Journal cover Journal topic
Hydrology and Earth System Sciences An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.153
IF5.153
IF 5-year value: 5.460
IF 5-year
5.460
CiteScore value: 7.8
CiteScore
7.8
SNIP value: 1.623
SNIP1.623
IPP value: 4.91
IPP4.91
SJR value: 2.092
SJR2.092
Scimago H <br class='widget-line-break'>index value: 123
Scimago H
index
123
h5-index value: 65
h5-index65
HESS | Articles | Volume 22, issue 12
Hydrol. Earth Syst. Sci., 22, 6567–6578, 2018
https://doi.org/10.5194/hess-22-6567-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Hydrol. Earth Syst. Sci., 22, 6567–6578, 2018
https://doi.org/10.5194/hess-22-6567-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 20 Dec 2018

Research article | 20 Dec 2018

A new probability density function for spatial distribution of soil water storage capacity leads to the SCS curve number method

Dingbao Wang

Related authors

Diagnosis toward predicting mean annual runoff in ungauged basins
Yuan Gao, Lili Yao, Ni-Bin Chang, and Dingbao Wang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-353,https://doi.org/10.5194/hess-2020-353, 2020
Preprint under review for HESS
Short summary
HESS Opinions: Beyond the long-term water balance: evolving Budyko's supply–demand framework for the Anthropocene towards a global synthesis of land-surface fluxes under natural and human-altered watersheds
A. Sankarasubramanian, Dingbao Wang, Stacey Archfield, Meredith Reitz, Richard M. Vogel, Amirhossein Mazrooei, and Sudarshana Mukhopadhyay
Hydrol. Earth Syst. Sci., 24, 1975–1984, https://doi.org/10.5194/hess-24-1975-2020,https://doi.org/10.5194/hess-24-1975-2020, 2020
Short summary
The probability distribution of daily precipitation at the point and catchment scales in the United States
Lei Ye, Lars S. Hanson, Pengqi Ding, Dingbao Wang, and Richard M. Vogel
Hydrol. Earth Syst. Sci., 22, 6519–6531, https://doi.org/10.5194/hess-22-6519-2018,https://doi.org/10.5194/hess-22-6519-2018, 2018
Identification of hydrological model parameter variation using ensemble Kalman filter
Chao Deng, Pan Liu, Shenglian Guo, Zejun Li, and Dingbao Wang
Hydrol. Earth Syst. Sci., 20, 4949–4961, https://doi.org/10.5194/hess-20-4949-2016,https://doi.org/10.5194/hess-20-4949-2016, 2016
Short summary
Identification of hydrological model parameters variation using ensemble Kalman filter
Chao Deng, Pan Liu, Shenglian Guo, Zejun Li, and Dingbao Wang
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2015-407,https://doi.org/10.5194/hess-2015-407, 2016
Manuscript not accepted for further review
Short summary

Related subject area

Subject: Catchment hydrology | Techniques and Approaches: Theory development
The influence of a prolonged meteorological drought on catchment water storage capacity: a hydrological-model perspective
Zhengke Pan, Pan Liu, Chong-Yu Xu, Lei Cheng, Jing Tian, Shujie Cheng, and Kang Xie
Hydrol. Earth Syst. Sci., 24, 4369–4387, https://doi.org/10.5194/hess-24-4369-2020,https://doi.org/10.5194/hess-24-4369-2020, 2020
Short summary
Hydrological and runoff formation processes based on isotope tracing during ablation period in the source regions of Yangtze River
Zong-Jie Li, Zong-Xing Li, Ling-Ling Song, Juan Gui, Jian Xue, Bai Juan Zhang, and Wen De Gao
Hydrol. Earth Syst. Sci., 24, 4169–4187, https://doi.org/10.5194/hess-24-4169-2020,https://doi.org/10.5194/hess-24-4169-2020, 2020
Short summary
Importance of snowmelt contribution to seasonal runoff and summer low flows in Czechia
Michal Jenicek and Ondrej Ledvinka
Hydrol. Earth Syst. Sci., 24, 3475–3491, https://doi.org/10.5194/hess-24-3475-2020,https://doi.org/10.5194/hess-24-3475-2020, 2020
Short summary
Concentration–discharge relationships vary among hydrological events, reflecting differences in event characteristics
Julia L. A. Knapp, Jana von Freyberg, Bjørn Studer, Leonie Kiewiet, and James W. Kirchner
Hydrol. Earth Syst. Sci., 24, 2561–2576, https://doi.org/10.5194/hess-24-2561-2020,https://doi.org/10.5194/hess-24-2561-2020, 2020
Short summary
Hydrology and beyond: The scientific work of August Colding revisited
Dan Rosbjerg
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-171,https://doi.org/10.5194/hess-2020-171, 2020
Revised manuscript accepted for HESS

Cited articles

Bartlett, M. S., Parolari, A. J., McDonnell, J. J., and Porporato, A.: Beyond the SCS-CN method: A theoretical framework for spatially lumped rainfall-runoff response, Water Resour. Res., 52, 4608–4627, https://doi.org/10.1002/2015WR018439, 2016a. 
Bartlett, M. S., Parolari, A. J., McDonnell, J. J., and Porporato, A.: Framework for event-based semidistributed modeling that unifies the SCS-CN method, VIC, PDM, and TOPMODEL, Water Resour. Res., 52, 7036–7052, https://doi.org/10.1002/2016WR019084, 2016b. 
Beven, K.: Rainfall-Runoff Modelling: The Primer, 2nd Edn., Wiley-Blackwell, Chichester, UK, 2012. 
Beven, K. and Kirkby, M. J.: A physically based, variable contributing area model of basin hydrology, Hydrol. Sci. J., 24, 43–69, 1979. 
Bras, R. L.: Hydrology: an introduction to hydrologic science, Addison Wesley Publishing Company, Reading, MA, 1990. 
Publications Copernicus
Download
Short summary
A novel distribution function is proposed for describing the spatial distribution of soil water storage capacity, and then the classical and empirical hydrologic model (the SCS curve number method) is derived as when the initial soil water storage is zero. This distribution function unifies the SCS curve number method and probability-distributed models such as the VIC and Xinanjiang models. The unified model provides a better way for modeling surface runoff.
A novel distribution function is proposed for describing the spatial distribution of soil water...
Citation