Articles | Volume 23, issue 3
https://doi.org/10.5194/hess-23-1505-2019
https://doi.org/10.5194/hess-23-1505-2019
Research article
 | 
15 Mar 2019
Research article |  | 15 Mar 2019

Predicting floods in a large karst river basin by coupling PERSIANN-CCS QPEs with a physically based distributed hydrological model

Ji Li, Daoxian Yuan, Jiao Liu, Yongjun Jiang, Yangbo Chen, Kuo Lin Hsu, and Soroosh Sorooshian

Related authors

A physically based distributed karst hydrological model (QMG model-V1.0) for flood simulations
Ji Li, Daoxian Yuan, Fuxi Zhang, Jiao Liu, and Mingguo Ma
Geosci. Model Dev., 15, 6581–6600, https://doi.org/10.5194/gmd-15-6581-2022,https://doi.org/10.5194/gmd-15-6581-2022, 2022
Short summary
Comparing the performances of WRF QPF and PERSIANN-CCS QPEs in karst flood simulations and forecasting with a new Karst-Liuxihe model
Ji Li, Daoxian Yuan, Aihua Hong, Yongjun Jiang, Jiao Liu, and Yangbo Chen
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2019-285,https://doi.org/10.5194/hess-2019-285, 2019
Preprint withdrawn
Short summary
Extending flood forecasting lead time in a large watershed by coupling WRF QPF with a distributed hydrological model
Ji Li, Yangbo Chen, Huanyu Wang, Jianming Qin, Jie Li, and Sen Chiao
Hydrol. Earth Syst. Sci., 21, 1279–1294, https://doi.org/10.5194/hess-21-1279-2017,https://doi.org/10.5194/hess-21-1279-2017, 2017
Short summary
Large-watershed flood forecasting with high-resolution distributed hydrological model
Yangbo Chen, Ji Li, Huanyu Wang, Jianming Qin, and Liming Dong
Hydrol. Earth Syst. Sci., 21, 735–749, https://doi.org/10.5194/hess-21-735-2017,https://doi.org/10.5194/hess-21-735-2017, 2017
Short summary
Improving flood forecasting capability of physically based distributed hydrological models by parameter optimization
Y. Chen, J. Li, and H. Xu
Hydrol. Earth Syst. Sci., 20, 375–392, https://doi.org/10.5194/hess-20-375-2016,https://doi.org/10.5194/hess-20-375-2016, 2016
Short summary

Related subject area

Subject: Hydrometeorology | Techniques and Approaches: Modelling approaches
Spatial variability in the seasonal precipitation lapse rates in complex topographical regions – application in France
Valentin Dura, Guillaume Evin, Anne-Catherine Favre, and David Penot
Hydrol. Earth Syst. Sci., 28, 2579–2601, https://doi.org/10.5194/hess-28-2579-2024,https://doi.org/10.5194/hess-28-2579-2024, 2024
Short summary
Assessing downscaling methods to simulate hydrologically relevant weather scenarios from a global atmospheric reanalysis: case study of the upper Rhône River (1902–2009)
Caroline Legrand, Benoît Hingray, Bruno Wilhelm, and Martin Ménégoz
Hydrol. Earth Syst. Sci., 28, 2139–2166, https://doi.org/10.5194/hess-28-2139-2024,https://doi.org/10.5194/hess-28-2139-2024, 2024
Short summary
Global total precipitable water variations and trends over the period 1958–2021
Nenghan Wan, Xiaomao Lin, Roger A. Pielke Sr., Xubin Zeng, and Amanda M. Nelson
Hydrol. Earth Syst. Sci., 28, 2123–2137, https://doi.org/10.5194/hess-28-2123-2024,https://doi.org/10.5194/hess-28-2123-2024, 2024
Short summary
Assessing decadal- to centennial-scale nonstationary variability in meteorological drought trends
Kyungmin Sung, Max C. A. Torbenson, and James H. Stagge
Hydrol. Earth Syst. Sci., 28, 2047–2063, https://doi.org/10.5194/hess-28-2047-2024,https://doi.org/10.5194/hess-28-2047-2024, 2024
Short summary
Identification of compound drought and heatwave events on a daily scale and across four seasons
Baoying Shan, Niko E. C. Verhoest, and Bernard De Baets
Hydrol. Earth Syst. Sci., 28, 2065–2080, https://doi.org/10.5194/hess-28-2065-2024,https://doi.org/10.5194/hess-28-2065-2024, 2024
Short summary

Cited articles

Abbott, M. B., Bathurst, J. C., Cunge, J. A., O'Connell, P. E., and Rasmussen, J.: An Introduction to the European HydrologicSystem-System Hydrologue Europeen, “SHE”, a: History and Philosophy of a Physically-based, Distributed Modelling System, J. Hydrol., 87, 45–59, 1986a. 
Abbott, M. B., Bathurst, J. C., Cunge, J. A., O'Connell, P. E., and Rasmussen, J.: An Introduction to the European Hydrologic System-System Hydrologue Europeen, “SHE”, b: Structure of a Physically based, distributed modeling System, J. Hydrol., 87, 61–77, 1986b. 
Ahilan, S., O'Sullivan, J. J., and Bruen, M.: Influences on flood frequency distribution in Irish catchments, 34th IAHR World Congress 2011: Balance and Uncertainty: Water in a Changing World, International Association for Hydro-Environment Engineering and Research, Brisbane, Australia, 2012. 
Ambroise, B., Beven, K., and Freer, J.: Toward a generalization of the TOPMODEL concepts: Topographic indices of hydrologic similarity, Water Resour. Res., 32, 2135–2145, 1996. 
Ashouri, H., Hsu, K. L., Soroosh, S., Braithwaite, D. K., Knapp, K. R., and Cecil, L. D.: PERSIANN-CDR: Daily Precipitation Climate Data Record from Multisatellite Observations for Hydrological and Climate Studies, B. Am. Meteorol. Soc., 96, 197–210, 2014. 
Download
Short summary
There are no long-term reasonable rainfall data to build a hydrological model in karst river basins to a large extent. In this paper, the PERSIANN-CCS QPEs are employed to estimate the precipitation data as an attempt in the Liujiang karst river basin, 58 270 km2, China. An improved method is proposed to revise the results of the PERSIANN-CCS QPEs. The post-processed PERSIANN-CCS QPE with a distributed hydrological model, the Liuxihe model, has a better performance in karst flood forecasting.