Articles | Volume 23, issue 10
https://doi.org/10.5194/hess-23-4077-2019
https://doi.org/10.5194/hess-23-4077-2019
Research article
 | 
01 Oct 2019
Research article |  | 01 Oct 2019

Temporally dependent effects of rainfall characteristics on inter- and intra-event branch-scale stemflow variability in two xerophytic shrubs

Chuan Yuan, Guangyao Gao, Bojie Fu, Daming He, Xingwu Duan, and Xiaohua Wei

Related authors

Inter- and intra-event rainfall partitioning dynamics of two typical xerophytic shrubs in the Loess Plateau of China
Jinxia An, Guangyao Gao, Chuan Yuan, Juan Pinos, and Bojie Fu
Hydrol. Earth Syst. Sci., 26, 3885–3900, https://doi.org/10.5194/hess-26-3885-2022,https://doi.org/10.5194/hess-26-3885-2022, 2022
Short summary
Comparisons of stemflow and its bio-/abiotic influential factors between two xerophytic shrub species
Chuan Yuan, Guangyao Gao, and Bojie Fu
Hydrol. Earth Syst. Sci., 21, 1421–1438, https://doi.org/10.5194/hess-21-1421-2017,https://doi.org/10.5194/hess-21-1421-2017, 2017
Short summary

Related subject area

Subject: Ecohydrology | Techniques and Approaches: Instruments and observation techniques
Root water uptake patterns are controlled by tree species interactions and soil water variability
Gökben Demir, Andrew J. Guswa, Janett Filipzik, Johanna Clara Metzger, Christine Römermann, and Anke Hildebrandt
Hydrol. Earth Syst. Sci., 28, 1441–1461, https://doi.org/10.5194/hess-28-1441-2024,https://doi.org/10.5194/hess-28-1441-2024, 2024
Short summary
The seasonal origins and ages of water provisioning streams and trees in a tropical montane cloud forest
Emily I. Burt, Gregory R. Goldsmith, Roxanne M. Cruz-de Hoyos, Adan Julian Ccahuana Quispe, and A. Joshua West
Hydrol. Earth Syst. Sci., 27, 4173–4186, https://doi.org/10.5194/hess-27-4173-2023,https://doi.org/10.5194/hess-27-4173-2023, 2023
Short summary
Benefits of a robotic chamber system for determining evapotranspiration in an erosion-affected, heterogeneous cropland
Adrian Dahlmann, Mathias Hoffmann, Gernot Verch, Marten Schmidt, Michael Sommer, Jürgen Augustin, and Maren Dubbert
Hydrol. Earth Syst. Sci., 27, 3851–3873, https://doi.org/10.5194/hess-27-3851-2023,https://doi.org/10.5194/hess-27-3851-2023, 2023
Short summary
Quantifying river water contributions to the transpiration of riparian trees along a losing river: lessons from stable isotopes and an iteration method
Yue Li, Ying Ma, Xianfang Song, Qian Zhang, and Lixin Wang
Hydrol. Earth Syst. Sci., 27, 3405–3425, https://doi.org/10.5194/hess-27-3405-2023,https://doi.org/10.5194/hess-27-3405-2023, 2023
Short summary
Dye-tracer-aided investigation of xylem water transport velocity distributions
Stefan Seeger and Markus Weiler
Hydrol. Earth Syst. Sci., 27, 3393–3404, https://doi.org/10.5194/hess-27-3393-2023,https://doi.org/10.5194/hess-27-3393-2023, 2023
Short summary

Cited articles

André, F., Jonard, M., and Ponette, Q.: Influence of species and rain event characteristics on stemflow volume in a temperate mixed oak-beech stand, Hydrol. Process., 22, 4455–4466, https://doi.org/10.1002/hyp.7048, 2008. 
Bassette, C. and Bussière, F.: Partitioning of splash and storage during raindrop impacts on banana leaves, Agr. Forest Meteorol., 148, 991–1004, https://doi.org/10.1016/j.agrformet.2008.01.016, 2008. 
Bittar, T. B., Pound, P., Whitetree, A., Moore, L. D., and van Stan John, T.: Estimation of throughfall and stemflow bacterial flux in a subtropical oak-cedar forest, Geophys. Res. Lett., 45, 1410–1418, https://doi.org/10.1002/2017GL075827, 2018. 
Brandt, C. J.: Simulation of the size distribution and erosivity of raindrops and throughfall drops, Earth. Surf. Proc. Land., 15, 687–698, https://doi.org/10.1002/esp.3290150803, 1990. 
Bundt, M., Widmer, F., Pesaro, M., Zeyer, J., and Blaser, P.: Preferential flow paths: biological `hot spots' in soils, Soil. Biol. Biochem., 33, 729–738, https://doi.org/10.1016/S0038-0717(00)00218-2, 2001. 
Download
Short summary
The stemflow dynamics of two xerophytic shrubs were investigated at the inter- and intra-event scales with high-temporal-resolution data in 54 rain events. Stemflow process was depicted by intensity, duration and time lags to rain events. Funneling ratio was calculated as the ratio of stemflow to rainfall intensities. Rainfall intensity and raindrop momentum controlled stemflow intensity and time lags. Influences of rainfall characteristics on stemflow variables showed temporal dependence.