Articles | Volume 22, issue 4
https://doi.org/10.5194/hess-22-2117-2018
https://doi.org/10.5194/hess-22-2117-2018
Research article
 | 
06 Apr 2018
Research article |  | 06 Apr 2018

Reconstruction of global gridded monthly sectoral water withdrawals for 1971–2010 and analysis of their spatiotemporal patterns

Zhongwei Huang, Mohamad Hejazi, Xinya Li, Qiuhong Tang, Chris Vernon, Guoyong Leng, Yaling Liu, Petra Döll, Stephanie Eisner, Dieter Gerten, Naota Hanasaki, and Yoshihide Wada

Related authors

Unravelling Disparities in Eulerian and Lagrangian Moisture Tracking Models in Monsoon- and Westerlies-dominated Basins Around the Tibetan Plateau
Ying Li, Chenghao Wang, Qiuhong Tang, Shibo Yao, Bo Sun, Hui Peng, and Shangbin Xiao
EGUsphere, https://doi.org/10.5194/egusphere-2024-14,https://doi.org/10.5194/egusphere-2024-14, 2024
Short summary
Coupling a large-scale glacier and hydrological model (OGGM v1.5.3 and CWatM V1.08) – Towards an improved representation of mountain water resources in global assessments
Sarah Hanus, Lilian Schuster, Peter Burek, Fabien Maussion, Yoshihide Wada, and Daniel Viviroli
EGUsphere, https://doi.org/10.5194/egusphere-2023-2562,https://doi.org/10.5194/egusphere-2023-2562, 2024
Short summary
Satellite-based Near-Real-Time Global Daily Terrestrial Evapotranspiration Estimates
Lei Huang, Yong Luo, Jing M. Chen, Qiuhong Tang, Tammo Steenhuis, Wei Cheng, and Wen Shi
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-495,https://doi.org/10.5194/essd-2023-495, 2024
Revised manuscript under review for ESSD
Short summary
GCAM-GLORY v1.0: Representing Global Reservoir Water Storage in a Multisector Human-Earth System Model
Mengqi Zhao, Thomas B. Wild, Neal T. Graham, Son Kim, Matthew Binsted, A. F. M. Kamal Chowdhury, Siwa Msangi, Pralit L. Patel, Chris R. Vernon, Hassan Niazi, Hong-Yi Li, and Guta W. Abeshu
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-204,https://doi.org/10.5194/gmd-2023-204, 2023
Preprint under review for GMD
Short summary
The global water resources and use model WaterGAP v2.2e: description and evaluation of modifications and new features
Hannes Müller Schmied, Tim Trautmann, Sebastian Ackermann, Denise Cáceres, Martina Flörke, Helena Gerdener, Ellen Kynast, Thedini Asali Peiris, Leonie Schiebener, Maike Schumacher, and Petra Döll
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-213,https://doi.org/10.5194/gmd-2023-213, 2023
Preprint under review for GMD
Short summary

Related subject area

Subject: Water Resources Management | Techniques and Approaches: Modelling approaches
Process-based three-layer synergistic optimal-allocation model for complex water resource systems considering reclaimed water
Jing Liu, Yue-Ping Xu, Wei Zhang, Shiwu Wang, and Siwei Chen
Hydrol. Earth Syst. Sci., 28, 1325–1350, https://doi.org/10.5194/hess-28-1325-2024,https://doi.org/10.5194/hess-28-1325-2024, 2024
Short summary
Joint optimal operation of the South-to-North Water Diversion Project considering the evenness of water deficit
Bing-Yi Zhou, Guo-Hua Fang, Xin Li, Jian Zhou, and Hua-Yu Zhong
Hydrol. Earth Syst. Sci., 28, 817–832, https://doi.org/10.5194/hess-28-817-2024,https://doi.org/10.5194/hess-28-817-2024, 2024
Short summary
Employing the generalized Pareto distribution to analyze extreme rainfall events on consecutive rainy days in Thailand's Chi watershed: implications for flood management
Tossapol Phoophiwfa, Prapawan Chomphuwiset, Thanawan Prahadchai, Jeong-Soo Park, Arthit Apichottanakul, Watchara Theppang, and Piyapatr Busababodhin
Hydrol. Earth Syst. Sci., 28, 801–816, https://doi.org/10.5194/hess-28-801-2024,https://doi.org/10.5194/hess-28-801-2024, 2024
Short summary
How to account for irrigation withdrawals in a watershed model
Elisabeth Brochet, Youen Grusson, Sabine Sauvage, Ludovic Lhuissier, and Valérie Demarez
Hydrol. Earth Syst. Sci., 28, 49–64, https://doi.org/10.5194/hess-28-49-2024,https://doi.org/10.5194/hess-28-49-2024, 2024
Short summary
Inferring reservoir filling strategies under limited-data-availability conditions using hydrological modeling and Earth observations: the case of the Grand Ethiopian Renaissance Dam (GERD)
Awad M. Ali, Lieke A. Melsen, and Adriaan J. Teuling
Hydrol. Earth Syst. Sci., 27, 4057–4086, https://doi.org/10.5194/hess-27-4057-2023,https://doi.org/10.5194/hess-27-4057-2023, 2023
Short summary

Cited articles

Adams, R. M., Rosenzweig, C., Peart, R., Ritchie, J. T., and McCarl, B. A.: Global climate change and US agriculture, Nature, 345, 219–224, 1990. 
Alcamo, J., Döll, P., Henrichs, T., Kaspar, F., Lehner, B., Rösch, T., and Siebert, S.: Development and testing of the WaterGAP 2 global model of water use and availability, Hydrolog. Sci. J., 48, 317–337, 2003. 
Allen, J. C.: A modified sine wave method for calculating degree days, Environ. Entomol., 5, 388–396, 1976. 
Babel, M., Gupta, A. D., and Pradhan, P.: A multivariate econometric approach for domestic water demand modeling: an application to Kathmandu, Nepal, Water Resour. Manage., 21, 573–589, 2007. 
Balling, R. C., Gober, P., and Jones, N.: Sensitivity of residential water consumption to variations in climate: an intraurban analysis of Phoenix, Arizona, Water Resour. Res., 44, W10401, https://doi.org/10.1029/2007WR006722, 2008. 
Download
Short summary
This study generate a historical global monthly gridded water withdrawal data (0.5 × 0.5 degrees) for the period 1971–2010, distinguishing six water use sectors (irrigation, domestic, electricity generation, livestock, mining, and manufacturing). This dataset is the first reconstructed global water withdrawal data product at sub-annual and gridded resolution that is derived from different models and data sources, and was generated by spatially and temporally downscaling country-scale estimates.