28-3327-2024, 2024
Short summary
Power law between the apparent drainage density and the pruning area
Soohyun Yang, Kwanghun Choi, and Kyungrock Paik
Hydrol. Earth Syst. Sci., 28, 3119–3132, https://doi.org/10.5194/hess-28-3119-2024,https://doi.org/10.5194/hess-28-3119-2024, 2024
Short summary
Characterizing nonlinear, nonstationary, and heterogeneous hydrologic behavior using Ensemble Rainfall-Runoff Analysis (ERRA): proof of concept
James W. Kirchner
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2024-103,https://doi.org/10.5194/hess-2024-103, 2024
Revised manuscript accepted for HESS
Short summary

Cited articles

Bense, V. F., Kooi, H., Ferguson, G., and Read, T.: Permafrost degradation as a control on hydrogeological regime shifts in a warming climate, J. Geophys. Res.-Earth, 117, F03036, https://doi.org/10.1029/2011JF002143, 2012. 
Bibi, S., Wang, L., Li, X. P., Zhou, J., Chen, D. L., and Yao, T. D.: Climatic and associated cryospheric, biospheric, and hydrological changes on the Tibetan Plateau: A review, Int. J. Climatol., 38, e1–e17, https://doi.org/10.1002/joc.5411, 2018. 
Brutsaert, W.: Long-term groundwater storage trends estimated from streamflow records: Climatic perspective, Water Resour. Res., 44, 114–125, https://doi.org/10.1029/2007WR006518, 2008. 
Brutsaert, W. and Nieber, J. L.: Regionalized drought flow hydrographs from a mature glaciated plateau, Water Resour. Res., 13, 637–643, 1977. 
Buttle, J. M.: Mediating stream baseflow response to climate change: the role of basin storage, Hydrol. Process., 32, 363–378, https://doi.org/10.1002/hyp.11418, 2017. 
Download
Short summary
In this paper, recession flow analysis – assuming nonlinearized outflow from aquifers into streams – was used to quantify active groundwater storage in a headwater catchment with high glacierization and large-scale frozen ground on the Tibetan Plateau. Hence, this work provides a perspective to clarify the impact of glacial retreat and frozen ground degradation due to climate change on hydrological processes.